Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2018 Volume 41 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2018 Volume 41 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Mitochondria-mediated damage to dopaminergic neurons in Parkinson's disease (Review)

  • Authors:
    • Xiao‑Liang Liu
    • Ying‑Di Wang
    • Xiu‑Ming Yu
    • Da‑Wei Li
    • Guang‑Ren Li
  • View Affiliations / Copyright

    Affiliations: Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 132021, P.R. China, Department of Urinary Surgery, The Tumor Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China, Department of Immunology, The First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China, Department of Neurology, Affiliated Hospital of Beihua University, Jilin, Jilin 132000, P.R. China, Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
  • Pages: 615-623
    |
    Published online on: November 16, 2017
       https://doi.org/10.3892/ijmm.2017.3255
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Mitochondria are important organelles in virtually all eukaryotic cells, and are involved in a wide range of physiological and pathophysiological processes. Besides the generation of cellular energy in the form of adenosine triphosphate, mitochondria are also involved in calcium homeostasis, reactive oxygen species production and the activation of the intrinsic cell death pathway, thus determining cell survival and death. Mitochondrial abnormalities have been implicated in a wide range of disorders, including neurodegenerative disease such as Parkinson's disease (PD), and considered as a primary cause and central event responsible for the progressive loss of dopaminergic neurons in PD. Thus, reversion or attenuation of mitochondrial dysfunction should alleviate the severity or progression of the disease. The present review systematically summarizes the possible mechanisms associated with mitochondria‑mediated dopaminergic neuron damage in PD, in an attempt to elucidate the requirement for further studies for the development of effective PD treatments.
View Figures

Figure 1

Figure 2

View References

1 

Forno LS: Neuropathology of Parkinson's disease. J Neuropathol Exp Neurol. 55:259–272. 1996. View Article : Google Scholar : PubMed/NCBI

2 

Martin LJ: Biology of mitochondria in neurodegenerative diseases. Prog Mol Biol Transl Sci. 107:355–415. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Trancikova A, Tsika E and Moore DJ: Mitochondrial dysfunction in genetic animal models of Parkinson's disease. Antioxid Redox Signal. 16:896–919. 2012. View Article : Google Scholar :

4 

Ryan BJ, Hoek S, Fon EA and Wade-Martins R: Mitochondrial dysfunction and mitophagy in Parkinson's: From familial to sporadic disease. Trends Biochem Sci. 40:200–210. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Moon HE and Paek SH: Mitochondrial dysfunction in Parkinson's disease. Exp Neurobiol. 24:103–116. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Exner N, Lutz AK, Haass C and Winklhofer KF: Mitochondrial dysfunction in Parkinson's disease: Molecular mechanisms and pathophysiological consequences. EMBO J. 31:3038–3062. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Mounsey RB and Teismann P: Mitochondrial dysfunction in Parkinson's disease: Pathogenesis and neuroprotection. Parkinsons Dis. 2010:6174722011.

8 

Martin LJ: Mitochondrial and cell death mechanisms in neurodegenerative diseases. Pharmaceuticals (Basel). 3:839–915. 2010. View Article : Google Scholar

9 

Reddy PH and Reddy TP: Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr Alzheimer Res. 8:393–409. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Reddy PH and Beal MF: Are mitochondria critical in the pathogenesis of Alzheimer's disease? Brain Res Brain Res Rev. 49:618–632. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Rostovtseva TK, Tan W and Colombini M: On the role of VDAC in apoptosis: fact and fiction. J Bioenerg Biomembr. 37:129–142. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Okada SF, O'Neal WK, Huang P, Nicholas RA, Ostrowski LE, Craigen WJ, Lazarowski ER and Boucher RC: Voltage-dependent anion channel-1 (VDAC-1) contributes to ATP release and cell volume regulation in murine cells. J Gen Physiol. 124:513–526. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Camara AK, Lesnefsky EJ and Stowe DF: Potential therapeutic benefits of strategies directed to mitochondria. Antioxid Redox Signal. 13:279–347. 2010. View Article : Google Scholar :

14 

Bernardi P: Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiol Rev. 79:1127–1155. 1999. View Article : Google Scholar : PubMed/NCBI

15 

Teshima Y, Akao M, Jones SP and Marbán E: Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res. 93:192–200. 2003. View Article : Google Scholar : PubMed/NCBI

16 

O'Rourke B: Mitochondrial ion channels. Annu Rev Physiol. 69:19–49. 2007. View Article : Google Scholar

17 

Wingrove DE and Gunter TE: Kinetics of mitochondrial calcium transport. II A kinetic description of the sodium-dependent calcium efflux mechanism of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium. J Biol Chem. 261:15166–15171. 1986.PubMed/NCBI

18 

Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly-Dyson E, Di Lisa F and Forte MA: The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 273:2077–2099. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Leung AW and Halestrap AP: Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim Biophys Acta. 1777:946–952. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Vyssokikh MY, Katz A, Rueck A, Wuensch C, Dörner A, Zorov DB and Brdiczka D: Adenine nucleotide translocator isoforms 1 and 2 are differently distributed in the mitochondrial inner membrane and have distinct affinities to cyclophilin D. Biochem J. 358:349–358. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Halestrap AP and Brenner C: The adenine nucleotide translocase: A central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem. 10:1507–1525. 2003. View Article : Google Scholar : PubMed/NCBI

22 

Ojala D, Montoya J and Attardi G: tRNA punctuation model of RNA processing in human mitochondria. Nature. 290:470–474. 1981. View Article : Google Scholar : PubMed/NCBI

23 

Reddy PH: Amyloid precursor protein-mediated free radicals and oxidative damage: Implications for the development and progression of Alzheimer's disease. J Neurochem. 96:1–13. 2006. View Article : Google Scholar

24 

Brookes PS, Levonen AL, Shiva S, Sarti P and Darley-Usmar VM: Mitochondria: Regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic Biol Med. 33:755–764. 2002. View Article : Google Scholar : PubMed/NCBI

25 

Dröge W: Free radicals in the physiological control of cell function. Physiol Rev. 82:47–95. 2002. View Article : Google Scholar : PubMed/NCBI

26 

Kudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE and Kunz WS: Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem. 279:4127–4135. 2004. View Article : Google Scholar

27 

Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL and Parker N: Mitochondrial superoxide: Production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med. 37:755–767. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Andreyev AY, Kushnareva YE and Starkov AA: Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc). 70:200–214. 2005. View Article : Google Scholar

29 

Cadenas E and Davies KJ: Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 29:222–230. 2000. View Article : Google Scholar : PubMed/NCBI

30 

Kudin AP, Debska-Vielhaber G and Kunz WS: Characterization of superoxide production sites in isolated rat brain and skeletal muscle mitochondria. Biomed Pharmacother. 59:163–168. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Kussmaul L and Hirst J: The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA. 103:7607–7612. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Rush JD and Koppenol WH: Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. Reactions with organic molecules and ferrocytochrome c. J Biol Chem. 261:6730–6733. 1986.PubMed/NCBI

33 

Antunes F, Han D and Cadenas E: Relative contributions of heart mitochondria glutathione peroxidase and catalase to H(2)O(2) detoxification in in vivo conditions. Free Radic Biol Med. 33:1260–1267. 2002. View Article : Google Scholar : PubMed/NCBI

34 

Morán M, Moreno-Lastres D, Marín-Buera L, Arenas J, Martín MA and Ugalde C: Mitochondrial respiratory chain dysfunction: Implications in neurodegeneration. Free Radic Biol Med. 53:595–609. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Gutteridge JM: Superoxide-dependent formation of hydroxyl radicals from ferric-complexes and hydrogen peroxide: An evaluation of fourteen iron chelators. Free Radic Res Commun. 9:119–125. 1990. View Article : Google Scholar : PubMed/NCBI

36 

Hwang O: Role of oxidative stress in Parkinson's disease. Exp Neurobiol. 22:11–17. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Dias V, Junn E and Mouradian MM: The role of oxidative stress in Parkinson's disease. J Parkinsons Dis. 3:461–491. 2013.PubMed/NCBI

38 

Jenner P: Oxidative stress in Parkinson's disease. Ann Neurol. 53(Suppl 3): S26–S38. 2003. View Article : Google Scholar : PubMed/NCBI

39 

Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P and Halliwell B: Oxidative DNA damage in the parkinsonian brain: An apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem. 69:1196–1203. 1997. View Article : Google Scholar : PubMed/NCBI

40 

Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER and Mizuno Y: Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA. 93:2696–2701. 1996. View Article : Google Scholar : PubMed/NCBI

41 

Li DW, Yao M, Dong YH, Tang MN, Chen W, Li GR and Sun BQ: Guanosine exerts neuroprotective effects by reversing mitochondrial dysfunction in a cellular model of Parkinson's disease. Int J Mol Med. 34:1358–1364. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Seet RC, Lee CY, Lim EC, Tan JJ, Quek AM, Chong WL, Looi WF, Huang SH, Wang H and Chan YH: Oxidative damage in Parkinson disease: Measurement using accurate biomarkers. Free Radic Biol Med. 48:560–566. 2010. View Article : Google Scholar

43 

Callio J, Oury TD and Chu CT: Manganese superoxide dismutase protects against 6-hydroxydopamine injury in mouse brains. J Biol Chem. 280:18536–18542. 2005. View Article : Google Scholar : PubMed/NCBI

44 

Vila M and Przedborski S: Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci. 4:365–375. 2003. View Article : Google Scholar : PubMed/NCBI

45 

Perier C, Bové J, Vila M and Przedborski S: The rotenone model of Parkinson's disease. Trends Neurosci. 26:345–346. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Sun SY, An CN and Pu XP: DJ-1 protein protects dopaminergic neurons against 6-OHDA/MG-132-induced neurotoxicity in rats. Brain Res Bull. 88:609–616. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Heikkila RE, Hess A and Duvoisin RC: Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Science. 224:1451–1453. 1984. View Article : Google Scholar : PubMed/NCBI

48 

Barzilai A and Yamamoto K: DNA damage responses to oxidative stress. DNA Repair (Amst). 3:1109–1115. 2004. View Article : Google Scholar

49 

Ruipérez V, Darios F and Davletov B: Alpha-synuclein, lipids and Parkinson's disease. Prog Lipid Res. 49:420–428. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Mariani E, Polidori MC, Cherubini A and Mecocci P: Oxidative stress in brain aging, neurodegenerative and vascular diseases: An overview. J Chromatogr B Analyt Technol Biomed Life Sci. 827:65–75. 2005. View Article : Google Scholar : PubMed/NCBI

51 

Montine TJ, Neely MD, Quinn JF, Beal MF, Markesbery WR, Roberts LJ II and Morrow JD: Lipid peroxidation in aging brain and Alzheimer's disease. Free Radic Biol Med. 33:620–626. 2002. View Article : Google Scholar : PubMed/NCBI

52 

Liu W, Kato M, Akhand AA, Hayakawa A, Suzuki H, Miyata T, Kurokawa K, Hotta Y, Ishikawa N and Nakashima I: 4-hydroxynonenal induces a cellular redox status-related activation of the caspase cascade for apoptotic cell death. J Cell Sci. 113:635–641. 2000.PubMed/NCBI

53 

Schmidt H, Grune T, Müller R, Siems WG and Wauer RR: Increased levels of lipid peroxidation products malondialdehyde and 4-hydroxynonenal after perinatal hypoxia. Pediatr Res. 40:15–20. 1996. View Article : Google Scholar : PubMed/NCBI

54 

Montine KS, Quinn JF, Zhang J, Fessel JP, Roberts LJ II, Morrow JD and Montine TJ: Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem Phys Lipids. 128:117–124. 2004. View Article : Google Scholar : PubMed/NCBI

55 

Lotharius J and Brundin P: Pathogenesis of Parkinson's disease: Dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci. 3:932–942. 2002. View Article : Google Scholar : PubMed/NCBI

56 

Fornstedt B and Carlsson A: A marked rise in 5-S-cysteinyl-dopamine levels in guinea-pig striatum following reserpine treatment. J Neural Transm. 76:155–161. 1989. View Article : Google Scholar : PubMed/NCBI

57 

Youdim MB, Edmondson D and Tipton KF: The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci. 7:295–309. 2006. View Article : Google Scholar : PubMed/NCBI

58 

Fowler JS, Volkow ND, Wang GJ, Logan J, Pappas N, Shea C and MacGregor R: Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol Aging. 18:431–435. 1997. View Article : Google Scholar : PubMed/NCBI

59 

Nagatsu T and Sawada M: Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson's disease: Possible implications of glial cells. J Neural Transm Suppl. 71:53–65. 2006. View Article : Google Scholar

60 

Kumar MJ and Andersen JK: Perspectives on MAO-B in aging and neurological disease: Where do we go from here? Mol Neurobiol. 30:77–89. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Norris EH, Giasson BI, Hodara R, Xu S, Trojanowski JQ, Ischiropoulos H and Lee VM: Reversible inhibition of alpha-synuclein fibrillization by dopaminochrome-mediated conformational alterations. J Biol Chem. 280:21212–21219. 2005. View Article : Google Scholar : PubMed/NCBI

62 

Zecca L, Wilms H, Geick S, Claasen JH, Brandenburg LO, Holzknecht C, Panizza ML, Zucca FA, Deuschl G, Sievers J, et al: Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: Implications for Parkinson's disease. Acta Neuropathol. 116:47–55. 2008. View Article : Google Scholar : PubMed/NCBI

63 

Jomova K and Valko M: Advances in metal-induced oxidative stress and human disease. Toxicology. 283:65–87. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Núñez MT, Urrutia P, Mena N, Aguirre P, Tapia V and Salazar J: Iron toxicity in neurodegeneration. Biometals. 25:761–776. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Sadrzadeh SM and Saffari Y: Iron and brain disorders. Am J Clin Pathol. 121(Suppl): S64–S70. 2004.PubMed/NCBI

66 

Sian-Hülsmann J, Mandel S, Youdim MB and Riederer P: The relevance of iron in the pathogenesis of Parkinson's disease. J Neurochem. 118:939–957. 2011. View Article : Google Scholar

67 

Sziráki I, Mohanakumar KP, Rauhala P, Kim HG, Yeh KJ and Chiueh CC: Manganese: A transition metal protects nigrostriatal neurons from oxidative stress in the iron-induced animal model of parkinsonism. Neuroscience. 85:1101–1111. 1998. View Article : Google Scholar : PubMed/NCBI

68 

Lan J and Jiang DH: Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice. J Neural Transm Vienna. 104:469–481. 1997. View Article : Google Scholar : PubMed/NCBI

69 

Faucheux BA, Martin ME, Beaumont C, Hauw JJ, Agid Y and Hirsch EC: Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson's disease. J Neurochem. 86:1142–1148. 2003. View Article : Google Scholar : PubMed/NCBI

70 

Yokoyama H, Kuroiwa H, Yano R and Araki T: Targeting reactive oxygen species, reactive nitrogen species and inflammation in MPTP neurotoxicity and Parkinson's disease. Neurol Sci. 29:293–301. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Duchen MR: Mitochondria in health and disease: Perspectives on a new mitochondrial biology. Mol Aspects Med. 25:365–451. 2004. View Article : Google Scholar : PubMed/NCBI

72 

Henchcliffe C and Beal MF: Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol. 4:600–609. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Mythri RB, Jagatha B, Pradhan N, Andersen J and Bharath MM: Mitochondrial complex I inhibition in Parkinson's disease: How can curcumin protect mitochondria? Antioxid Redox Signal. 9:399–408. 2007. View Article : Google Scholar

74 

Adams JM and Cory S: The Bcl-2 protein family: Arbiters of cell survival. Science. 281:1322–1326. 1998. View Article : Google Scholar : PubMed/NCBI

75 

Crompton M: The mitochondrial permeability transition pore and its role in cell death. Biochem J. 341:233–249. 1999. View Article : Google Scholar : PubMed/NCBI

76 

Burchell VS, Gandhi S, Deas E, Wood NW, Abramov AY and Plun-Favreau H: Targeting mitochondrial dysfunction in neurodegenerative disease: Part I. Expert Opin Ther Targets. 14:369–385. 2010. View Article : Google Scholar : PubMed/NCBI

77 

Moon Y, Lee KH, Park JH, Geum D and Kim K: Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: Protective effect of coenzyme Q10. J Neurochem. 93:1199–1208. 2005. View Article : Google Scholar : PubMed/NCBI

78 

McCarthy S, Somayajulu M, Sikorska M, Borowy-Borowski H and Pandey S: Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble Coenzyme Q10. Toxicol Appl Pharmacol. 201:21–31. 2004. View Article : Google Scholar : PubMed/NCBI

79 

Cleren C, Yang L, Lorenzo B, Calingasan NY, Schomer A, Sireci A, Wille EJ and Beal MF: Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism. J Neurochem. 104:1613–1621. 2008. View Article : Google Scholar

80 

Dubois C, Prevarskaya N and Vanden Abeele F: The calcium-signaling toolkit: Updates needed. Biochim Biophys Acta. 1863:1337–1343. 2016. View Article : Google Scholar

81 

Santo-Domingo J, Wiederkehr A and De Marchi U: Modulation of the matrix redox signaling by mitochondrial Ca(2). World J Biol Chem. 6:310–323. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Nicholls DG: Mitochondrial function and dysfunction in the cell: Its relevance to aging and aging-related disease. Int J Biochem Cell Biol. 34:1372–1381. 2002. View Article : Google Scholar : PubMed/NCBI

83 

Kirichok Y, Krapivinsky G and Clapham DE: The mitochondrial calcium uniporter is a highly selective ion channel. Nature. 427:360–364. 2004. View Article : Google Scholar : PubMed/NCBI

84 

Gincel D, Zaid H and Shoshan-Barmatz V: Calcium binding and translocation by the voltage-dependent anion channel: A possible regulatory mechanism in mitochondrial function. Biochem J. 358:147–155. 2001. View Article : Google Scholar : PubMed/NCBI

85 

Takeuchi A, Kim B and Matsuoka S: The destiny of Ca(2+) released by mitochondria. J Physiol Sci. 65:11–24. 2015. View Article : Google Scholar

86 

Plovanich M, Bogorad RL, Sancak Y, Kamer KJ, Strittmatter L, Li AA, Girgis HS, Kuchimanchi S, De Groot J, Speciner L, et al: MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS One. 8:e557852013. View Article : Google Scholar : PubMed/NCBI

87 

Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE and Mootha VK: MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature. 467:291–296. 2010. View Article : Google Scholar : PubMed/NCBI

88 

McCormack JG and Denton RM: Mitochondrial Ca2+ transport and the role of intramitochondrial Ca2+ in the regulation of energy metabolism. Dev Neurosci. 15:165–173. 1993. View Article : Google Scholar

89 

Balaban RS: Cardiac energy metabolism homeostasis: Role of cytosolic calcium. J Mol Cell Cardiol. 34:1259–1271. 2002. View Article : Google Scholar : PubMed/NCBI

90 

Alderton WK, Cooper CE and Knowles RG: Nitric oxide synthases: Structure, function and inhibition. Biochem J. 357:593–615. 2001. View Article : Google Scholar : PubMed/NCBI

91 

Jekabsone A, Ivanoviene L, Brown GC and Borutaite V: Nitric oxide and calcium together inactivate mitochondrial complex I and induce cytochrome c release. J Mol Cell Cardiol. 35:803–809. 2003. View Article : Google Scholar : PubMed/NCBI

92 

Brookes PS, Yoon Y, Robotham JL, Anders MW and Sheu SS: Calcium, ATP, and ROS: A mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 287:C817–C833. 2004. View Article : Google Scholar : PubMed/NCBI

93 

Muravchick S and Levy RJ: Clinical implications of mitochondrial dysfunction. Anesthesiology. 105:819–837. 2006. View Article : Google Scholar : PubMed/NCBI

94 

O'Rourke B: Pathophysiological and protective roles of mitochondrial ion channels. J Physiol. 529:23–36. 2000. View Article : Google Scholar : PubMed/NCBI

95 

Di Lisa F and Bernardi P: A CaPful of mechanisms regulating the mitochondrial permeability transition. J Mol Cell Cardiol. 46:775–780. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Jones SP, Teshima Y, Akao M and Marbán E: Simvastatin attenuates oxidant-induced mitochondrial dysfunction in cardiac myocytes. Circ Res. 93:697–699. 2003. View Article : Google Scholar : PubMed/NCBI

97 

Celardo I, Martins LM and Gandhi S: Unravelling mitochondrial pathways to Parkinson's disease. Br J Pharmacol. 171:1943–1957. 2014. View Article : Google Scholar :

98 

Surmeier DJ, Guzman JN, Sanchez-Padilla J and Goldberg JA: The origins of oxidant stress in Parkinson's disease and therapeutic strategies. Antioxid Redox Signal. 14:1289–1301. 2011. View Article : Google Scholar :

99 

Perier C, Tieu K, Guégan C, Caspersen C, Jackson-Lewis V, Carelli V, Martinuzzi A, Hirano M, Przedborski S and Vila M: Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc Natl Acad Sci USA. 102:19126–19131. 2005. View Article : Google Scholar : PubMed/NCBI

100 

Boatright KM and Salvesen GS: Mechanisms of caspase activation. Curr Opin Cell Biol. 15:725–731. 2003. View Article : Google Scholar : PubMed/NCBI

101 

Kumar S: Caspase function in programmed cell death. Cell Death Differ. 14:32–43. 2007. View Article : Google Scholar

102 

Javadov S, Choi A, Rajapurohitam V, Zeidan A, Basnakian AG and Karmazyn M: NHE-1 inhibition-induced cardioprotection against ischaemia/reperfusion is associated with attenuation of the mitochondrial permeability transition. Cardiovasc Res. 77:416–424. 2008. View Article : Google Scholar

103 

Wallace DC: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu Rev Genet. 39:359–407. 2005. View Article : Google Scholar : PubMed/NCBI

104 

Yang JL, Weissman L, Bohr VA and Mattson MP: Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair (Amst). 7:1110–1120. 2008. View Article : Google Scholar

105 

Levy RJ and Deutschman CS: Deficient mitochondrial biogenesis in critical illness: Cause, effect, or epiphenomenon? Crit Care. 11:1582007. View Article : Google Scholar : PubMed/NCBI

106 

Elstner M, Müller SK, Leidolt L, Laub C, Krieg L, Schlaudraff F, Liss B, Morris C, Turnbull DM, Masliah E, et al: Neuromelanin, neurotransmitter status and brainstem location determine the differential vulnerability of catecholaminergic neurons to mitochondrial DNA deletions. Mol Brain. 4:432011. View Article : Google Scholar : PubMed/NCBI

107 

Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW and Khrapko K: Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 38:518–520. 2006. View Article : Google Scholar : PubMed/NCBI

108 

Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, et al: High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 38:515–517. 2006. View Article : Google Scholar : PubMed/NCBI

109 

Ekstrand MI, Terzioglu M, Galter D, Zhu S, Hofstetter C, Lindqvist E, Thams S, Bergstrand A, Hansson FS, Trifunovic A, et al: Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci USA. 104:1325–1330. 2007. View Article : Google Scholar : PubMed/NCBI

110 

Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Marras C, Bhudhikanok GS, Kasten M, Chade AR, et al: Rotenone, paraquat, and Parkinson's disease. Environ Health Perspect. 119:866–872. 2011. View Article : Google Scholar : PubMed/NCBI

111 

Halliwell B: Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs Aging. 18:685–716. 2001. View Article : Google Scholar : PubMed/NCBI

112 

Reeve AK, Krishnan KJ and Turnbull D: Mitochondrial DNA mutations in disease, aging, and neurodegeneration. Ann NY Acad Sci. 1147:21–29. 2008. View Article : Google Scholar : PubMed/NCBI

113 

Ropp PA and Copeland WC: Cloning and characterization of the human mitochondrial DNA polymerase, DNA polymerase gamma. Genomics. 36:449–458. 1996. View Article : Google Scholar : PubMed/NCBI

114 

Luoma P, Melberg A, Rinne JO, Kaukonen JA, Nupponen NN, Chalmers RM, Oldfors A, Rautakorpi I, Peltonen L, Majamaa K, et al: Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: Clinical and molecular genetic study. Lancet. 364:875–882. 2004. View Article : Google Scholar : PubMed/NCBI

115 

Wong LJ, Naviaux RK, Brunetti-Pierri N, Zhang Q, Schmitt ES, Truong C, Milone M, Cohen BH, Wical B, Ganesh J, et al: Molecular and clinical genetics of mitochondrial diseases due to POLG mutations. Hum Mutat. 29:E150–E172. 2008. View Article : Google Scholar : PubMed/NCBI

116 

Gui YX, Xu ZP, Lv W, Zhao JJ and Hu XY: Evidence for polymerase gamma, POLG1 variation in reduced mitochondrial DNA copy number in Parkinson's disease. Parkinsonism Relat Disord. 21:282–286. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Hudson G and Chinnery PF: Mitochondrial DNA polymerase-gamma and human disease. Hum Mol Genet. 15:R244–R252. 2006. View Article : Google Scholar : PubMed/NCBI

118 

Sanders LH, McCoy J, Hu X, Mastroberardino PG, Dickinson BC, Chang CJ, Chu CT, Van Houten B and Greenamyre JT: Mitochondrial DNA damage: Molecular marker of vulnerable nigral neurons in Parkinson's disease. Neurobiol Dis. 70:214–223. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Wilson DM III and Barsky D: The major human abasic endonuclease: Formation, consequences and repair of abasic lesions in DNA. Mutat Res. 485:283–307. 2001. View Article : Google Scholar : PubMed/NCBI

120 

Benard G and Karbowski M: Mitochondrial fusion and division: Regulation and role in cell viability. Semin Cell Dev Biol. 20:365–374. 2009. View Article : Google Scholar : PubMed/NCBI

121 

Soubannier V and McBride HM: Positioning mitochondrial plasticity within cellular signaling cascades. Biochim Biophys Acta. 1793:154–170. 2009. View Article : Google Scholar

122 

Schrader M: Shared components of mitochondrial and peroxisomal division. Biochim Biophys Acta. 1763:531–541. 2006. View Article : Google Scholar : PubMed/NCBI

123 

Ishihara N, Jofuku A, Eura Y and Mihara K: Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem Biophys Res Commun. 301:891–898. 2003. View Article : Google Scholar : PubMed/NCBI

124 

Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P and Scorrano L: Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci USA. 105:15803–15808. 2008. View Article : Google Scholar : PubMed/NCBI

125 

Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, Tomizawa K, Nairn AC, Takei K, Matsui H and Matsushita M: CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol. 182:573–585. 2008. View Article : Google Scholar : PubMed/NCBI

126 

Reddy PH, Reddy TP, Manczak M, Calkins MJ, Shirendeb U and Mao P: Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res Brain Res Rev. 67:103–118. 2011. View Article : Google Scholar

127 

James DI, Parone PA, Mattenberger Y and Martinou JC: hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem. 278:36373–36379. 2003. View Article : Google Scholar : PubMed/NCBI

128 

Gomes LC and Scorrano L: High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim Biophys Acta. 1777:860–866. 2008. View Article : Google Scholar : PubMed/NCBI

129 

Santos D and Cardoso SM: Mitochondrial dynamics and neuronal fate in Parkinson's disease. Mitochondrion. 12:428–437. 2012. View Article : Google Scholar : PubMed/NCBI

130 

Reddy PH: Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer's disease. Exp Neurol. 218:286–292. 2009. View Article : Google Scholar : PubMed/NCBI

131 

Reddy PH: Mitochondrial dysfunction in aging and Alzheimer's disease: Strategies to protect neurons. Antioxid Redox Signal. 9:1647–1658. 2007. View Article : Google Scholar : PubMed/NCBI

132 

Chen H, Chomyn A and Chan DC: Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem. 280:26185–26192. 2005. View Article : Google Scholar : PubMed/NCBI

133 

Ishihara N, Eura Y and Mihara K: Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci. 117:6535–6546. 2004. View Article : Google Scholar : PubMed/NCBI

134 

Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, et al: Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet. 36:449–451. 2004. View Article : Google Scholar : PubMed/NCBI

135 

Armstrong JS: Mitochondria-directed therapeutics. Antioxid Redox Signal. 10:575–578. 2008. View Article : Google Scholar

136 

Chan DC: Mitochondria: Dynamic organelles in disease, aging, and development. Cell. 125:1241–1252. 2006. View Article : Google Scholar : PubMed/NCBI

137 

McBride HM, Neuspiel M and Wasiak S: Mitochondria: More than just a powerhouse. Curr Biol. 16:R551–R560. 2006. View Article : Google Scholar : PubMed/NCBI

138 

Barsoum MJ, Yuan H, Gerencser AA, Liot G, Kushnareva Y, Gräber S, Kovacs I, Lee WD, Waggoner J, Cui J, et al: Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J. 25:3900–3911. 2006. View Article : Google Scholar : PubMed/NCBI

139 

Head B, Griparic L, Amiri M, Gandre-Babbe S and van der Bliek AM: Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol. 187:959–966. 2009. View Article : Google Scholar : PubMed/NCBI

140 

Abou-Sleiman PM, Muqit MM and Wood NW: Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat Rev Neurosci. 7:207–219. 2006. View Article : Google Scholar : PubMed/NCBI

141 

Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, Yang L, Beal MF, Vogel H and Lu B: Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci USA. 103:10793–10798. 2006. View Article : Google Scholar : PubMed/NCBI

142 

Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM and Chung J: Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 441:1157–1161. 2006. View Article : Google Scholar : PubMed/NCBI

143 

Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP and Youle RJ: Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol. 191:933–942. 2010. View Article : Google Scholar : PubMed/NCBI

144 

Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR and Youle RJ: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8:e10002982010. View Article : Google Scholar : PubMed/NCBI

145 

Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, Kitada T, Kim JM and Chung J: PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun. 377:975–980. 2008. View Article : Google Scholar : PubMed/NCBI

146 

Sha D, Chin LS and Li L: Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling. Hum Mol Genet. 19:352–363. 2010. View Article : Google Scholar

147 

Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ and Springer W: PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 12:119–131. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu XL, Wang YD, Yu XM, Li DW and Li GR: Mitochondria-mediated damage to dopaminergic neurons in Parkinson's disease (Review). Int J Mol Med 41: 615-623, 2018.
APA
Liu, X., Wang, Y., Yu, X., Li, D., & Li, G. (2018). Mitochondria-mediated damage to dopaminergic neurons in Parkinson's disease (Review). International Journal of Molecular Medicine, 41, 615-623. https://doi.org/10.3892/ijmm.2017.3255
MLA
Liu, X., Wang, Y., Yu, X., Li, D., Li, G."Mitochondria-mediated damage to dopaminergic neurons in Parkinson's disease (Review)". International Journal of Molecular Medicine 41.2 (2018): 615-623.
Chicago
Liu, X., Wang, Y., Yu, X., Li, D., Li, G."Mitochondria-mediated damage to dopaminergic neurons in Parkinson's disease (Review)". International Journal of Molecular Medicine 41, no. 2 (2018): 615-623. https://doi.org/10.3892/ijmm.2017.3255
Copy and paste a formatted citation
x
Spandidos Publications style
Liu XL, Wang YD, Yu XM, Li DW and Li GR: Mitochondria-mediated damage to dopaminergic neurons in Parkinson's disease (Review). Int J Mol Med 41: 615-623, 2018.
APA
Liu, X., Wang, Y., Yu, X., Li, D., & Li, G. (2018). Mitochondria-mediated damage to dopaminergic neurons in Parkinson's disease (Review). International Journal of Molecular Medicine, 41, 615-623. https://doi.org/10.3892/ijmm.2017.3255
MLA
Liu, X., Wang, Y., Yu, X., Li, D., Li, G."Mitochondria-mediated damage to dopaminergic neurons in Parkinson's disease (Review)". International Journal of Molecular Medicine 41.2 (2018): 615-623.
Chicago
Liu, X., Wang, Y., Yu, X., Li, D., Li, G."Mitochondria-mediated damage to dopaminergic neurons in Parkinson's disease (Review)". International Journal of Molecular Medicine 41, no. 2 (2018): 615-623. https://doi.org/10.3892/ijmm.2017.3255
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team