Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
May-2018 Volume 41 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2018 Volume 41 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (Review)

  • Authors:
    • Maria Teresa Valenti
    • Luca Dalle Carbonare
    • Monica Mottes
  • View Affiliations / Copyright

    Affiliations: Department of Medicine, Biomedicine and Movement Sciences, Biology and Genetics Section, University of Verona, Verona I‑37134, Italy, Department of Neurosciences, Biomedicine and Movement Sciences, Biology and Genetics Section, University of Verona, Verona I‑37134, Italy
  • Pages: 2441-2449
    |
    Published online on: February 1, 2018
       https://doi.org/10.3892/ijmm.2018.3452
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

MicroRNAs (miRNAs) are considered ‘micro- managers of gene expression’ and awareness of their fundamental role in the control of biological functions is constantly increasing. Bone formation and homeostasis are complex processes involving the differentiation and interaction of various cell types. Several miRNAs have been shown to be involved in different pathways and stages in the regulation of normal and abnormal bone formation and turnover. This present review focuses on the involvement of miRNAs in terms of their effect on the commitment of bone marrow mesenchymal stem cells towards osteogenesis, adipogenesis and chondrogenesis, respectively. The miRNAs involved in regulating osteoblast, chondroblast and osteoclast activity, are also taken into consideration, as are their interactions. miRNA expression levels, which may differ significantly in healthy versus pathological conditions, can be readily monitored and represent useful biomarkers. Several studies have suggested that miRNAs offer potential as useful biomarkers of bone pathologies, including osteoporosis and osteosarcoma. The development of efficient methods of delivering miRNA mimics or miRNA inhibitors into specific cells remains a challenge for novel therapeutic applications in the field of personalized medicine.
View Figures

Figure 1

Figure 2

View References

1 

Valenti MT, Dalle Carbonare L and Mottes M: Osteogenic differentiation in healthy and pathological conditions. Int J Mol Sci. 18:E412016. View Article : Google Scholar : PubMed/NCBI

2 

Idolazzi L, Fassio A, Tripi G, Braga V, Viapiana O, Adami G, Rossini M and Gatti D: Circulating Dickkopf-1 and sclerostin in patients with Paget's disease of bone. Clin Rheumatol. 36:925–928. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Mäkitie RE, Haanpää M, Valta H, Pekkinen M, Laine CM, Lehesjoki AE, Schalin-Jäntti C and Mäkitie O: Skeletal characteristics of WNT1 osteoporosis in children and young adults. J Bone Miner Res. 31:1734–1742. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Papaioannou G, Mirzamohammadi F and Kobayashi T: MicroRNAs involved in bone formation. Cell Mol Life Sci. 71:4747–4761. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Yuan Y, Zhang L, Tong X, Zhang M, Zhao Y, Guo J, Lei L, Chen X, Tickner J, Xu J and Zou J: Mechanical stress regulates bone metabolism through MicroRNAs. J Cell Physiol. 232:1239–1245. 2017. View Article : Google Scholar

6 

Ji X, Chen X and Yu X: MicroRNAs in osteoclastogenesis and function: Potential therapeutic targets for osteoporosis. Int J Mol Sci. 17:3492016. View Article : Google Scholar : PubMed/NCBI

7 

Gennari L, Bianciardi S and Merlotti D: MicroRNAs in bone diseases. Osteoporos Int. 28:1191–1213. 2017. View Article : Google Scholar

8 

Wu C, Tian B, Qu X, Liu F, Tang T, Qin A, Zhu Z and Dai K: MicroRNAs play a role in chondrogenesis and osteoarthritis (Review). Int J Mol Med. 34:13–23. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Huang C, Geng J and Jiang S: MicroRNAs in regulation of osteogenic differentiation of mesenchymal stem cells. Cell Tissue Res. 368:229–238. 2017. View Article : Google Scholar

10 

Kapinas K, Kessler C, Ricks T, Gronowicz G and Delany AM: miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem. 285:25221–25231. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Gong Y, Xu F, Zhang L, Qian Y, Chen J, Huang H and Yu Y: MicroRNA expression signature for Satb2-induced osteogenic differentiation in bone marrow stromal cells. Mol Cell Biochem. 387:227–239. 2014. View Article : Google Scholar

12 

Huang J, Zhao L, Xing L and Chen D: MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells. 28:357–364. 2010.

13 

Onyekwelu I, Goldring MB and Hidaka C: Chondrogenesis, joint formation, and articular cartilage regeneration. J Cell Biochem. 107:383–392. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Tian Y, Guo R, Shi B, Chen L, Yang L and Fu Q: MicroRNA-30a promotes chondrogenic differentiation of mesenchymal stem cells through inhibiting Delta-like 4 expression. Life Sci. 148:220–228. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Miyaki S, Nakasa T, Otsuki S, Grogan SP, Higashiyama R, Inoue A, Kato Y, Sato T, Lotz MK and Asahara H: MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 60:2723–2730. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Zhang Z, Hou C, Meng F, Zhao X, Zhang Z, Huang G, Chen W, Fu M and Liao W: MiR-455-3p regulates early chondrogenic differentiation via inhibiting Runx2. FEBS Lett. 589:3671–3678. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Li H, Li T, Wang S, Wei J, Fan J, Li J, Han Q, Liao L, Shao C and Zhao RC: miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res. 10:313–324. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Wang J, Guan X, Guo F, Zhou J, Chang A, Sun B, Cai Y, Ma Z, Dai C, Li X and Wang B: miR-30e reciprocally regulates the differentiation of adipocytes and osteoblasts by directly targeting low-density lipoprotein receptor-related protein 6. Cell Death Dis. 10:e8452013. View Article : Google Scholar

19 

Zhang JF, Fu WM, He ML, Wang H, Wang WM, Yu SC, Bian XW, Zhou J, Lin MC, Lu G, et al: MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol Biol Cell. 22:3955–3961. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Mei Y, Bian C, Li J, Du Z, Zhou H, Yang Z and Zhao RC: miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation. J Cell Biochem. 114:1374–1384. 2013. View Article : Google Scholar

21 

Trohatou O, Zagoura D, Bitsika V, Pappa KI, Antsaklis A, Anagnou NP and Roubelakis MG: Sox2 suppression by miR-21 governs human mesenchymal stem cell properties. Stem Cells Transl Med. 3:54–68. 2014. View Article : Google Scholar :

22 

Yang N, Wang G, Hu C, Shi Y, Liao L, Shi S, Cai Y, Cheng S, Wang X, Liu Y, et al: Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res. 28:559–573. 2013. View Article : Google Scholar

23 

Huang S, Wang S, Bian C, Yang Z, Zhou H, Zeng Y, Li H, Han Q and Zhao RC: Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev. 21:2531–2540. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Westendorf JJ: Transcriptional co-repressors of Runx2. J Cell Biochem. 98:54–64. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Hu R, Liu W, Li H, Yang L, Chen C, Xia ZY, Guo LJ, Xie H, Zhou HD, Wu XP and Luo XH: A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem. 286:12328–12339. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Zhang JF, Fu WM, He ML, Xie WD, Lv Q, Wan G, Li G, Wang H, Lu G, Hu X, et al: MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol. 8:829–838. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Gámez B, Rodríguez-Carballo E, Bartrons R, Rosa JL and Ventura F: MicroRNA-322 (miR-322) and its target protein Tob2 modulate Osterix (Osx) mRNA stability. J Biol Chem. 288:14264–14275. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Bhushan R, Grünhagen J, Becker J, Robinson PN, Ott CE and Knaus P: miR-181a promotes osteoblastic differentiation through repression of TGF-β signaling molecules. Int J Biochem Cell Biol. 45:696–705. 2013. View Article : Google Scholar

29 

Zheng L, Tu Q, Meng S, Zhang L, Yu L, Song J, Hu Y, Sui L, Zhang J, Dard M, et al: Runx2/DICER/miRNA pathway in regulating osteogenesis. J Cell Physiol. 232:182–191. 2017. View Article : Google Scholar

30 

Li Y, Fan L, Liu S, Liu W, Zhang H, Zhou T, Wu D, Yang P, Shen L, Chen J and Jin Y: The promotion of bone regeneration through positive regulation of angiogenicosteogenic coupling using microRNA-26a. Biomaterials. 34:5048–5058. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Eskildsen T, Taipaleenmäki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S and Kassem M: MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA. 108:6139–6144. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Li E, Zhang J, Yuan T and Ma B: MiR-143 suppresses osteogenic differentiation by targeting Osterix. Mol Cell Biochem. 390:69–74. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A, Li D, Hou Z, Lv K, Kan G, et al: miR-214 targets ATF4 to inhibit bone formation. Nat Med. 19:93–100. 2013. View Article : Google Scholar

34 

De-Ugarte L, Yoskovitz G, Balcells S, Güerri-Fernández R, Martinez-Diaz S, Mellibovsky L, Urreizti R, Nogués X, Grinberg D, García-Giralt N and Díez-Pérez A: MiRNA profiling of whole trabecular bone: Identification of osteoporosis-related changes in MiRNAs in human hip bones. BMC Med Genomics. 8:752015. View Article : Google Scholar : PubMed/NCBI

35 

Jin HL, Kim JS, Kim YJ, Kim SJ, Broxmeyer HE and Kim KS: Dynamic expression of specific miRNAs during erythroid differentiation of human embryonic stem cells. Mol Cells. 34:177–183. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Gu Y, Ma L, Song L, Li X, Chen D and Bai X: miR-155 inhibits mouse osteoblast differentiation by suppressing SMAD5 expression. Biomed Res Int. 2017:18935202017. View Article : Google Scholar : PubMed/NCBI

37 

Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, et al: MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 24:1173–1185. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Papaioannou G, Inloes JB, Nakamura Y, Paltrinieri E and Kobayashi T: let-7 and miR-140 microRNAs coordinately regulate skeletal development. Proc Natl Acad Sci USA. 110:E3291–E3300. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Lin EA, Kong L, Bai XH, Luan Y and Liu CJ: miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J Biol Chem. 284:11326–11335. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Gu YL, Rong XX, Wen LT, Zhu GX and Qian MQ: miR-195 inhibits the proliferation and migration of chondrocytes by targeting GIT1. Mol Med Rep. 15:194–200. 2017. View Article : Google Scholar

41 

Bai R, Zhao AQ, Zhao ZQ, Liu WL and Jian DM: MicroRNA-195 induced apoptosis in hypoxic chondrocytes by targeting hypoxia-inducible factor 1 alpha. Eur Rev Med Pharmacol Sci. 19:545–551. 2015.PubMed/NCBI

42 

Seidl CI, Martinez-Sanchez A and Murphy CL: Derepression of MicroRNA-138 contributes to loss of the human articular chondrocyte phenotype. Arthritis Rheumatol. 68:398–409. 2016. View Article : Google Scholar

43 

Yan S, Wang M, Zhao J, Zhang H, Zhou C, Jin L, Zhang Y, Qiu X, Ma B and Fan Q: MicroRNA-34a affects chondrocyte apoptosis and proliferation by targeting the SIRT1/p53 signaling pathway during the pathogenesis of osteoarthritis. Int J Mol Med. 38:201–209. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T and Zhang Y: MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol. 8:212–227. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Cheng P, Chen C, He HB, Hu R, Zhou HD, Xie H, Zhu W, Dai RC, Wu XP, Liao EY and Luo XH: miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J Bone Miner Res. 28:1180–1190. 2013. View Article : Google Scholar

46 

Mizoguchi F, Murakami Y, Saito T, Miyasaka N and Kohsaka H: miR-31 controls osteoclast formation and bone resorption by targeting RhoA. Arthritis Res Ther. 15:R1022013. View Article : Google Scholar : PubMed/NCBI

47 

Sugatani T, Vacher J and Hruska KA: A microRNA expression signature of osteoclastogenesis. Blood. 117:3648–3657. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Chen C, Cheng P, Xie H, Zhou HD, Wu XP, Liao EY and Luo XH: MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Miner Res. 29:338–347. 2014. View Article : Google Scholar

49 

Qu B, Xia X, Yan M, Gong K, Deng S, Huang G, Ma Z and Pan X: miR-218 is involved in the negative regulation of osteoclastogenesis and bone resorption by partial suppression of p38MAPK-c-Fos-NFATc1 signaling: Potential role for osteopenic diseases. Exp Cell Res. 338:89–96. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Guo LJ, Liao L, Yang L, Li Y and Jiang TJ: MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis. Exp Cell Res. 321:142–152. 2014. View Article : Google Scholar

51 

Laxman N, Rubin CJ, Mallmin H, Nilsson O, Pastinen T, Grundberg E and Kindmark A: Global miRNA expression and correlation with mRNA levels in primary human bone cells. RNA. 21:1433–1443. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Kaneto CM, Lima PS, Zanette DL, Prata KL, Pina Neto JM, de Paula FJ and Silva WA Jr: COL1A1 and miR-29b show lower expression levels during osteoblast differentiation of bone marrow stromal cells from Osteogenesis Imperfecta patients. BMC Med Genet. 15:1471–2350. 2014. View Article : Google Scholar

53 

Ou M, Zhang X, Dai Y, Gao J, Zhu M, Yang X, Li Y, Yang T and Ding M: Identification of potential microRNA-target pairs associated with osteopetrosis by deep sequencing, iTRAQ proteomics and bioinformatics. Eur J Hum Genet. 22:625–632. 2014. View Article : Google Scholar

54 

Franceschetti T, Kessler CB, Lee SK and Delany AM: miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration. J Biol Chem. 288:33347–33360. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Xu S, Cecilia Santini G, De Veirman K, Vande Broek I, Leleu X, De Becker A, Van Camp B, Vanderkerken K and Van Riet I: Upregulation of miR-135b is involved in the impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients. PLoS One. 8:e797522013. View Article : Google Scholar : PubMed/NCBI

56 

Ell B and Kang Y: MicroRNAs as regulators of bone homeostasis and bone metastasis. Bonekey Rep. 3:5492014. View Article : Google Scholar : PubMed/NCBI

57 

Zoni E and van der Pluijm G: The role of microRNAs in bone metastasis. J Bone Oncol. 5:104–108. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Li H, Zhang K, Liu LH, Ouyang Y, Guo HB, Zhang H, Bu J and Xiao T: MicroRNA screening identifies circulating microRNAs as potential biomarkers for osteosarcoma. Oncol Lett. 10:1662–1668. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Lian F, Cui Y, Zhou C, Gao K and Wu L: Identification of a plasma four-microRNA panel as potential noninvasive biomarker for osteosarcoma. PLoS One. 10:e01214992015. View Article : Google Scholar : PubMed/NCBI

60 

Dong J, Liu Y, Liao W, Liu R, Shi P and Wang L: miRNA-223 is a potential diagnostic and prognostic marker for osteosarcoma. J Bone Oncol. 5:74–79. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Ma W, Zhang X, Chai J, Chen P, Ren P and Gong M: Circulating miR-148a is a significant diagnostic and prognostic biomarker for patients with osteosarcoma. Tumour Biol. 35:12467–12472. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Ziyan W, Shuhua Y, Xiufang W and Xiaoyun L: MicroRNA-21 is involved in osteosarcoma cell invasion and migration. Med Oncol. 28:1469–1474. 2011. View Article : Google Scholar

63 

Ren X, Shen Y, Zheng S, Liu J and Jiang X: miR-21 predicts poor prognosis in patients with osteosarcoma. Br J Biomed Sci. 73:158–162. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Nakka M, Allen-Rhoades W, Li Y, Kelly AJ, Shen J, Taylor AM, Barkauskas DA, Yustein JT, Andrulis IL, Wunder JS, et al: Biomarker significance of plasma and tumor miR-21, miR-221, and miR-106a in osteosarcoma. Oncotarget. 27:96738–96752. 2017.

65 

Keremu A, Aini A, Maimaitirexiati Y, Liang Z, Aila P, Xierela P, Tusun A, Moming H and Yusufu A: Overcoming cisplatin resistance in osteosarcoma through the miR-199a-modulated inhibition of HIF-1α. Biosci Rep. BSR20170080. 2017. View Article : Google Scholar

66 

Dalle Carbonare L, Valenti MT, Zanatta M, Donatelli L and Lo Cascio V: Circulating mesenchymal stem cells with abnormal osteogenic differentiation in patients with osteoporosis. Arthritis Rheum. 60:3356–3365. 2009. View Article : Google Scholar : PubMed/NCBI

67 

Weilner S, Skalicky S, Salzer B, Keider V, Wagner M, Hildner F, Gabriel C, Dovjak P, Pietschmann P, Grillari-Voglauer R, et al: Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone. 79:43–51. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Kocijan R, Muschitz C, Geiger E, Skalicky S, Baierl A, Dormann R, Plachel F, Feichtinger X, Heimel P, Fahrleitner-Pammer A, et al: Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures. J Clin Endocrinol Metab. 101:4125–4134. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Li H, Wang Z, Fu Q and Zhang J: Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. Biomarkers. 19:553–556. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Seeliger C, Karpinski K, Haug AT, Vester H, Schmitt A, Bauer JS and van Griensven M: Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res. 29:1718–1728. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Hackl M, Heilmeier U, Weilner S and Grillari J: Circulating microRNAs as novel biomarkers for bone diseases-complex signatures for multifactorial diseases? Mol Cell Endocrinol. 432:83–95. 2016. View Article : Google Scholar

72 

Yavropoulou MP, Anastasilakis AD, Makras P, Tsalikakis DG, Grammatiki M and Yovos JG: Expression of microRNAs that regulate bone turnover in the serum of postmenopausal women with low bone mass and vertebral fractures. Eur J Endocrinol. 176:169–176. 2017. View Article : Google Scholar

73 

Zhang X, Li Y, Chen YE, Chen J and Ma PX: Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nat Commun. 7:103762016. View Article : Google Scholar : PubMed/NCBI

74 

Liu J, Dang L, Li D, Liang C, He X, Wu H, Qian A, Yang Z, Au DW, Chiang MW, et al: A delivery system specifically approaching bone resorption surfaces to facilitate therapeutic modulation of microRNAs in osteoclasts. Biomaterials. 52:148–160. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S and Dawson-Hughes B: The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 29:2520–2526. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J and Chen J: Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res. 26:1953–1963. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Sugatani T and Hruska KA: Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem. 284:4667–4678. 2009. View Article : Google Scholar :

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Valenti M, Dalle Carbonare L and Mottes M: Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (Review). Int J Mol Med 41: 2441-2449, 2018.
APA
Valenti, M., Dalle Carbonare, L., & Mottes, M. (2018). Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (Review). International Journal of Molecular Medicine, 41, 2441-2449. https://doi.org/10.3892/ijmm.2018.3452
MLA
Valenti, M., Dalle Carbonare, L., Mottes, M."Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (Review)". International Journal of Molecular Medicine 41.5 (2018): 2441-2449.
Chicago
Valenti, M., Dalle Carbonare, L., Mottes, M."Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (Review)". International Journal of Molecular Medicine 41, no. 5 (2018): 2441-2449. https://doi.org/10.3892/ijmm.2018.3452
Copy and paste a formatted citation
x
Spandidos Publications style
Valenti M, Dalle Carbonare L and Mottes M: Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (Review). Int J Mol Med 41: 2441-2449, 2018.
APA
Valenti, M., Dalle Carbonare, L., & Mottes, M. (2018). Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (Review). International Journal of Molecular Medicine, 41, 2441-2449. https://doi.org/10.3892/ijmm.2018.3452
MLA
Valenti, M., Dalle Carbonare, L., Mottes, M."Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (Review)". International Journal of Molecular Medicine 41.5 (2018): 2441-2449.
Chicago
Valenti, M., Dalle Carbonare, L., Mottes, M."Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (Review)". International Journal of Molecular Medicine 41, no. 5 (2018): 2441-2449. https://doi.org/10.3892/ijmm.2018.3452
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team