Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
April-2017 Volume 39 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2017 Volume 39 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

ICT1 knockdown inhibits breast cancer cell growth via induction of cell cycle arrest and apoptosis

  • Authors:
    • Chen Wang
    • Chenlu Liang
    • Weiliang Feng
    • Xianghou Xia
    • Feng Chen
    • Enqi Qiao
    • Xiping Zhang
    • Daobao Chen
    • Zhiqiang Ling
    • Hongjian Yang
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China, Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
  • Pages: 1037-1045
    |
    Published online on: March 9, 2017
       https://doi.org/10.3892/ijmm.2017.2913
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The protein encoded by immature colon carcinoma transcript 1 (ICT1) is a component of the human mitochondrial ribosome, and is reported to be implicated in cell proliferation, viability and apoptosis of HeLa cells. This study was conducted to investigate the role of ICT1 in human breast cancer. Oncomine database was used to investigate ICT1 expression in human breast cancer tissues compared to normal tissues. The results showed that ICT1 was highly overexpressed in various human breast cancer subtypes. Then short hairpin RNA (shRNA)-mediated knockdown of ICT1 was performed in human breast cancer ZR-75-30 and T-47D cells. A series of functional analysis, including MTT, colony formation and flow cytometry assays were conducted after ICT1 knockdown. Our results demonstrated that knockdown of ICT1 significantly suppressed cell viability and proliferation through cell cycle arrest at the G2/M phase and induced apoptosis in breast cancer cells. Furthermore, knockdown of ICT1 altered signaling pathways associated with cell growth and apoptosis, including phospho‑BAD (Ser112), phospho-PRAS40 (Thr246) and induction of phospho‑AMPKα (Thr172). Additionally, it was further confirmed by western blot analysis that ICT1 knockdown altered the expression of apoptosis- or cell cycle‑related proteins such as Bcl-2, caspase-3, CDK1, CDK2 and cyclin B. In conclusion, targeting ICT1 in breast cancer cells may provide a new strategy for breast cancer gene therapy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Ferlay J, Héry C, Autier P and Sankaranarayanan R: Global burden of breast cancer. Breast Cancer Epidemiology. Li C: Springer; New York: pp. 1–19. 2010, View Article : Google Scholar

2 

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Key T, Appleby P, Barnes I, Reeves G and Endogenous H; Endogenous Hormones and Breast Cancer Collaborative Group: Endogenous sex hormones and breast cancer in postmenopausal women: Reanalysis of nine prospective studies. J Natl Cancer Inst. 94:606–616. 2002. View Article : Google Scholar : PubMed/NCBI

4 

Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K and Detmar M: Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 7:192–198. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al: Involvement of chemokine receptors in breast cancer metastasis. Nature. 410:50–56. 2001. View Article : Google Scholar : PubMed/NCBI

6 

Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, Godwin J, Gray R, Hicks C, James S, et al Early Breast Cancer Trialists' Collaborative Group (EBCTCG): Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: An overview of the randomised trials. Lancet. 366:2087–2106. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, et al: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 344:783–792. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Meraviglia S, Eberl M, Vermijlen D, Todaro M, Buccheri S, Cicero G, La Mendola C, Guggino G, D'Asaro M, Orlando V, et al: In vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp Immunol. 161:290–297. 2010.PubMed/NCBI

9 

Das S, Ferlito M, Kent OA, Fox-Talbot K, Wang R, Liu D, Raghavachari N, Yang Y, Wheelan SJ, Murphy E, et al: Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res. 110:1596–1603. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Dames S, Eilbeck K and Mao R: A high-throughput next-generation sequencing assay for the mitochondrial genome. Methods Mol Biol. 1264:77–88. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Handa Y, Inaho N and Nameki N: YaeJ is a novel ribosome-associated protein in Escherichia coli that can hydrolyze peptidyl-tRNA on stalled ribosomes. Nucleic Acids Res. 39:1739–1748. 2011. View Article : Google Scholar

12 

Akabane S, Ueda T, Nierhaus KH and Takeuchi N: Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria. PLoS Genet. 10:e10046162014. View Article : Google Scholar : PubMed/NCBI

13 

Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN and Chrzanowska-Lightowlers ZM: A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome. EMBO J. 29:1116–1125. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Handa Y, Hikawa Y, Tochio N, Kogure H, Inoue M, Koshiba S, Güntert P, Inoue Y, Kigawa T, Yokoyama S, et al: Solution structure of the catalytic domain of the mitochondrial protein ICT1 that is essential for cell vitality. J Mol Biol. 404:260–273. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Kogure H, Handa Y, Nagata M, Kanai N, Güntert P, Kubota K and Nameki N: Identification of residues required for stalled-ribosome rescue in the codon-independent release factor YaeJ. Nucleic Acids Res. 42:3152–3163. 2014. View Article : Google Scholar :

16 

Xie R, Zhang Y, Shen C, Cao X, Gu S and Che X: Knockdown of immature colon carcinoma transcript-1 inhibits proliferation of glioblastoma multiforme cells through Gap 2/mitotic phase arrest. Onco Targets Ther. 8:1119–1127. 2015.PubMed/NCBI

17 

Sparrow JR and Cai B: Blue light-induced apoptosis of A2E-containing RPE: Involvement of caspase-3 and protection by Bcl-2. Invest Ophthalmol Vis Sci. 42:1356–1362. 2001.PubMed/NCBI

18 

Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX and Shao JY: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 14:2348–2360. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Wang Z, Xu D, Gao Y, Liu Y, Ren J, Yao Y, Yin L, Chen J, Gan S and Cui X: Immature colon carcinoma transcript 1 is essential for prostate cancer cell viability and proliferation. Cancer Biother Radiopharm. 30:278–284. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Lao X, Feng Q, He G, Ji M, Zhu D, Xu P, Tang W, Xu J and Qin X: Immature colon carcinoma transcript-1 (ICT1) expression correlates with unfavorable prognosis and survival in patients with colorectal cancer. Ann Surg Oncol. 23:3924–3933. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Wang Y, He J, Zhang S, Yang Q, Wang B, Liu Z and Wu X: Knockdown of immature colon carcinoma transcript-1 inhibits proliferation and promotes apoptosis of non-small cell lung cancer cells. Technol Cancer Res Treat. Jul 13–2016.(Epub ahead of print). doi:20161533034616657977. View Article : Google Scholar

22 

Arellano M and Moreno S: Regulation of CDK/cyclin complexes during the cell cycle. Int J Biochem Cell Biol. 29:559–573. 1997. View Article : Google Scholar : PubMed/NCBI

23 

Ji YB, Wu D, Dai QC, Guo L and Chen N: The research on the medicinal value of Amaryllidaceae plants. Appl Mech Mater. 411–414:3223–3226. 2013. View Article : Google Scholar

24 

Cmielová J and Rezáčová M: p21Cip1/Waf1 protein and its function based on a subcellular localization [corrected]. J Cell Biochem. 112:3502–3506. 2011. View Article : Google Scholar

25 

Caputi M, Russo G, Esposito V, Mancini A and Giordano A: Role of cell-cycle regulators in lung cancer. J Cell Physiol. 205:319–327. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Lim S and Kaldis P: Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development. 140:3079–3093. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR and Witters LA: The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem. 280:29060–29066. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Morgensztern D and McLeod HL: PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs. 16:797–803. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Garcia-Haro L, Garcia-Gimeno MA, Neumann D, Beullens M, Bollen M and Sanz P: Glucose-dependent regulation of AMP-activated protein kinase in MIN6 beta cells is not affected by the protein kinase A pathway. FEBS Lett. 586:4241–4247. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Xu J, Zhang T, Wang T, You L and Zhao Y: PIM kinases: An overview in tumors and recent advances in pancreatic cancer. Future Oncol. 10:865–876. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Meisse D, Van de Casteele M, Beauloye C, Hainault I, Kefas BA, Rider MH, Foufelle F and Hue L: Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Lett. 526:38–42. 2002. View Article : Google Scholar : PubMed/NCBI

32 

Shao JJ, Zhang AP, Qin W, Zheng L, Zhu YF and Chen X: AMP-activated protein kinase (AMPK) activation is involved in chrysin-induced growth inhibition and apoptosis in cultured A549 lung cancer cells. Biochem Biophys Res Commun. 423:448–453. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Chiang CW, Kanies C, Kim KW, Fang WB, Parkhurst C, Xie M, Henry T and Yang E: Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis. Mol Cell Biol. 23:6350–6362. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Peso LD, González-García M, Page C, Herrera R and Nuñez G: Interleukin-3 induced phosphorylation of BAD through protein kinase Akt. Science. 278:687–689. 1997. View Article : Google Scholar : PubMed/NCBI

35 

Jin YP, Fishbein MC, Said JW, Jindra PT, Rajalingam R, Rozengurt E and Reed EF: Anti-HLA class I antibody-mediated activation of the PI3K/Akt signaling pathway and induction of Bcl-2 and Bcl-xL expression in endothelial cells. Hum Immunol. 65:291–302. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Wang H, Zhang Q, Wen Q, Zheng Y, Lazarovici P, Jiang H, Lin J and Zheng W: Proline-rich Akt substrate of 40kDa (PRAS40): A novel downstream target of PI3k/Akt signaling pathway. Cell Signal. 24:17–24. 2012. View Article : Google Scholar

37 

Porter AG and Jänicke RU: Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 6:99–104. 1999. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang C, Liang C, Feng W, Xia X, Chen F, Qiao E, Zhang X, Chen D, Ling Z, Yang H, Yang H, et al: ICT1 knockdown inhibits breast cancer cell growth via induction of cell cycle arrest and apoptosis. Int J Mol Med 39: 1037-1045, 2017.
APA
Wang, C., Liang, C., Feng, W., Xia, X., Chen, F., Qiao, E. ... Yang, H. (2017). ICT1 knockdown inhibits breast cancer cell growth via induction of cell cycle arrest and apoptosis. International Journal of Molecular Medicine, 39, 1037-1045. https://doi.org/10.3892/ijmm.2017.2913
MLA
Wang, C., Liang, C., Feng, W., Xia, X., Chen, F., Qiao, E., Zhang, X., Chen, D., Ling, Z., Yang, H."ICT1 knockdown inhibits breast cancer cell growth via induction of cell cycle arrest and apoptosis". International Journal of Molecular Medicine 39.4 (2017): 1037-1045.
Chicago
Wang, C., Liang, C., Feng, W., Xia, X., Chen, F., Qiao, E., Zhang, X., Chen, D., Ling, Z., Yang, H."ICT1 knockdown inhibits breast cancer cell growth via induction of cell cycle arrest and apoptosis". International Journal of Molecular Medicine 39, no. 4 (2017): 1037-1045. https://doi.org/10.3892/ijmm.2017.2913
Copy and paste a formatted citation
x
Spandidos Publications style
Wang C, Liang C, Feng W, Xia X, Chen F, Qiao E, Zhang X, Chen D, Ling Z, Yang H, Yang H, et al: ICT1 knockdown inhibits breast cancer cell growth via induction of cell cycle arrest and apoptosis. Int J Mol Med 39: 1037-1045, 2017.
APA
Wang, C., Liang, C., Feng, W., Xia, X., Chen, F., Qiao, E. ... Yang, H. (2017). ICT1 knockdown inhibits breast cancer cell growth via induction of cell cycle arrest and apoptosis. International Journal of Molecular Medicine, 39, 1037-1045. https://doi.org/10.3892/ijmm.2017.2913
MLA
Wang, C., Liang, C., Feng, W., Xia, X., Chen, F., Qiao, E., Zhang, X., Chen, D., Ling, Z., Yang, H."ICT1 knockdown inhibits breast cancer cell growth via induction of cell cycle arrest and apoptosis". International Journal of Molecular Medicine 39.4 (2017): 1037-1045.
Chicago
Wang, C., Liang, C., Feng, W., Xia, X., Chen, F., Qiao, E., Zhang, X., Chen, D., Ling, Z., Yang, H."ICT1 knockdown inhibits breast cancer cell growth via induction of cell cycle arrest and apoptosis". International Journal of Molecular Medicine 39, no. 4 (2017): 1037-1045. https://doi.org/10.3892/ijmm.2017.2913
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team