Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2017 Volume 39 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2017 Volume 39 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The role of gap junctions in inflammatory and neoplastic disorders (Review)

  • Authors:
    • Pui Wong
    • Victoria Laxton
    • Saurabh Srivastava
    • Yin Wah Fiona Chan
    • Gary Tse
  • View Affiliations / Copyright

    Affiliations: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China, Intensive Care Department, Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, UK, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK, School of Biological Sciences, University of Cambridge, Cambridge CB2 1AG, UK, Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
    Copyright: © Wong et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Pages: 498-506
    |
    Published online on: January 17, 2017
       https://doi.org/10.3892/ijmm.2017.2859
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Gap junctions are intercellular channels made of connexin proteins, mediating both electrical and biochemical signals between cells. The ability of gap junction proteins to regulate immune responses, cell proliferation, migration, apoptosis and carcinogenesis makes them attractive therapeutic targets for treating inflammatory and neoplastic disorders in different organ systems. Alterations in gap junction profile and expression levels are observed in hyperproliferative skin disorders, lymphatic vessel diseases, inflammatory lung diseases, liver injury and neoplastic disorders. It is now recognized that the therapeutic effects mediated by traditional pharmacological agents are dependent upon gap junction communication and may even act by influencing gap junction expression or function. Novel strategies for modulating the function or expression of connexins, such as the use of synthetic mimetic peptides and siRNA technology are considered.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Kanno Y and Loewenstein WR: Low-resistance coupling between gland cells. Some observations on intercellular contact membranes and intercellular space. Nature. 201:194–195. 1964. View Article : Google Scholar : PubMed/NCBI

2 

Lawrence TS, Beers WH and Gilula NB: Transmission of hormonal stimulation by cell-to-cell communication. Nature. 272:501–506. 1978. View Article : Google Scholar : PubMed/NCBI

3 

Zhou JZ and Jiang JX: Gap junction and hemichannel-independent actions of connexins on cell and tissue functions - an update. FEBS Lett. 588:1186–1192. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Tse G and Yan BP: Electrophysiological mechanisms of long and short QT syndromes: Insights from mouse models. Int J Cardiol Heart Vasc. In press.

5 

Veeraraghavan R, Lin J, Hoeker GS, Keener JP, Gourdie RG and Poelzing S: Sodium channels in the Cx43 gap junction perinexus may constitute a cardiac ephapse: An experimental and modeling study. Pflugers Arch. 467:2093–2105. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Veeraraghavan R, Gourdie RG and Poelzing S: Mechanisms of cardiac conduction: A history of revisions. Am J Physiol Heart Circ Physiol. 306:H619–H627. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Koval M, Isakson BE and Gourdie RG: Connexins, pannexins and innexins: Protein cousins with overlapping functions. FEBS Lett. 588:11852014. View Article : Google Scholar : PubMed/NCBI

8 

Tse G: Both transmural dispersion of repolarization and transmural dispersion of refractoriness are poor predictors of arrhythmogenicity: A role for the index of Cardiac Electrophysiological Balance (QT/QRS)? J Geriatr Cardiol. In press.

9 

Harris AL: Emerging issues of connexin channels: Biophysics fills the gap. Q Rev Biophys. 34:325–472. 2001. View Article : Google Scholar

10 

Söhl G and Willecke K: Gap junctions and the connexin protein family. Cardiovasc Res. 62:228–232. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Ke Q, Li L, Cai B, Liu C, Yang Y, Gao Y, Huang W, Yuan X, Wang T, Zhang Q, et al: Connexin 43 is involved in the generation of human-induced pluripotent stem cells. Hum Mol Genet. 22:2221–2233. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Becker DL, Thrasivoulou C and Phillips AR: Connexins in wound healing; perspectives in diabetic patients. Biochim Biophys Acta. 1818:2068–2075. 2012. View Article : Google Scholar

13 

Crespo Yanguas S, Willebrords J, Maes M, da Silva TC, Veloso Alves Pereira I, Cogliati B, Zaidan Dagli ML and Vinken M: Connexins and pannexins in liver damage. EXCLI J. 15:177–186. 2016.PubMed/NCBI

14 

Tse G and Yeo JM: Conduction abnormalities and ventricular arrhythmogenesis: The roles of sodium channels and gap junctions. Int J Cardiol Heart Vasc. 9:75–82. 2015.

15 

Goldberg GS, Valiunas V and Brink PR: Selective permeability of gap junction channels. Biochim Biophys Acta. 1662:96–101. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Wilgenbus KK, Kirkpatrick CJ, Knuechel R, Willecke K and Traub O: Expression of Cx26, Cx32 and Cx43 gap junction proteins in normal and neoplastic human tissues. Int J Cancer. 51:522–529. 1992. View Article : Google Scholar : PubMed/NCBI

17 

Bukauskas FF and Verselis VK: Gap junction channel gating. Biochim Biophys Acta. 1662:42–60. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Bao L, Sachs F and Dahl G: Connexins are mechanosensitive. Am J Physiol Cell Physiol. 287:C1389–C1395. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Tse G, Yeo JM, Tse V, Kwan J and Sun B: Gap junction inhibition by heptanol increases ventricular arrhythmogenicity by reducing conduction velocity without affecting repolarization properties or myocardial refractoriness in Langendorff-perfused mouse hearts. Mol Med Rep. 14:4069–4074. 2016.PubMed/NCBI

20 

Musil LS and Goodenough DA: Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol. 115:1357–1374. 1991. View Article : Google Scholar : PubMed/NCBI

21 

Bennett MV and Verselis VK: Biophysics of gap junctions. Semin Cell Biol. 3:29–47. 1992. View Article : Google Scholar : PubMed/NCBI

22 

Meyer RA, Lampe PD, Malewicz B, Baumann WJ and Johnson RG: Enhanced gap junction formation with LDL and apolipoprotein B. Exp Cell Res. 196:72–81. 1991. View Article : Google Scholar : PubMed/NCBI

23 

Meyer R, Malewicz B, Baumann WJ and Johnson RG: Increased gap junction assembly between cultured cells upon cholesterol supplementation. J Cell Sci. 96:231–238. 1990.PubMed/NCBI

24 

O'Carroll SJ, Becker DL, Davidson JO, Gunn AJ, Nicholson LF and Green CR: The use of connexin-based therapeutic approaches to target inflammatory diseases. Methods Mol Biol. 1037:519–546. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Beyer EC and Berthoud VM: Gap junction synthesis and degradation as therapeutic targets. Curr Drug Targets. 3:409–416. 2002. View Article : Google Scholar : PubMed/NCBI

26 

Plum A, Hallas G, Magin T, Dombrowski F, Hagendorff A, Schumacher B, Wolpert C, Kim J, Lamers WH, Evert M, et al: Unique and shared functions of different connexins in mice. Curr Biol. 10:1083–1091. 2000. View Article : Google Scholar : PubMed/NCBI

27 

Scott CA, Tattersall D, O'Toole EA and Kelsell DP: Connexins in epidermal homeostasis and skin disease. Biochim Biophys Acta. 1818:1952–1961. 2012. View Article : Google Scholar

28 

Richard G: Connexin disorders of the skin. Clin Dermatol. 23:23–32. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Labarthe MP, Bosco D, Saurat JH, Meda P and Salomon D: Upregulation of connexin 26 between keratinocytes of psoriatic lesions. J Invest Dermatol. 111:72–76. 1998. View Article : Google Scholar : PubMed/NCBI

30 

Lucke T, Choudhry R, Thom R, Selmer IS, Burden AD and Hodgins MB: Upregulation of connexin 26 is a feature of keratinocyte differentiation in hyperproliferative epidermis, vaginal epithelium, and buccal epithelium. J Invest Dermatol. 112:354–361. 1999. View Article : Google Scholar : PubMed/NCBI

31 

Djalilian AR, McGaughey D, Patel S, Seo EY, Yang C, Cheng J, Tomic M, Sinha S, Ishida-Yamamoto A and Segre JA: Connexin 26 regulates epidermal barrier and wound remodeling and promotes psoriasiform response. J Clin Invest. 116:1243–1253. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Iossa S, Marciano E and Franzé A: GJB2 gene mutations in syndromic skin diseases with sensorineural hearing loss. Curr Genomics. 12:475–785. 2011. View Article : Google Scholar :

33 

Levit NA and White TW: Connexin hemichannels influence genetically determined inflammatory and hyperproliferative skin diseases. Pharmacol Res. 99:337–343. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Masgrau-Peya E, Salomon D, Saurat JH and Meda P: In vivo modulation of connexins 43 and 26 of human epidermis by topical retinoic acid treatment. J Histochem Cytochem. 45:1207–1215. 1997. View Article : Google Scholar : PubMed/NCBI

35 

Kanady JD, Dellinger MT, Munger SJ, Witte MH and Simon AM: Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax. Dev Biol. 354:253–266. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Meens MJ, Sabine A, Petrova TV and Kwak BR: Connexins in lymphatic vessel physiology and disease. FEBS Lett. 588:1271–1277. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Wick N, Saharinen P, Saharinen J, Gurnhofer E, Steiner CW, Raab I, Stokic D, Giovanoli P, Buchsbaum S, Burchard A, et al: Transcriptomal comparison of human dermal lymphatic endothelial cells ex vivo and in vitro. Physiol Genomics. 28:179–192. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Finegold DN, Schacht V, Kimak MA, Lawrence EC, Foeldi E, Karlsson JM, Baty CJ and Ferrell RE: HGF and MET mutations in primary and secondary lymphedema. Lymphat Res Biol. 6:65–68. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Finegold DN, Baty CJ, Knickelbein KZ, Perschke S, Noon SE, Campbell D, Karlsson JM, Huang D, Kimak MA, Lawrence EC, et al: Connexin 47 mutations increase risk for secondary lymphedema following breast cancer treatment. Clin Cancer Res. 18:2382–2390. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Losa D and Chanson M: The lung communication network. Cell Mol Life Sci. 72:2793–2808. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Freund-Michel V, Muller B, Marthan R, Savineau JP and Guibert C: Expression and role of connexin-based gap junctions in pulmonary inflammatory diseases. Pharmacol Ther. 164:105–119. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Okamoto T, Akiyama M, Takeda M, Gabazza EC, Hayashi T and Suzuki K: Connexin32 is expressed in vascular endothelial cells and participates in gap-junction intercellular communication. Biochem Biophys Res Commun. 382:264–268. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Ram A, Singh SK, Singh VP, Kumar S and Ghosh B: Inhaled carbenoxolone prevents allergic airway inflammation and airway hyperreactivity in a mouse model of asthma. Int Arch Allergy Immunol. 149:38–46. 2009. View Article : Google Scholar

44 

Tamaya T, Sato S and Okada HH: Possible mechanism of steroid action of the plant herb extracts glycyrrhizin, glycyrrhetinic acid, and paeoniflorin: Inhibition by plant herb extracts of steroid protein binding in the rabbit. Am J Obstet Gynecol. 155:1134–1139. 1986. View Article : Google Scholar : PubMed/NCBI

45 

Park SJ, Lee KS, Kim SR, Min KH, Lee KY, Choe YH, Park SY, Hong SH and Lee YC: Change of connexin 37 in allergen-induced airway inflammation. Exp Mol Med. 39:629–640. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Koval M, Billaud M, Straub AC, Johnstone SR, Zarbock A, Duling BR and Isakson BE: Spontaneous lung dysfunction and fibrosis in mice lacking connexin 40 and endothelial cell connexin 43. Am J Pathol. 178:2536–2546. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Kim J, Hwangbo C, Hu X, Kang Y, Papangeli I, Mehrotra D, Park H, Ju H, McLean DL, Comhair SA, et al: Restoration of impaired endothelial myocyte enhancer factor 2 function rescues pulmonary arterial hypertension. Circulation. 131:190–199. 2015. View Article : Google Scholar

48 

Zhang J, Wang W, Sun J, Li Q, Liu J, Zhu H, Chen T, Wang H, Yu S and Sun G: Gap junction channel modulates pulmonary vascular permeability through calcium in acute lung injury: An experimental study. Respiration. 80:236–245. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Chadjichristos CE, Scheckenbach KE, van Veen TA, Richani Sarieddine MZ, de Wit C, Yang Z, Roth I, Bacchetta M, Viswambharan H and Foglia B: Endothelial-specific deletion of connexin40 promotes atherosclerosis by increasing CD73-dependent leukocyte adhesion. Circulation. 121:123–131. 2010. View Article : Google Scholar

50 

Rignault S, Haefliger JA, Waeber B, Liaudet L and Feihl F: Acute inflammation decreases the expression of connexin 40 in mouse lung. Shock. 28:78–85. 2007. View Article : Google Scholar : PubMed/NCBI

51 

O'Donnell JJ III, Birukova AA, Beyer EC and Birukov KG: Gap junction protein connexin43 exacerbates lung vascular permeability. PLoS One. 9:e1009312014. View Article : Google Scholar : PubMed/NCBI

52 

Kasper M, Traub O, Reimann T, Bjermer L, Grossmann H, Müller M and Wenzel KW: Upregulation of gap junction protein connexin43 in alveolar epithelial cells of rats with radiation-induced pulmonary fibrosis. Histochem Cell Biol. 106:419–424. 1996. View Article : Google Scholar : PubMed/NCBI

53 

Fernandez-Cobo M, Gingalewski C and De Maio A: Expression of the connexin 43 gene is increased in the kidneys and the lungs of rats injected with bacterial lipopolysaccharide. Shock. 10:97–102. 1998. View Article : Google Scholar : PubMed/NCBI

54 

Zhang J, Yang GM, Zhu Y, Peng XY, Li T and Liu LM: Role of connexin 43 in vascular hyperpermeability and relationship to Rock1-MLC20 pathway in septic rats. Am J Physiol Lung Cell Mol Physiol. 309:L1323–L1332. 2015.PubMed/NCBI

55 

Molina SA, Stauffer B, Moriarty HK, Kim AH, McCarty NA and Koval M: Junctional abnormalities in human airway epithelial cells expressing F508del CFTR. Am J Physiol Lung Cell Mol Physiol. 309:L475–L487. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Trovato-Salinaro A, Trovato-Salinaro E, Failla M, Mastruzzo C, Tomaselli V, Gili E, Crimi N, Condorelli DF and Vancheri C: Altered intercellular communication in lung fibroblast cultures from patients with idiopathic pulmonary fibrosis. Respir Res. 7:1222006. View Article : Google Scholar : PubMed/NCBI

57 

Montani D, Günther S, Dorfmüller P, Perros F, Girerd B, Garcia G, Jaïs X, Savale L, Artaud-Macari E, Price LC, et al: Pulmonary arterial hypertension. Orphanet J Rare Dis. 8:972013. View Article : Google Scholar : PubMed/NCBI

58 

Yen CH, Leu S, Lin YC, Kao YH, Chang LT, Chua S, Fu M, Wu CJ, Sun CK and Yip HK: Sildenafil limits monocrotaline-induced pulmonary hypertension in rats through suppression of pulmonary vascular remodeling. J Cardiovasc Pharmacol. 55:574–584. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Gairhe S, Bauer NN, Gebb SA and McMurtry IF: Myoendothelial gap junctional signaling induces differentiation of pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 301:L527–L535. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Segretain D and Falk MM: Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochim Biophys Acta. 1662:3–21. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Patel SJ, King KR, Casali M and Yarmush ML: DNA-triggered innate immune responses are propagated by gap junction communication. Proc Natl Acad Sci USA. 106:12867–12872. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Naiki-Ito A, Asamoto M, Naiki T, Ogawa K, Takahashi S, Sato S and Shirai T: Gap junction dysfunction reduces acetaminophen hepatotoxicity with impact on apoptotic signaling and connexin 43 protein induction in rat. Toxicol Pathol. 38:280–286. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Asamoto M, Hokaiwado N, Murasaki T and Shirai T: Connexin 32 dominant-negative mutant transgenic rats are resistant to hepatic damage by chemicals. Hepatology. 40:205–210. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Hokaiwado N, Asamoto M, Futakuchi M, Ogawa K, Takahashi S and Shirai T: Both early and late stages of hepatocarcinogenesis are enhanced in Cx32 dominant negative mutant transgenic rats with disrupted gap junctional intercellular communication. J Membr Biol. 218:101–106. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Maes M, McGill MR, da Silva TC, Abels C, Lebofsky M, Maria Monteiro, de Araújo C, Tiburcio T, Veloso Alves Pereira I, Willebrords J, Crespo Yanguas S, et al: Involvement of connexin43 in acetaminophen-induced liver injury. Biochim Biophys Acta. 1862:1111–1121. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Balasubramaniyan V, Dhar DK, Warner AE, Vivien Li WY, Amiri AF, Bright B, Mookerjee RP, Davies NA, Becker DL and Jalan R: Importance of connexin-43 based gap junction in cirrhosis and acute-on-chronic liver failure. J Hepatol. 58:1194–1200. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Gotthardt D, Riediger C, Weiss KH, Encke J, Schemmer P, Schmidt J and Sauer P: Fulminant hepatic failure: etiology and indications for liver transplantation. Nephrol Dial Transplant. 22(Suppl 8): viii5–viii8. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Maes M, McGill MR, da Silva TC, Lebofsky M, Maria Monteiro, de Araújo C, Tiburcio T, Veloso Alves Pereira I, Willebrords J, Crespo Yanguas S, Farhood A, et al: Connexin32: A mediator of acetaminophen-induced liver injury? Toxicol Mech Methods. 26:88–96. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Igarashi I, Maejima T, Kai K, Arakawa S, Teranishi M and Sanbuissho A: Role of connexin 32 in acetaminophen toxicity in a knockout mice model. Exp Toxicol Pathol. 66:103–110. 2014. View Article : Google Scholar

70 

Du K, Williams CD, McGill MR, Xie Y, Farhood A, Vinken M and Jaeschke H: The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation. Toxicol Appl Pharmacol. 273:484–491. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Patel SJ, Milwid JM, King KR, Bohr S, Iracheta-Vellve A, Li M, Vitalo A, Parekkadan B, Jindal R and Yarmush ML: Gap junction inhibition prevents drug-induced liver toxicity and fulminant hepatic failure. Nat Biotechnol. 30:179–183. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Ogawa K, Pitchakarn P, Suzuki S, Chewonarin T, Tang M, Takahashi S, Naiki-Ito A, Sato S, Takahashi S, Asamoto M, et al: Silencing of connexin 43 suppresses invasion, migration and lung metastasis of rat hepatocellular carcinoma cells. Cancer Sci. 103:860–867. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Zhang D, Kaneda M, Nakahama K, Arii S and Morita I: Connexin 43 expression promotes malignancy of HuH7 hepatocellular carcinoma cells via the inhibition of cell-cell communication. Cancer Lett. 252:208–215. 2007. View Article : Google Scholar : PubMed/NCBI

74 

Ionta M, Ferreira RA, Pfister SC and Machado-Santelli GM: Exogenous Cx43 expression decrease cell proliferation rate in rat hepatocarcinoma cells independently of functional gap junction. Cancer Cell Int. 9:222009. View Article : Google Scholar : PubMed/NCBI

75 

Igarashi I, Makino T, Suzuki Y, Kai K, Teranishi M, Takasaki W and Furuhama K: Background lesions during a 24-month observation period in connexin 32-deficient mice. J Vet Med Sci. 75:207–210. 2013. View Article : Google Scholar

76 

Loch-Caruso R, Galvez MM, Brant K and Chung D: Cell and toxicant specific phosphorylation of conexin43: Effects of lindane and TPA on rat myometrial and WB-F344 liver cell gap junctions. Cell Biol Toxicol. 20:147–169. 2004. View Article : Google Scholar : PubMed/NCBI

77 

Mograbi B, Corcelle E, Defamie N, Samson M, Nebout M, Segretain D, Fénichel P and Pointis G: Aberrant connexin 43 endocytosis by the carcinogen lindane involves activation of the ERK/mitogen-activated protein kinase pathway. Carcinogenesis. 24:1415–1423. 2003. View Article : Google Scholar : PubMed/NCBI

78 

Caruso RL, Upham BL, Harris C and Trosko JE: Biphasic lindane-induced oxidation of glutathione and inhibition of gap junctions in myometrial cells. Toxicol Sci. 86:417–426. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Defamie N, Mograbi B, Roger C, Cronier L, Malassine A, Brucker-Davis F, Fenichel P, Segretain D and Pointis G: Disruption of gap junctional intercellular communication by lindane is associated with aberrant localization of connexin43 and zonula occludens-1 in 42GPA9 Sertoli cells. Carcinogenesis. 22:1537–1542. 2001. View Article : Google Scholar : PubMed/NCBI

80 

Weigelt B, Peterse JL and van't Veer LJ: Breast cancer metastasis: Markers and models. Nat Rev Cancer. 5:591–602. 2005. View Article : Google Scholar : PubMed/NCBI

81 

Plante I, Stewart MK, Barr K, Allan AL and Laird DW: Cx43 suppresses mammary tumor metastasis to the lung in a Cx43 mutant mouse model of human disease. Oncogene. 30:1681–1692. 2011. View Article : Google Scholar

82 

Sirnes S, Bruun J, Kolberg M, Kjenseth A, Lind GE, Svindland A, Brech A, Nesbakken A, Lothe RA, Leithe E, et al: Connexin43 acts as a colorectal cancer tumor suppressor and predicts disease outcome. Int J Cancer. 131:570–581. 2012. View Article : Google Scholar

83 

Bernzweig J, Heiniger B, Prasain K, Lu J, Hua DH and Nguyen TA: Anti-breast cancer agents, quinolines, targeting gap junction. Med Chem. 7:448–453. 2011. View Article : Google Scholar : PubMed/NCBI

84 

Liu CL, Huang YS, Hosokawa M, Miyashita K and Hu ML: Inhibition of proliferation of a hepatoma cell line by fucoxanthin in relation to cell cycle arrest and enhanced gap junctional inter-cellular communication. Chem Biol Interact. 182:165–172. 2009. View Article : Google Scholar : PubMed/NCBI

85 

Soobrattee MA, Bahorun T and Aruoma OI: Chemopreventive actions of polyphenolic compounds in cancer. Biofactors. 27:19–35. 2006. View Article : Google Scholar : PubMed/NCBI

86 

Wang L, Zeng Y, Liu Y, Hu X, Li S, Wang Y, Li L, Lei Z and Zhang Z: Fucoxanthin induces growth arrest and apoptosis in human bladder cancer T24 cells by up-regulation of p21 and down-regulation of mortalin. Acta Biochim Biophys Sin (Shanghai). 46:877–884. 2014. View Article : Google Scholar

87 

Marchenko ND, Zaika A and Moll UM: Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem. 275:16202–16212. 2000. View Article : Google Scholar : PubMed/NCBI

88 

Januar HI, Dewi AS, Marraskuranto E and Wikanta T: In silico study of fucoxanthin as a tumor cytotoxic agent. J Pharm Bioallied Sci. 4:56–59. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Nakamura Y, Chang CC, Mori T, Sato K, Ohtsuki K, Upham BL and Trosko JE: Augmentation of differentiation and gap junction function by kaempferol in partially differentiated colon cancer cells. Carcinogenesis. 26:665–671. 2005. View Article : Google Scholar

90 

Ding Y and Nguyen TA: Gap junction enhancer potentiates cytotoxicity of cisplatin in breast cancer cells. J Cancer Sci Ther. 4:371–378. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Sáez CG, Velásquez L, Montoya M, Eugenín E and Alvarez MG: Increased gap junctional intercellular communication is directly related to the anti-tumor effect of all-trans-retinoic acid plus tamoxifen in a human mammary cancer cell line. J Cell Biochem. 89:450–461. 2003. View Article : Google Scholar : PubMed/NCBI

92 

Wernyj RP and Morin PJ: Molecular mechanisms of platinum resistance: Still searching for the Achilles' heel. Drug Resist Updat. 7:227–232. 2004. View Article : Google Scholar : PubMed/NCBI

93 

Peterson-Roth E, Brdlik CM and Glazer PM: Src-Induced cisplatin resistance mediated by cell-to-cell communication. Cancer Res. 69:3619–3624. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Isakov N, Bleackley RC, Shaw J and Altman A: Teleocidin and phorbol ester tumor promoters exert similar mitogenic effects on human lymphocytes. Biochem Biophys Res Commun. 130:724–731. 1985. View Article : Google Scholar : PubMed/NCBI

95 

Procopio A, Gismondi A, Paolini R, Morrone S, Testi R, Piccoli M, Frati L, Herberman RB and Santoni A: Proliferative effects of 12-O-tetradecanoylphorbol-13-acetate (TPA) and calcium ionophores on human large granular lymphocytes (LGL). Cell Immunol. 113:70–81. 1988. View Article : Google Scholar : PubMed/NCBI

96 

Bigelow K and Nguyen TA: Increase of gap junction activities in SW480 human colorectal cancer cells. BMC Cancer. 14:5022014. View Article : Google Scholar : PubMed/NCBI

97 

Leithe E and Rivedal E: Ubiquitination and down-regulation of gap junction protein connexin-43 in response to 12-O-tetradecanoylphorbol 13-acetate treatment. J Biol Chem. 279:50089–50096. 2004. View Article : Google Scholar : PubMed/NCBI

98 

Solomon VR and Lee H: Quinoline as a privileged scaffold in cancer drug discovery. Curr Med Chem. 18:1488–1508. 2011. View Article : Google Scholar : PubMed/NCBI

99 

Lim YC, Kang HJ, Kim YS and Choi EC: All-trans-retinoic acid inhibits growth of head and neck cancer stem cells by suppression of Wnt/β-catenin pathway. Eur J Cancer. 48:3310–3318. 2012. View Article : Google Scholar : PubMed/NCBI

100 

Ara C, Massimi M and Devirgiliis Conti L: Retinoic acid modulates gap junctional intercellular communication in hepatocytes and hepatoma cells. Cell Mol Life Sci. 59:1758–1765. 2002. View Article : Google Scholar : PubMed/NCBI

101 

Wang J, Dai Y, Huang Y, Chen X, Wang H, Hong Y, Xia J and Cheng B: All-trans retinoic acid restores gap junctional intercellular communication between oral cancer cells with upregulation of Cx32 and Cx43 expressions in vitro. Med Oral Patol Oral Cir Bucal. 18:e569–e577. 2013. View Article : Google Scholar : PubMed/NCBI

102 

Belliveau DJ, Bechberger JF, Rogers KA and Naus CC: Differential expression of gap junctions in neurons and astrocytes derived from P19 embryonal carcinoma cells. Dev Genet. 21:187–200. 1997. View Article : Google Scholar : PubMed/NCBI

103 

Bani-Yaghoub M, Bechberger JF and Naus CC: Reduction of connexin43 expression and dye-coupling during neuronal differentiation of human NTera2/clone D1 cells. J Neurosci Res. 49:19–31. 1997. View Article : Google Scholar : PubMed/NCBI

104 

Rudkin GH, Carlsen BT, Chung CY, Huang W, Ishida K, Anvar B, Yamaguchi DT and Miller TA: Retinoids inhibit squamous cell carcinoma growth and intercellular communication. J Surg Res. 103:183–189. 2002. View Article : Google Scholar : PubMed/NCBI

105 

Picus J and Schultz M: Docetaxel (Taxotere) as monotherapy in the treatment of hormone-refractory prostate cancer: Preliminary results. Semin Oncol. 26(Suppl 17): 14–18. 1999.PubMed/NCBI

106 

Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME, Burch PA, Berry D, Moinpour C, Kohli M, et al: Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 351:1513–1520. 2004. View Article : Google Scholar : PubMed/NCBI

107 

Hwang C: Overcoming docetaxel resistance in prostate cancer: A perspective review. Ther Adv Med Oncol. 4:329–340. 2012. View Article : Google Scholar : PubMed/NCBI

108 

Fukushima M, Hattori Y, Yoshizawa T and Maitani Y: Combination of non-viral connexin 43 gene therapy and docetaxel inhibits the growth of human prostate cancer in mice. Int J Oncol. 30:225–231. 2007.

109 

Tang N, Wang Q, Wu D, Zhang S, Zhang Y and Tao L: Differential effects of paclitaxel and docetaxel on gap junctions affects their cytotoxicities in transfected HeLa cells. Mol Med Rep. 8:638–644. 2013.PubMed/NCBI

110 

Wang M, Berthoud VM and Beyer EC: Connexin43 increases the sensitivity of prostate cancer cells to TNFalpha-induced apoptosis. J Cell Sci. 120:320–329. 2007. View Article : Google Scholar : PubMed/NCBI

111 

Nomura S, Maeda K, Noda E, Inoue T, Fukunaga S, Nagahara H and Hirakawa K: Clinical significance of the expression of connexin26 in colorectal cancer. J Exp Clin Cancer Res. 29:792010. View Article : Google Scholar : PubMed/NCBI

112 

Knösel T, Emde A, Schlüns K, Chen Y, Jürchott K, Krause M, Dietel M and Petersen I: Immunoprofiles of 11 biomarkers using tissue microarrays identify prognostic subgroups in colorectal cancer. Neoplasia. 7:741–747. 2005. View Article : Google Scholar : PubMed/NCBI

113 

Mesnil M, Krutovskikh V, Piccoli C, Elfgang C, Traub O, Willecke K and Yamasaki H: Negative growth control of HeLa cells by connexin genes: Connexin species specificity. Cancer Res. 55:629–639. 1995.PubMed/NCBI

114 

Goulet AC, Watts G, Lord JL and Nelson MA: Profiling of selenomethionine responsive genes in colon cancer by microarray analysis. Cancer Biol Ther. 6:494–503. 2007. View Article : Google Scholar : PubMed/NCBI

115 

Dilber MS and Gahrton G: Suicide gene therapy: Possible applications in haematopoietic disorders. J Intern Med. 249:359–367. 2001. View Article : Google Scholar : PubMed/NCBI

116 

Mesnil M, Piccoli C, Tiraby G, Willecke K and Yamasaki H: Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc Natl Acad Sci USA. 93:1831–1835. 1996. View Article : Google Scholar : PubMed/NCBI

117 

Boucher PD, Ruch RJ and Shewach DS: Differential ganciclovir-mediated cytotoxicity and bystander killing in human colon carcinoma cell lines expressing herpes simplex virus thymidine kinase. Hum Gene Ther. 9:801–814. 1998. View Article : Google Scholar : PubMed/NCBI

118 

Grek CL, Rhett JM and Ghatnekar GS: Cardiac to cancer: Connecting connexins to clinical opportunity. FEBS Lett. 588:1349–1364. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Tanaka T, Yamasaki H and Mesnil M: Induction of a bystander effect in HeLa cells by using a bigenic vector carrying viral thymidine kinase and connexin32 genes. Mol Carcinog. 30:176–180. 2001. View Article : Google Scholar : PubMed/NCBI

120 

Mesnil M and Yamasaki H: Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: Role of gap-junctional intercellular communication. Cancer Res. 60:3989–3999. 2000.PubMed/NCBI

121 

Azzam EI, de Toledo SM and Little JB: Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proc Natl Acad Sci USA. 98:473–478. 2001.PubMed/NCBI

122 

Eloff BC, Lerner DL, Yamada KA, Schuessler RB, Saffitz JE and Rosenbaum DS: High resolution optical mapping reveals conduction slowing in connexin43 deficient mice. Cardiovasc Res. 51:681–690. 2001. View Article : Google Scholar : PubMed/NCBI

123 

Tse G: Mechanisms of cardiac arrhythmias. J Arrhythm. 32:75–81. 2016. View Article : Google Scholar : PubMed/NCBI

124 

Tse G, Wong ST, Tse V, Lee YT, Lin HY and Yeo JM: Cardiac dynamics: Alternans and arrhythmogenesis. J Arrhythm. 32:411–417. 2016. View Article : Google Scholar : PubMed/NCBI

125 

Schalper KA, Carvajal-Hausdorf D and Oyarzo MP: Possible role of hemichannels in cancer. Front Physiol. 5:2372014. View Article : Google Scholar : PubMed/NCBI

126 

Tse G, Wong ST, Tse V and Yeo JM: Depolarization vs. repolarization: What is the mechanism of ventricular arrhythmogenesis underlying sodium channel haploinsufficiency in mouse hearts? Acta Physiol (Oxf). 218:234–235. 2016. View Article : Google Scholar

127 

Tse G: (Tpeak-Tend)/QRS and (Tpeak-Tend)/(QT x QRS): Novel markers for predicting arrhythmic risk in the Brugada syndrome. Europace. Oct 5–2016.Epub ahead of print. View Article : Google Scholar

128 

Tse G, Wong ST, Tse V and Yeo JM: Determination of action potential wavelength restitution in Scn5a/- mouse hearts modelling human Brugada syndrome. J Physiol. In press.

129 

Tse G: Novel conduction repolarization indices for the stratification of arrhythmic risk. J Geriatr Cardiol. 13:811–812. 2016.PubMed/NCBI

130 

Tse G, Wong ST, Tse V and Yeo JM: Variability in local action potential durations, dispersion of repolarization and wavelength restitution in aged wild type and Scn5a/- mouse hearts modelling human Brugada syndrome. J Geriatr Cardiol. In press.

131 

Hu Z, Chen Z, Wang Y, et al: Effects of granulocyte colony-stimulating factor on rabbit carotid and swine heart models of chronic obliterative arterial disease. Mol Med Rep. In press.

132 

Tse G, Tse V and Yeo JM: Ventricular anti-arrhythmic effects of heptanol in hypokalaemic, Langendorff-perfused mouse hearts. Biomed Rep. 4:313–324. 2016.PubMed/NCBI

133 

Tse G, Tse V, Yeo JM and Sun B: Atrial anti-arrhythmic effects of heptanol in Langendorff-perfused mouse hearts. PLoS One. 11:e01488582016. View Article : Google Scholar : PubMed/NCBI

134 

Tse G, Wong ST, Tse V and Yeo JM: Restitution analysis of alternans using dynamic pacing and its comparison with S1S2 restitution in heptanol-treated, hypokalaemic Langendorff-perfused mouse hearts. Biomed Rep. 4:673–680. 2016.PubMed/NCBI

135 

Tse G, Wong ST, Tse V and Yeo JM: Monophasic action potential recordings: Which is the recording electrode? J Basic Clin Physiol Pharmacol. 27:457–462. 2016. View Article : Google Scholar : PubMed/NCBI

136 

Tse G, Lai ET, Yeo JM, Tse V and Wong SH: Mechanisms of electrical activation and conduction in the gastrointestinal system: Lessons from cardiac electrophysiology. Front Physiol. 7:1822016.PubMed/NCBI

137 

Tse G, Lai ET, Tse V and Yeo JM: Molecular and electrophysiological mechanisms underlying cardiac arrhythmogenesis in diabetes mellitus. J Diabetes Res. 2016:28487592016. View Article : Google Scholar : PubMed/NCBI

138 

Tse G, Lai ET, Yeo JM and Yan BP: Electrophysiological mechanisms of Bayés syndrome: Insights from clinical and mouse studies. Front Physiol. 7:1882016.

139 

Tse G, Sun B, Wong ST, Tse V and Yeo JM: Anti-arrhythmic effects of hypercalcaemia treatment in hyperkalaemic, Langendorff-perfused mouse hearts. Biomed Rep. 5:301–310. 2016.PubMed/NCBI

140 

Chen Z, Sun B, Tse G, Jiang J and Xu W: Reversibility of both sinus node dysfunction and reduced HCN4 mRNA expression level in an atrial tachycardia pacing model of tachycardia-bradycardia syndrome in rabbit hearts. Int J Clin Exp Pathol. 9:8526–8531. 2016.

141 

Tse G, Yeo JM, Chan YW, Lai ET and Yan BP: What is the arrhythmic substrate in viral myocarditis? Insights from clinical and animal studies. Front Physiol. 7:3082016. View Article : Google Scholar : PubMed/NCBI

142 

Choy L, Yeo JM, Tse V, Chan SP and Tse G: Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models. Int J Cardiol Heart Vasc. 12:1–10. 2016.PubMed/NCBI

143 

Tse G and Yan BP: Novel arrhythmic risk markers incorporating QRS dispersion: QRSd x (Tpeak - Tend)/QRS and QRSd x (Tpeak - Tend)/(QT x QRS). Ann Noninvasive Electrocardiol. Aug 18–2016.Epub ahead of print. View Article : Google Scholar

144 

Tse G, Lai ET, Lee AP, Yan BP and Wong SH: Electrophysiological mechanisms of gastrointestinal arrhythmogenesis: Lessons from the heart. Front Physiol. 7:2302016.PubMed/NCBI

145 

Tse G and Yan BP: Traditional and novel electrocardiographic conduction and repolarization markers of sudden cardiac death. Europace. Oct 4–2016.Epub ahead of print. View Article : Google Scholar

146 

Tse G, Yan BP, Chan YW, Tian XY and Huang Y: Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: The link with cardiac arrhythmogenesis. Front Physiol. 7:3132016. View Article : Google Scholar : PubMed/NCBI

147 

Sun B, Chen Z, Gu J, Tse G, Jiang J, Huang F and Zhao C: Tight junction proteins and gap junction proteins play important roles in high fat dietary atherosclerosis pathogenesis. Int J Clin Exp Pathol. 9:7969–7976. 2016.

148 

Tse G, Ali A, Prasad SK, Vassiliou V and Raphael CE: Atypical case of post-partum cardiomyopathy: an overlap syndrome with arrhythmogenic right ventricular cardiomyopathy? BJR|case reports. 1:201501822015. View Article : Google Scholar

149 

Tse G, Ali A, Alpendurada F, Prasad S, Raphael CE and Vassiliou V: Tuberculous constrictive pericarditis. Res Cardiovasc Med. 4:e296142015. View Article : Google Scholar

150 

Mayosi BM, Ntsekhe M, Bosch J, Pandie S, Jung H, Gumedze F, Pogue J, Thabane L, Smieja M, Francis V, et al IMPI Trial Investigators: Prednisolone and Mycobacterium indicus pranii in tuberculous pericarditis. N Engl J Med. 371:1121–1130. 2014. View Article : Google Scholar : PubMed/NCBI

151 

Vassiliou V, Chin C, Perperoglou A, Tse G, Ali A, Raphael C, Jabbour A, Newby D, Pennell D, Dweck M and Prasad S: 93 Ejection fraction by cardiovascular magnetic resonance predicts adverse outcomes post aortic valve replacement. Heart. 100(Suppl 3): A53–A54. 2014. View Article : Google Scholar

152 

Tse G, Hothi SS, Grace AA and Huang CL: Ventricular arrhythmogenesis following slowed conduction in heptanol-treated, Langendorff-perfused mouse hearts. J Physiol Sci. 62:79–92. 2012. View Article : Google Scholar : PubMed/NCBI

153 

Wong J, Tan T, Chan C, Laxton V, Chan Y, Liu T, Wong J and Tse G: The role of connexins in wound healing and repair: novel therapeutic approaches. Front Physiol. 7:5962016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wong P, Laxton V, Srivastava S, Chan YW and Tse G: The role of gap junctions in inflammatory and neoplastic disorders (Review). Int J Mol Med 39: 498-506, 2017.
APA
Wong, P., Laxton, V., Srivastava, S., Chan, Y.W., & Tse, G. (2017). The role of gap junctions in inflammatory and neoplastic disorders (Review). International Journal of Molecular Medicine, 39, 498-506. https://doi.org/10.3892/ijmm.2017.2859
MLA
Wong, P., Laxton, V., Srivastava, S., Chan, Y. W., Tse, G."The role of gap junctions in inflammatory and neoplastic disorders (Review)". International Journal of Molecular Medicine 39.3 (2017): 498-506.
Chicago
Wong, P., Laxton, V., Srivastava, S., Chan, Y. W., Tse, G."The role of gap junctions in inflammatory and neoplastic disorders (Review)". International Journal of Molecular Medicine 39, no. 3 (2017): 498-506. https://doi.org/10.3892/ijmm.2017.2859
Copy and paste a formatted citation
x
Spandidos Publications style
Wong P, Laxton V, Srivastava S, Chan YW and Tse G: The role of gap junctions in inflammatory and neoplastic disorders (Review). Int J Mol Med 39: 498-506, 2017.
APA
Wong, P., Laxton, V., Srivastava, S., Chan, Y.W., & Tse, G. (2017). The role of gap junctions in inflammatory and neoplastic disorders (Review). International Journal of Molecular Medicine, 39, 498-506. https://doi.org/10.3892/ijmm.2017.2859
MLA
Wong, P., Laxton, V., Srivastava, S., Chan, Y. W., Tse, G."The role of gap junctions in inflammatory and neoplastic disorders (Review)". International Journal of Molecular Medicine 39.3 (2017): 498-506.
Chicago
Wong, P., Laxton, V., Srivastava, S., Chan, Y. W., Tse, G."The role of gap junctions in inflammatory and neoplastic disorders (Review)". International Journal of Molecular Medicine 39, no. 3 (2017): 498-506. https://doi.org/10.3892/ijmm.2017.2859
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team