MicroRNA-124 inhibits the proliferation of C6 glioma cells by targeting Smad4

  • Authors:
    • Zechuan Zhang
    • Qiaoyun Gong
    • Meiying Li
    • Jinying Xu
    • Yangyang Zheng
    • Pengfei Ge
    • Guangfan Chi
  • View Affiliations

  • Published online on: August 3, 2017     https://doi.org/10.3892/ijmm.2017.3088
  • Pages: 1226-1234
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNA-124 (miR-124) has been shown to be downregulated in glioma; however, its biological functions in glioma are not yet fully understood. The aim of this study was to examine the Smad4‑dependent effects of miR‑124 on C6 glioma cell proliferation. In this study, the level of miR‑124 was found to be enhanced in C6 cells upon transfection with miR‑124 mimics, and the mechanisms of action of miR‑124 in C6 cells were investigated by reverse transcriptase-quantitative polymerase chain reaction, MTT assay, western blot analysis and luciferase reporter assays in vitro. The results revealed that miR‑124 expression was significantly lower in the C6 cells than in either normal rat brain tissue or astrocytes. Upon the overexpression of miR‑124, the proliferation of the C6 cells decreased and Smad4 expression was significantly suppressed. Smad4 was identified as a direct target of miR‑124 through luciferase reporter assays. Furthermore, miR‑124 was found to modulate signal transducer and activator of transcription 3 (Stat3) by downregulating Smad4 expression. Using small interfering RNA targeting Smad4 mRNA, we also confirmed that miR‑124 downregulated c‑Myc by modulating Smad4 expression. In addition, caspase‑3 expression was induced by miR‑124 overexpression, but not via Smad4 downregulation. On the whole, our results demonstrate that miR‑124 upregulation inhibits the growth of C6 glioma cells by targeting Smad4 directly. These findings may be clinically useful for the development of therapeutic strategies directed toward miR‑124 function in patients with glioma.

References

1 

Dolecek TA, Propp JM, Stroup NE and Kruchko C: CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 14(Suppl 5): v1–v49. 2012. View Article : Google Scholar :

2 

Kong LY, Wu AS, Doucette T, Wei J, Priebe W, Fuller GN, Qiao W, Sawaya R, Rao G and Heimberger AB: Intratumoral mediated immunosuppression is prognostic in genetically engineered murine models of glioma and correlates to immunotherapeutic responses. Clin Cancer Res. 16:5722–5733. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Roberts AB and Wakefield LM: The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA. 100:8621–8623. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Massagué J: TGFbeta in cancer. Cell. 134:215–230. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Peñuelas S, Anido J, Prieto-Sánchez RM, Folch G, Barba I, Cuartas I, García-Dorado D, Poca MA, Sahuquillo J, Baselga J and Seoane J: TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell. 15:315–327. 2009. View Article : Google Scholar : PubMed/NCBI

6 

ten Dijke P and Hill CS: New insights into TGF-beta-Smad signalling. Trends Biochem Sci. 29:265–273. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

8 

Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010.PubMed/NCBI

9 

Chen CZ: MicroRNAs as oncogenes and tumor suppressors. N Engl J Med. 353:1768–1771. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Lawler S and Chiocca EA: Emerging functions of microRNAs in glioblastoma. J Neurooncol. 92:297–306. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Novakova J, Slaby O, Vyzula R and Michalek J: MicroRNA involvement in glioblastoma pathogenesis. Biochem Biophys Res Commun. 386:1–5. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Silber J, James CD and Hodgson JG: microRNAs in gliomas: Small regulators of a big problem. Neuromolecular Med. 11:208–222. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW and Crabtree GR: MicroRNA-mediated conversion of human fibroblasts to neurons. Nature. 476:228–231. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Xia H, Cheung WK, Ng SS, Jiang X, Jiang S, Sze J, Leung GK, Lu G, Chan DT, Bian XW, et al: Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. J Biol Chem. 287:9962–9971. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Cao X, Pfaff SL and Gage FH: A functional study of miR-124 in the developing neural tube. Genes Dev. 21:531–536. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, et al: miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 6:142008. View Article : Google Scholar : PubMed/NCBI

18 

Wei J, Wang F, Kong LY, Xu S, Doucette T, Ferguson SD, Yang Y, McEnery K, Jethwa K, Gjyshi O, et al: miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma. Cancer Res. 73:3913–3926. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Schwartz JP and Wilson DJ: Preparation and characterization of type 1 astrocytes cultured from adult rat cortex, cerebellum, and striatum. Glia. 5:75–80. 1992. View Article : Google Scholar : PubMed/NCBI

20 

Zhu X, Ozturk F, Liu C, Oakley GG and Nawshad A: Transforming growth factor-β activates c-Myc to promote palatal growth. J Cell Biochem. 113:3069–3085. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, et al: Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes Dev. 21:2683–2710. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Vehlow A and Cordes N: Invasion as target for therapy of glioblastoma multiforme. Biochim Biophys Acta. 1836:236–244. 2013.PubMed/NCBI

23 

Lv XB, Jiao Y, Qing Y, Hu H, Cui X, Lin T, Song E and Yu F: miR-124 suppresses multiple steps of breast cancer metastasis by targeting a cohort of pro-metastatic genes in vitro. Chin J Cancer. 30:821–830. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Lang Q and Ling C: MiR-124 suppresses cell proliferation in hepatocellular carcinoma by targeting PIK3CA. Biochem Biophys Res Commun. 426:247–52. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Xia J, Wu Z, Yu C, He W, Zheng H, He Y, Jian W, Chen L, Zhang L and Li W: miR-124 inhibits cell proliferation in gastric cancer through down-regulation of SPHK1. J Pathol. 227:470–480. 2012. View Article : Google Scholar : PubMed/NCBI

26 

An L, Liu Y, Wu A and Guan Y: microRNA-124 inhibits migration and invasion by down-regulating ROCK1 in glioma. PLoS One. 8:e694782013. View Article : Google Scholar : PubMed/NCBI

27 

Deng X, Ma L, Wu M, Zhang G, Jin C, Guo Y and Liu R: miR-124 radiosensitizes human glioma cells by targeting CDK4. J Neurooncol. 114:263–274. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Li KK, Pang JC, Ching AK, Wong CK, Kong X, Wang Y, Zhou L, Chen Z and Ng HK: miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol. 40:1234–1243. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Lu SH, Jiang XJ, Xiao GL, Liu DY and Yuan XR: miR-124a restoration inhibits glioma cell proliferation and invasion by suppressing IQGAP1 and β-catenin. Oncol Rep. 32:2104–2110. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Lv Z and Yang L: miR-124 inhibits the growth of glioblastoma through the downregulation of SOS1. Mol Med Rep. 8:345–349. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Piek E, Westermark U, Kastemar M, Heldin CH, van Zoelen EJ, Nistér M and Ten Dijke P: Expression of transforming-growth-factor (TGF)-beta receptors and Smad proteins in glioblastoma cell lines with distinct responses to TGF-beta1. Int J Cancer. 80:756–763. 1999. View Article : Google Scholar : PubMed/NCBI

32 

Kjellman C, Olofsson SP, Hansson O, Von Schantz T, Lindvall M, Nilsson I, Salford LG, Sjögren HO and Widegren B: Expression of TGF-beta isoforms, TGF-beta receptors, and SMAD molecules at different stages of human glioma. Int J Cancer. 89:251–258. 2000. View Article : Google Scholar : PubMed/NCBI

33 

Rich JN: The role of transforming growth factor-beta in primary brain tumors. Front Biosci. 8:e245–e260. 2003. View Article : Google Scholar

34 

Golestaneh N and Mishra B: TGF-beta, neuronal stem cells and glioblastoma. Oncogene. 24:5722–5730. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Hover LD, Owens P, Munden AL, Wang J, Chambless LB, Hopkins CR, Hong CC, Moses HL and Abel TW: Bone morphogenetic protein signaling promotes tumorigenesis in a murine model of high-grade glioma. Neuro Oncol. 18:928–938. 2016. View Article : Google Scholar :

36 

Zu L, Xue Y and Wang J, Fu Y, Wang X, Xiao G, Hao M, Sun X, Wang Y, Fu G and Wang J: The feedback loop between miR-124 and TGF-β pathway plays a significant role in non-small cell lung cancer metastasis. Carcinogenesis. 37:333–343. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Bretones G, Delgado MD and León J: Myc and cell cycle control. Biochim Biophys Acta. 1849:506–516. 2015. View Article : Google Scholar

38 

Singh G, Singh SK, König A, Reutlinger K, Nye MD, Adhikary T, Eilers M, Gress TM, Fernandez-Zapico ME and Ellenrieder V: Sequential activation of NFAT and c-Myc transcription factors mediates the TGF-beta switch from a suppressor to a promoter of cancer cell proliferation. J Biol Chem. 285:27241–27250. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Yang Z, Zhong L, Zhong S, Xian R and Yuan B: Adenovirus encoding Smad4 suppresses glioma cell proliferation and increases apoptosis through cell cycle arrest at G1 phase. Int Immunopharmacol. 25:169–173. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Kiuchi N, Nakajima K, Ichiba M, Fukada T, Narimatsu M, Mizuno K, Hibi M and Hirano T: STAT3 is required for the gp130-mediated full activation of the c-myc gene. J Exp Med. 189:63–73. 1999. View Article : Google Scholar : PubMed/NCBI

41 

Lin YM, Wang CM, Jeng JC, Leprince D and Shih HM: HIC1 interacts with and modulates the activity of STAT3. Cell Cycle. 12:2266–2276. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2017
Volume 40 Issue 4

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhang, Z., Gong, Q., Li, M., Xu, J., Zheng, Y., Ge, P., & Chi, G. (2017). MicroRNA-124 inhibits the proliferation of C6 glioma cells by targeting Smad4. International Journal of Molecular Medicine, 40, 1226-1234. https://doi.org/10.3892/ijmm.2017.3088
MLA
Zhang, Z., Gong, Q., Li, M., Xu, J., Zheng, Y., Ge, P., Chi, G."MicroRNA-124 inhibits the proliferation of C6 glioma cells by targeting Smad4". International Journal of Molecular Medicine 40.4 (2017): 1226-1234.
Chicago
Zhang, Z., Gong, Q., Li, M., Xu, J., Zheng, Y., Ge, P., Chi, G."MicroRNA-124 inhibits the proliferation of C6 glioma cells by targeting Smad4". International Journal of Molecular Medicine 40, no. 4 (2017): 1226-1234. https://doi.org/10.3892/ijmm.2017.3088