Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2018 Volume 41 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2018 Volume 41 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Neuroprotective effects of hydrogen sulfide on sodium azide-induced oxidative stress in PC12 cells

  • Authors:
    • Cheng Gao
    • Pan Chang
    • Lijun Yang
    • Yi Wang
    • Shaohua Zhu
    • Haiyan Shan
    • Mingyang Zhang
    • Luyang Tao
  • View Affiliations / Copyright

    Affiliations: Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing 100088, P.R. China, Central Laboratory, The Second Affiliated Hospital of Xi'an Medical College, Xi'an, Shaanxi 710038, P.R. China, Institute of Forensic Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China, Department of Obstetrics and Gynecology, North District of Suzhou Municipal Hospital, Suzhou, Jiangsu 215000, P.R. China
    Copyright: © Gao et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Pages: 242-250
    |
    Published online on: November 1, 2017
       https://doi.org/10.3892/ijmm.2017.3227
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Alzheimer's disease (AD) is the most common neurodegenerative disorder, responsible for >50% of all dementia cases. Sodium azide (NaN3) inhibits cytochrome oxidase by irreversibly binding to the heme cofactor and selectively reducing the complex IV activity, which is present in post‑mortem AD brains. Previous data demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator, exerted protective effects against neuronal damage. Therefore, it was hypothesized that H2S may be able to scavenge excess reactive oxygen species (ROS), thereby protecting against oxidative stress and cell death. In the present study, it was observed that cell viability decreased in a concentration-dependent manner 12 h after NaN3 treatment (20, 30 and 50 mmol/l). A decrease in cell viability (to 51±3%) was observed 12 h after treatment with 30 mM NaN3. NaN3 treatment also led to decreased mitochondrial membrane potential, increased lipid peroxidation (excessive production of malondialdehyde), and increased the protein expression levels of caspase-3. Pretreatment with H2S (200 µmol/l) attenuated NaN3-mediated apoptosis, and the anti-apoptotic action of H2S was partially dependent on suppressing the production of ROS. The findings of the present study suggested that H2S exerted a neuroprotective effect against NaN3-induced neurotoxicity through mechanisms related to anti-oxidation and anti-apoptosis. Therefore, the findings of the present study suggest there may be a promising future for H2S-based preventions and therapies for neuronal damage following exposure to NaN3.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Takahashi RH, Nagao T and Gouras GK: Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer's disease. Pathol Int. 67:185–193. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Martinez-Vicente M: Neuronal mitophagy in neurodegenerative diseases. Front Mol Neurosci. 10:642017. View Article : Google Scholar : PubMed/NCBI

3 

Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Füllgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, et al: Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron. 93:1015–1034. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Cai Q and Tammineni P: Alterations in mitochondrial quality control in Alzheimer's disease. Front Cell Neurosci. 10:242016. View Article : Google Scholar : PubMed/NCBI

5 

Cai Q and Tammineni P: Mitochondrial aspects of synaptic dysfunction in Alzheimer's disease. J Alzheimers Dis. 57:1087–1103. 2017. View Article : Google Scholar

6 

Cadonic C, Sabbir MG and Albensi BC: Mechanisms of mitochondrial dysfunction in Alzheimer's disease. Mol Neurobiol. 53:6078–6090. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Bennett MC, Mlady GW, Kwon YH and Rose GM: Chronic in vivo sodium azide infusion induces selective and stable inhibition of cytochrome c oxidase. J Neurochem. 66:2606–2611. 1996. View Article : Google Scholar : PubMed/NCBI

8 

Weinstock M and Shoham S: Rat models of dementia based on reductions in regional glucose metabolism, cerebral blood flow and cytochrome oxidase activity. J Neural Transm (Vienna). 111:347–366. 2004. View Article : Google Scholar

9 

Huang CW and Moore PK: H2S synthesizing enzymes: biochemistry and molecular aspects. Handb Exp Pharmacol. 230:3–25. 2015. View Article : Google Scholar

10 

Kimura H: Hydrogen sulfide and polysulfides as biological mediators. Molecules. 19:16146–16157. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Kimura H: Hydrogen sulfide: its production, release and functions. Amino Acids. 41:113–121. 2011. View Article : Google Scholar

12 

Liu Y, Deng Y, Liu H, Yin C, Li X and Gong Q: Hydrogen sulfide ameliorates learning memory impairment in APP/PS1 transgenic mice: a novel mechanism mediated by the activation of Nrf2. Pharmacol Biochem Behav. 150–151:207–216. 2016. View Article : Google Scholar

13 

Dwyer BE, Raina AK, Perry G and Smith MA: Homocysteine and Alzheimer's disease: a modifiable risk. Free Radic Biol Med. 36:1471–1475. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Wei HJ, Li X and Tang XQ: Therapeutic benefits of H2S in Alzheimer's disease. J Clin Neurosci. 21:1665–1669. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Zhang M, Shan H, Chang P, Wang T, Dong W, Chen X and Tao L: Hydrogen sulfide offers neuroprotection on traumatic brain injury in parallel with reduced apoptosis and autophagy in mice. PLoS One. 9:e872412014. View Article : Google Scholar : PubMed/NCBI

16 

Zhang M, Shan H, Wang T, Liu W, Wang Y, Wang L, Zhang L, Chang P, Dong W, Chen X, et al: Dynamic change of hydrogen sulfide after traumatic brain injury and its effect in mice. Neurochem Res. 38:714–725. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Tayler H, Fraser T, Miners JS, Kehoe PG and Love S: Oxidative balance in Alzheimer's disease: relationship to APOE, Braak tangle stage, and the concentrations of soluble and insoluble amyloid-β. J Alzheimers Dis. 22:1363–1373. 2010. View Article : Google Scholar

18 

Chauhan V and Chauhan A: Oxidative stress in Alzheimer's disease. Pathophysiology. 13:195–208. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Henriques AG, Domingues SC, Fardilha M, da Cruz e Silva EF and da Cruz e Silva OA: Sodium azide and 2-deoxy- D-glucose-induced cellular stress affects phosphorylation-dependent AbetaPP processing. J Alzheimers Dis. 7:201–212. 2005. View Article : Google Scholar

20 

Zhu X, Raina AK, Lee HG, Casadesus G, Smith MA and Perry G: Oxidative stress signalling in Alzheimer's disease. Brain Res. 1000:32–39. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Butterfield DA, Swomley AM and Sultana R: Amyloid β-peptide (1-42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal. 19:823–835. 2013. View Article : Google Scholar :

22 

Butterfield DA, Di Domenico F, Swomley AM, Head E and Perluigi M: Redox proteomics analysis to decipher the neurobiology of Alzheimer-like neurodegeneration: overlaps in Down's syndrome and Alzheimer's disease brain. Biochem J. 463:177–189. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Petersen RB, Nunomura A, Lee HG, Casadesus G, Perry G, Smith MA and Zhu X: Signal transduction cascades associated with oxidative stress in Alzheimer's disease. J Alzheimers Dis. 11:143–152. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Dringen R: Metabolism and functions of glutathione in brain. Prog Neurobiol. 62:649–671. 2000. View Article : Google Scholar : PubMed/NCBI

25 

Gadalla MM and Snyder SH: Hydrogen sulfide as a gasotransmitter. J Neurochem. 113:14–26. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Dumont M and Beal MF: Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic Biol Med. 51:1014–1026. 2011. View Article : Google Scholar

27 

Ott M, Gogvadze V, Orrenius S and Zhivotovsky B: Mitochondria, oxidative stress and cell death. Apoptosis. 12:913–922. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Yin F, Boveris A and Cadenas E: Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal. 20:353–371. 2014. View Article : Google Scholar :

29 

Sato E, Suzuki T, Hoshi N, Sugino T and Hasegawa H: Sodium azide induces necrotic cell death in rat squamous cell carcinoma SCC131. Med Mol Morphol. 41:211–220. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Lutton JD, Moonga BS and Dempster DW: Osteoclast demise in the rat: physiological versus degenerative cell death. Exp Physiol. 81:251–260. 1996. View Article : Google Scholar : PubMed/NCBI

31 

Amador FC and Henriques AG: Monitoring protein phosphatase 1 isoform levels as a marker for cellular stress. Neurotoxicol Teratol. 26:387–395. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Satpute R, Bhattacharya R, S Kashyap R, J Purohit H, Y Deopujari J, M Taori G and F Daginawala H: Antioxidant potential of Fagonia arabica against the chemical ischemia-induced in PC12 cells. Iran J Pharm Res. 11:303–313. 2012.PubMed/NCBI

33 

Wang Y, Cao L and Du G: Protective effects of Aloe vera extract on mitochondria of neuronal cells and rat brain. Zhongguo Zhong Yao Za Zhi. 35:364–368. 2010.In Chinese. PubMed/NCBI

34 

Zhang L, Cheng X and Hu J: Neuroprotective effects of hyperoside on sodium azide-induced apoptosis in PC12 cells. Chin J Nat Med. 9:450–455. 2011.

35 

Smith CM, Chen Y, Sullivan ML, Kochanek PM and Clark RS: Autophagy in acute brain injury: feast, famine, or folly. Neurobiol Dis. 43:52–59. 2011. View Article : Google Scholar

36 

Liu L, Sun T, Xin F, Cui W, Guo J and Hu J: Nerve growth factor protects against alcohol-induced neurotoxicity in PC12 cells via PI3K/Akt/mTOR pathway. Alcohol Alcohol. 52:12–18. 2017. View Article : Google Scholar

37 

Shan H, Chu Y, Chang P, Yang L, Wang Y, Zhu S, Zhang M and Tao L: Neuroprotective effects of hydrogen sulfide on sodium azide-induced autophagic cell death in PC12 cells. Mol Med Rep. Aug 25–2017.Epub ahead of print. View Article : Google Scholar

38 

Selvatici R, Previati M, Marino S, Marani L, Falzarano S, Lanzoni I and Siniscalchi A: Sodium azide induced neuronal damage in vitro: evidence for non-apoptotic cell death. Neurochem Res. 34:909–916. 2009. View Article : Google Scholar

39 

Kimura H: Hydrogen sulfide: production, release, and functions. Nippon Yakurigaku Zasshi. 139:6–8. 2012.In Japanese. View Article : Google Scholar

40 

Zhang Y, Tang ZH, Ren Z, Qu SL, Liu MH, Liu LS and Jiang ZS: Hydrogen sulfide, the next potent preventive and therapeutic agent in aging and age-associated diseases. Mol Cell Biol. 33:1104–1113. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K and Kimura H: A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal. 11:205–214. 2009. View Article : Google Scholar

42 

Kimura H: Hydrogen sulfide: from brain to gut. Antioxid Redox Signal. 12:1111–1123. 2010. View Article : Google Scholar

43 

Yu XH, Cui LB, Wu K, Zheng XL, Cayabyab FS, Chen ZW and Tang CK: Hydrogen sulfide as a potent cardiovascular protective agent. Clin Chim Acta. 437:78–87. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Jin Z, Chan H, Ning J, Lu K and Ma D: The role of hydrogen sulfide in pathologies of the vital organs and its clinical application. J Physiol Pharmacol. 66:169–179. 2015.PubMed/NCBI

45 

Al-Magableh MR, Kemp-Harper BK and Hart JL: Hydrogen sulfide treatment reduces blood pressure and oxidative stress in angiotensin II-induced hypertensive mice. Hypertens Res. 38:13–20. 2015. View Article : Google Scholar

46 

Meng G, Ma Y, Xie L, Ferro A and Ji Y: Emerging role of hydrogen sulfide in hypertension and related cardiovascular diseases. Br J Pharmacol. 172:5501–5511. 2015. View Article : Google Scholar :

47 

Benetti LR, Campos D, Gurgueira SA, Vercesi AE, Guedes CE, Santos KL, Wallace JL, Teixeira SA, Florenzano J, Costa SK, et al: Hydrogen sulfide inhibits oxidative stress in lungs from allergic mice in vivo. Eur J Pharmacol. 698:463–469. 2013. View Article : Google Scholar

48 

Wu D, Luo N, Wang L, Zhao Z, Bu H, Xu G, Yan Y, Che X, Jiao Z, Zhao T, et al: Hydrogen sulfide ameliorates chronic renal failure in rats by inhibiting apoptosis and inflammation through ROS/MAPK and NF-κB signaling pathways. Sci Rep. 7:4552017. View Article : Google Scholar

49 

Suzuki K, Olah G, Modis K, Coletta C, Kulp G, Gerö D, Szoleczky P, Chang T, Zhou Z, Wu L, et al: Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proc Natl Acad Sci USA. 108:13829–13834. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Hu LF, Lu M, Tiong CX, Dawe GS, Hu G and Bian JS: Neuroprotective effects of hydrogen sulfide on Parkinson's disease rat models. Aging Cell. 9:135–146. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Kimura Y and Kimura H: Hydrogen sulfide protects neurons from oxidative stress. FASEB J. 18:1165–1167. 2004.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gao C, Chang P, Yang L, Wang Y, Zhu S, Shan H, Zhang M and Tao L: Neuroprotective effects of hydrogen sulfide on sodium azide-induced oxidative stress in PC12 cells. Int J Mol Med 41: 242-250, 2018.
APA
Gao, C., Chang, P., Yang, L., Wang, Y., Zhu, S., Shan, H. ... Tao, L. (2018). Neuroprotective effects of hydrogen sulfide on sodium azide-induced oxidative stress in PC12 cells. International Journal of Molecular Medicine, 41, 242-250. https://doi.org/10.3892/ijmm.2017.3227
MLA
Gao, C., Chang, P., Yang, L., Wang, Y., Zhu, S., Shan, H., Zhang, M., Tao, L."Neuroprotective effects of hydrogen sulfide on sodium azide-induced oxidative stress in PC12 cells". International Journal of Molecular Medicine 41.1 (2018): 242-250.
Chicago
Gao, C., Chang, P., Yang, L., Wang, Y., Zhu, S., Shan, H., Zhang, M., Tao, L."Neuroprotective effects of hydrogen sulfide on sodium azide-induced oxidative stress in PC12 cells". International Journal of Molecular Medicine 41, no. 1 (2018): 242-250. https://doi.org/10.3892/ijmm.2017.3227
Copy and paste a formatted citation
x
Spandidos Publications style
Gao C, Chang P, Yang L, Wang Y, Zhu S, Shan H, Zhang M and Tao L: Neuroprotective effects of hydrogen sulfide on sodium azide-induced oxidative stress in PC12 cells. Int J Mol Med 41: 242-250, 2018.
APA
Gao, C., Chang, P., Yang, L., Wang, Y., Zhu, S., Shan, H. ... Tao, L. (2018). Neuroprotective effects of hydrogen sulfide on sodium azide-induced oxidative stress in PC12 cells. International Journal of Molecular Medicine, 41, 242-250. https://doi.org/10.3892/ijmm.2017.3227
MLA
Gao, C., Chang, P., Yang, L., Wang, Y., Zhu, S., Shan, H., Zhang, M., Tao, L."Neuroprotective effects of hydrogen sulfide on sodium azide-induced oxidative stress in PC12 cells". International Journal of Molecular Medicine 41.1 (2018): 242-250.
Chicago
Gao, C., Chang, P., Yang, L., Wang, Y., Zhu, S., Shan, H., Zhang, M., Tao, L."Neuroprotective effects of hydrogen sulfide on sodium azide-induced oxidative stress in PC12 cells". International Journal of Molecular Medicine 41, no. 1 (2018): 242-250. https://doi.org/10.3892/ijmm.2017.3227
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team