|
1
|
Orr Gandy KA and Obeid LM: Targeting the
sphingosine kinase/sphingosine 1-phosphate pathway in disease:
Review of sphingosine kinase inhibitors. Biochim Biophys Acta.
1831:157–166. 2013. View Article : Google Scholar
|
|
2
|
Kitatani K, Idkowiak-Baldys J and Hannun
YA: The sphingolipid salvage pathway in ceramide metabolism and
signaling. Cell Signal. 20:1010–1018. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hannun YA and Obeid LM: Principles of
bioactive lipid signalling: Lessons from sphingolipids. Nat Rev Mol
Cell Biol. 9:139–150. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Herr DR, Grillet N, Schwander M, Rivera R,
Müller U and Chun J: Sphingosine 1-phosphate (S1P) signaling is
required for maintenance of hair cells mainly via activation of
S1P2. J Neurosci. 27:1474–1478. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Pitman MR, Powell JA, Coolen C, Moretti
PA, Zebol JR, Pham DH, Finnie JW, Don AS, Ebert LM, Bonder CS, et
al: A selective ATP-competitive sphingosine kinase inhibitor
demonstrates anti-cancer properties. Oncotarget. 6:7065–7083. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Archbold JK, Martin JL and Sweet MJ:
Towards selective lysophospholipid GPCR modulators. Trends
Pharmacol Sci. 35:219–226. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ishii I, Fukushima N, Ye X and Chun J:
Lysophospholipid receptors: Signaling and biology. Annu Rev
Biochem. 73:321–354. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhang Q, Peyruchaud O, French KJ,
Magnusson MK and Mosher DF: Sphingosine 1-phosphate stimulates
fibronectin matrix assembly through a Rho-dependent signal pathway.
Blood. 93:2984–2990. 1999.PubMed/NCBI
|
|
9
|
Melendez AJ: Sphingosine kinase signalling
in immune cells: Potential as novel therapeutic targets. Biochim
Biophys Acta. 1784:66–75. 2008. View Article : Google Scholar
|
|
10
|
Porcelli AM, Ghelli A, Hrelia S and Rugolo
M: Phospholipase D stimulation is required for
sphingosine-1-phosphate activation of actin stress fibre assembly
in human airway epithelial cells. Cell Signal. 14:75–81. 2002.
View Article : Google Scholar
|
|
11
|
Meng Y, Xu Z, Wu F, Chen W, Xie S, Liu J,
Huang X and Zhou Y: Sphingosine-1-phosphate suppresses
cyclophosphamide induced follicle apoptosis in human fetal ovarian
xenografts in nude mice. Fertil Steril. 102:871–877.e873. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wang H, Cai KY, Li W and Huang H:
Sphingosine-1-phosphate induces the migration and angiogenesis of
Epcs through the Akt signaling pathway via Sphingosine-1-phosphate
receptor 3/platelet-derived growth factor receptor-β. Cell Mol Biol
Lett. 20:597–611. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Florey O and Haskard DO: Sphingosine
1-phosphate enhances Fc gamma receptor-mediated neutrophil
activation and recruitment under flow conditions. J Immunol.
183:2330–2336. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Stieber F and Wienke D: Inhibitors of
sphingosine kinase. Patent SG181643 A1. 2010
|
|
15
|
Hla T, Sanchez T, Paik J and Claffey KP:
Methods of inhibiting vascular permeability and apoptosis. Patent
WO/2005/002559 A2. Filed June 18, 2004; issued January 13. 2005
|
|
16
|
Lynch K and Santos W: Sphingosine kinase
inhibitors. Patent WO2016054261 A1. Filed 30 September, 2015;
issued 7 April. 2016
|
|
17
|
Smith C and French K: Methods for the
treatment and prevention of inflammatory diseases. Patent
US20060270630 A1. Filed 19 May 2006; issued 30 November. 2006
|
|
18
|
Hahm B, Seo YJ and Alexander S: Modulation
of sphingosine 1-phosphate metabolizing enzymes for the treatment
of negative-strand rna virus infections. Patent WO2012166859 A2.
Filed 31 May, 2012; issued 6 December. 2012
|
|
19
|
Sinha UK and Masood R: Compositions and
methods of sphingosine kinase inhibitors for use thereof in cancer
therapy. Patent WO2008067560 A9. Filed November 30, 2007; issued
July 17. 2008
|
|
20
|
Olivera A, Kohama T, Tu Z, Milstien S and
Spiegel S: Purification and characterization of rat kidney
sphingosine kinase. J Biol Chem. 273:12576–12583. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lai WQ, Wong WS and Leung BP: Sphingosine
kinase and sphingosine 1-phosphate in asthma. Biosci Rep.
31:145–150. 2011. View Article : Google Scholar
|
|
22
|
Li J, Song Z, Wang Y, Yin Y, Liu Y, Yuan R
and Nan X: Overexpression of SphK1 enhances cell proliferation and
invasion in triple-negative breast cancer via the PI3K/AKT
signaling pathway. Tumour Biol. 37:10587–10593. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Xia P, Gamble JR, Wang L, Pitson SM,
Moretti PA, Wattenberg BW, D'Andrea RJ and Vadas MA: An oncogenic
role of sphingosine kinase. Curr Biol. 10:1527–1530. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Meng XD, Zhou ZS, Qiu JH, Shen WH, Wu Q
and Xiao J: Increased SPHK1 expression is associated with poor
prognosis in bladder cancer. Tumour Biol. 35:2075–2080. 2014.
View Article : Google Scholar
|
|
25
|
Matula K, Collie-Duguid E, Murray G,
Parikh K, Grabsch H, Tan P, Lalwani S, Garau R, Ong Y, Bain G, et
al: Regulation of cellular sphingosine-1-phosphate by sphingosine
kinase 1 and sphingosine-1-phopshate lyase determines chemotherapy
resistance in gastroesophageal cancer. BMC Cancer. 15:7622015.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Selvam SP and Ogretmen B: Sphingosine
kinase/sphingosine 1-phosphate signaling in cancer therapeutics and
drug resistance. Handb Exp Pharmacol. 216:3–27. 2013. View Article : Google Scholar
|
|
27
|
Zhang Y, Wang Y, Wan Z, Liu S, Cao Y and
Zeng Z: Sphingosine kinase 1 and cancer: A systematic review and
meta-analysis. PLoS One. 9:e903622014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Iwabuchi K, Nakayama H, Oizumi A, Suga Y,
Ogawa H and Takamori K: Role of ceramide from glycosphingolipids
and its metabolites in immunological and inflammatory responses in
humans. Mediators Inflamm. 2015:1207482015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Alemany R, van Koppen CJ, Danneberg K, Ter
Braak M and Meyer Zu Heringdorf D: Regulation and functional roles
of sphingosine kinases. Naunyn Schmiedebergs Arch Pharmacol.
374:413–428. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang Q, Li J, Li G, Li Y, Xu C, Li M, Xu G
and Fu S: Prognostic significance of sphingosine kinase 2
expression in non-small cell lung cancer. Tumour Biol. 35:363–368.
2014. View Article : Google Scholar
|
|
31
|
Zhang L, Liu X, Zuo Z, Hao C and Ma Y:
Sphingosine kinase 2 promotes colorectal cancer cell proliferation
and invasion by enhancing MYC expression. Tumour Biol.
37:8455–8460. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Xun C, Chen MB, Qi L, Tie-Ning Z, Peng X,
Ning L, Zhi-Xiao C and Li-Wei W: Targeting sphingosine kinase 2
(SphK2) by ABC294640 inhibits colorectal cancer cell growth in
vitro and in vivo. J Exp Clin Cancer Res. 34:942015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liu Q, Rehman H, Shi Y, Krishnasamy Y,
Lemasters JJ, Smith CD and Zhong Z: Inhibition of sphingosine
kinase-2 suppresses inflammation and attenuates graft injury after
liver transplantation in rats. PLoS One. 7:e418342012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Strub GM, Paillard M, Liang J, Gomez L,
Allegood JC, Hait NC, Maceyka M, Price MM, Chen Q, Simpson DC, et
al: Sphingosine-1-phosphate produced by sphingosine kinase 2 in
mitochondria interacts with prohibitin 2 to regulate complex IV
assembly and respiration. FASEB J. 25:600–612. 2011. View Article : Google Scholar :
|
|
35
|
Shida D, Takabe K, Kapitonov D, Milstien S
and Spiegel S: Targeting SphK1 as a new strategy against cancer.
Curr Drug Targets. 9:662–673. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liau G, Stefansson S and Su J: Induction
of blood vessel formation through administration of polynucleotides
encoding sphingosine kinases. Patent WO2002028406 A2. Filed October
5, 2001; issued October 5. 2002
|
|
37
|
Pitson SM, Wattenberg BW, Xia P, Dandrea
RJ, Gamble JR and Vadas MA: Sphingosine kinase enzyme. Patent
WO2000070028 A1. Filed May 12, 2000; issued November 23. 2000
|
|
38
|
French KJ, Schrecengost RS, Lee BD, Zhuang
Y, Smith SN, Eberly JL, Yun JK and Smith CD: Discovery and
evaluation of inhibitors of human sphingosine kinase. Cancer Res.
63:5962–5969. 2003.PubMed/NCBI
|
|
39
|
Chun J and Hartung HP: Mechanism of action
of oral fingolimod (FTY720) in multiple sclerosis. Clin
Neuropharmacol. 33:91–101. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Spiegel S and Milstien S:
Sphingosine-1-phosphate: An enigmatic signalling lipid. Nat Rev Mol
Cell Biol. 4:397–407. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lai WQ, Melendez AJ and Leung BP: Role of
sphingosine kinase and sphingosine-1-phosphate in inflammatory
arthritis. World J Biol Chem. 1:321–326. 2010. View Article : Google Scholar
|
|
42
|
Stoffel W, Sticht G and LeKim D: Synthesis
and degradation of spingosine bases in Hansenula ciferrii. Hoppe
Seylers Z Physiol Chem. 349:1149–1156. 1968. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hannun YA and Bell RM: Functions of
sphingolipids and sphingolipid breakdown products in cellular
regulation. Science. 243:500–507. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Okazaki T, Bell RM and Hannun YA:
Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role
in cell differentiation. J Biol Chem. 264:19076–19080.
1989.PubMed/NCBI
|
|
45
|
Pitman MR and Pitson SM: Inhibitors of the
sphingosine kinase pathway as potential therapeutics. Curr Cancer
Drug Targets. 10:354–367. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Paugh SW, Paugh BS, Rahmani M, Kapitonov
D, Almenara JA, Kordula T, Milstien S, Adams JK, Zipkin RE, Grant
S, et al: A selective sphingosine kinase 1 inhibitor integrates
multiple molecular therapeutic targets in human leukemia. Blood.
112:1382–1391. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Szulc Zdzislaw M, Bielawska Alicja, Obeid
Lina M, Hannun Yusuf A, Norris James and Xiang Liu:
Sphingo-guanidines and their use as inhibitors of sphingosine
kinase. Patent WO2010078247 A1. Filed 28 December, 2009; issued 8
July. 2010
|
|
48
|
Szulc ZM, Bielawska A, Obeid LM, Hannun
YA, Norris J and Xiang L: Sphingo-guanidines and their use as
ihibitors of sphingosine kinase. Patent US2012035268 A1. Filed 28
December, 2009; issued 9 February. 2012
|
|
49
|
Patwardhan NN, Morris EA, Kharel Y, Raje
MR, Gao M, Tomsig JL, Lynch KR and Santos WL: Structure-activity
relationship studies and in vivo activity of guanidine-based
sphingosine kinase inhibitors: Discovery of SphK1- and
SphK2-selective inhibitors. J Med Chem. 58:1879–1899. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Houck JD, Dawson TK, Kennedy AJ, Kharel Y,
Naimon ND, Field SD, Lynch KR and Macdonald TL: Structural
requirements and docking analysis of amidine-based sphingosine
kinase 1 inhibitors containing oxadiazoles. ACS Med Chem Lett.
7:487–492. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lynch KR, MacDonald TL and Mathews TP:
Imidamide sphingosine kinase inhibitors. Patent WO2011/020116 A1.
Filed 16 August, 2010; issued 17 February. 2011
|
|
52
|
University Of Virginia Patent Foundation;
Santos WL, Lynch KR, Macdonald TL, Kennedy A, Kharel Y, Raje MR and
Houck J: Long chain base sphingosine kinase inhibitors. Patent
WO2013/119946A1. Filed 8 February, 2013; issued 15 August. 2013
|
|
53
|
Plano D, Amin S and Sharma AK: Importance
of sphingosine kinase (SphK) as a target in developing cancer
therapeutics and recent developments in the synthesis of novel SphK
inhibitors. J Med Chem. 57:5509–5524. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Thomas J, Liu XG, Kumaravel G, Guckian KM,
Caldwell RD, Ma B, Lin EY, Zheng GZ and Taveras AG: Bicyclic aryl
sphingosine 1-phosphate analogs. Patent NZ597596 A. 2014
|
|
55
|
Thomas J, Liu XG, Kumaravel G, Guckian KM,
Caldwell RD, Ma B, Lin EY, Zheng GZ and Taveras AG: Bicyclic aryl
sphingosine 1-phosphate analogs. Patent US2016129023 A1. Filed 5
October, 2015; issued 12 May. 2016
|
|
56
|
Congdon MD, Childress ES, Patwardhan NN,
Gumkowski J, Morris EA, Kharel Y, Lynch KR and Santos WL:
Structure-activity relationship studies of the lipophilic tail
region of sphingosine kinase 2 inhibitors. Bioorg Med Chem Lett.
25:4956–4960. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Congdon MD, Kharel Y, Brown AM, Lewis SN,
Bevan DR, Lynch KR and Santos WL: Structure-activity relationship
studies and molecular modeling of naphthalene-based sphingosine
kinase 2 inhibitors. ACS Med Chem Lett. 7:229–234. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Knott K, Kharel Y, Raje MR, Lynch KR and
Santos WL: Effect of alkyl chain length on sphingosine kinase 2
selectivity. Bioorg Med Chem Lett. 22:6817–6820. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Brinkmann V, Davis MD, Heise CE, Albert R,
Cottens S, Hof R, Bruns C, Prieschl E, Baumruker T, Hiestand P, et
al: The immune modulator FTY720 targets sphingosine 1-phosphate
receptors. J Biol Chem. 277:21453–21457. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Pitman MR and Pitson SM: Benzene
sulfonamide-based inhibitors of sphingosine kinases. Patent
WO2016007993 A1. Filed 16 July, 2015; issued 21 January. 2016
|
|
61
|
French KJ, Upson JJ, Keller SN, Zhuang Y,
Yun JK and Smith CD: Antitumor activity of sphingosine kinase
inhibitors. J Pharmacol Exp Ther. 318:596–603. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Gao P, Peterson YK, Smith RA and Smith CD:
Characterization of isoenzyme-selective inhibitors of human
sphingosine kinases. PLoS One. 7:e445432012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Antoon JW, Meacham WD, Bratton MR,
Slaughter EM, Rhodes LV, Ashe HB, Wiese TE, Burow ME and Beckman
BS: Pharmacological inhibition of sphingosine kinase isoforms
alters estrogen receptor signaling in human breast cancer. J Mol
Endocrinol. 46:205–216. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ren S, Xin C, Pfeilschifter J and Huwiler
A: A novel mode of action of the putative sphingosine kinase
inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole (SKI
II): induction of lysosomal sphingosine kinase 1 degradation. Cell
Physiol Biochem. 26:97–104. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
French KJ, Zhuang Y, Maines LW, Gao P,
Wang W, Beljanski V, Upson JJ, Green CL, Keller SN and Smith CD:
Pharmacology and antitumor activity of ABC294640, a selective
inhibitor of sphingosine kinase-2. J Pharmacol Exp Ther.
333:129–139. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ding X, Chaiteerakij R, Moser CD, Shaleh
H, Boakye J, Chen G, Ndzengue A, Li Y, Zhou Y, Huang S, et al:
Antitumor effect of the novel sphingosine kinase 2 inhibitor
ABC294640 is enhanced by inhibition of autophagy and by sorafenib
in human cholangiocarcinoma cells. Oncotarget. 7:20080–20092. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Antoon JW, White MD, Meacham WD, Slaughter
EM, Muir SE, Elliott S, Rhodes LV, Ashe HB, Wiese TE, Smith CD, et
al: Antiestrogenic effects of the novel sphingosine kinase-2
inhibitor ABC294640. Endocrinology. 151:5124–5135. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kono K, Tanaka M, Mizuno T, Kodama K,
Ogita T and Kohama T: B-535a, b and c, new sphingosine kinase
inhibitors, produced by a marine bacterium; taxonomy, fermentation,
isolation, physico-chemical properties and structure determination.
J Antibiot (Tokyo). 53:753–758. 2000. View Article : Google Scholar
|
|
69
|
Kono K, Tanaka M, Ogita T and Kohama T:
Characterization of B-5354c, a new sphingosine kinase inhibitor,
produced by a marine bacterium. J Antibiot (Tokyo). 53:759–764.
2000. View Article : Google Scholar
|
|
70
|
Salma Y, Lafont E, Therville N, Carpentier
S, Bonnafé MJ, Levade T, Génisson Y and Andrieu-Abadie N: The
natural marine anhydrophytosphingosine, Jaspine B, induces
apoptosis in melanoma cells by interfering with ceramide
metabolism. Biochem Pharmacol. 78:477–485. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sarkar S, Maceyka M, Hait NC, Paugh SW,
Sankala H, Milstien S and Spiegel S: Sphingosine kinase 1 is
required for migration, proliferation and survival of MCF-7 human
breast cancer cells. FEBS Lett. 579:5313–5317. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Gamble J, Vadas M, Pitson S, Xia P and
Limaye V: Method of modulating epithelial cell activity by
modulating the functional levels of sphingosine kinase. Patent
US20060205688A1. Filed 14 October, 2003; issued 14 September.
2006
|
|
73
|
Dai L, Qi Y, Chen J, Kaczorowski D, Di W,
Wang W and Xia P: Sphingosine kinase (SphK) 1 and SphK2 play
equivalent roles in mediating insulin's mitogenic action. Mol
Endocrinol. 28:197–207. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Schnute ME, McReynolds MD, Kasten T, Yates
M, Jerome G, Rains JW, Hall T, Chrencik J, Kraus M, Cronin CN, et
al: Modulation of cellular S1P levels with a novel, potent and
specific inhibitor of sphingosine kinase-1. Biochem J. 444:79–88.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Park ES, Choi S, Shin B, Yu J, Yu J, Hwang
JM, Yun H, Chung YH, Choi JS, Choi Y, et al: Tumor necrosis factor
(TNF) receptor-associated factor (TRAF)-interacting protein (TRIP)
negatively regulates the TRAF2 ubiquitin-dependent pathway by
suppressing the TRAF2-sphingosine 1-phosphate (S1P) interaction. J
Biol Chem. 290:9660–9673. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Alvarez SE, Harikumar KB, Hait NC,
Allegood J, Strub GM, Kim EY, Maceyka M, Jiang H, Luo C, Kordula T,
et al: Sphingosine-1-phosphate is a missing cofactor for the E3
ubiquitin ligase TRAF2. Nature. 465:1084–1088. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Garris CS, Wu L, Acharya S, Arac A, Blaho
VA, Huang Y, Moon BS, Axtell RC, Ho PP, Steinberg GK, et al:
Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation
exacerbates TH17-mediated autoimmune neuroinflammation. Nat
Immunol. 14:1166–1172. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Nguyen AV, Wu YY and Lin EY: STAT3 and
sphingosine-1-phosphate in inflammation-associated colorectal
cancer. World J Gastroenterol. 20:10279–10287. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Theiss AL: Sphingosine-1-phosphate: Driver
of NFκB and STAT3 persistent activation in chronic intestinal
inflammation and colitis-associated cancer. JAKSTAT.
2:e241502013.
|
|
80
|
Liang J, Nagahashi M, Kim EY, Harikumar
KB, Yamada A, Huang WC, Hait NC, Allegood JC, Price MM, Avni D, et
al: Sphingosine-1-phosphate links persistent STAT3 activation,
chronic intestinal inflammation, and development of
colitis-associated cancer. Cancer Cell. 23:107–120. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Degagné E, Pandurangan A, Bandhuvula P,
Kumar A, Eltanawy A, Zhang M, Yoshinaga Y, Nefedov M, de Jong PJ,
Fong LG, et al: Sphingosine-1-phosphate lyase downregulation
promotes colon carcinogenesis through STAT3-activated microRNAs. J
Clin Invest. 124:5368–5384. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
McNaughton M, Pitman M, Pitson SM, Pyne NJ
and Pyne S: Proteasomal degradation of sphingosine kinase 1 and
inhibition of dihydroceramide desaturase by the sphingosine kinase
inhibitors, SKi or ABC294640, induces growth arrest in
androgen-independent LNCaP-AI prostate cancer cells. Oncotarget.
7:16663–16675. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li PH, Wu JX, Zheng JN and Pei DS: A
sphingosine kinase-1 inhibitor, SKI-II, induces growth inhibition
and apoptosis in human gastric cancer cells. Asian Pac J Cancer
Prev. 15:10381–10385. 2014. View Article : Google Scholar
|
|
84
|
Liu Y and Zhu Z, Cai H, Liu Q, Zhou H and
Zhu Z: SKI-II reverses the chemoresistance of SGC7901/DDP gastric
cancer cells. Oncol Lett. 8:367–373. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Roviezzo F, Sorrentino R, Bertolino A, De
Gruttola L, Terlizzi M, Pinto A, Napolitano M, Castello G,
D'Agostino B, Ianaro A, et al: S1P-induced airway smooth muscle
hyperresponsiveness and lung inflammation in vivo: Molecular and
cellular mechanisms. Br J Pharmacol. 172:1882–1893. 2015.
View Article : Google Scholar :
|
|
86
|
Lin CC, Lee IT, Hsu CH, Hsu CK, Chi PL,
Hsiao LD and Yang CM: Sphingosine-1-phosphate mediates
ICAM-1-dependent monocyte adhesion through p38 MAPK and p42/p44
MAPK-dependent Akt activation. PLoS One. 10:e01184732015.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Völzke A, Koch A, Meyer Zu Heringdorf D,
Huwiler A and Pfeilschifter J: Sphingosine 1-phosphate (S1P)
induces COX-2 expression and PGE2 formation via S1P
receptor 2 in renal mesangial cells. Biochim Biophys Acta.
1841:11–21. 2014. View Article : Google Scholar
|
|
88
|
Selb R, Eckl-Dorna J, Twaroch TE, Lupinek
C, Teufelberger A, Hofer G, Focke-Tejkl M, Gepp B, Linhart B,
Breiteneder H, et al: Critical and direct involvement of the CD23
stalk region in IgE binding. J Allergy Clin Immunol.
139:281–289.e5. 2017. View Article : Google Scholar :
|
|
89
|
Galli SJ and Tsai M: IgE and mast cells in
allergic disease. Nat Med. 18:693–704. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Melendez AJ: Allergy therapy: The
therapeutic potential of targeting sphingosine kinase signalling in
mast cells. Eur J Immunol. 38:2969–2974. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kunisawa J, Kurashima Y, Gohda M, Higuchi
M, Ishikawa I, Miura F, Ogahara I and Kiyono H: Sphingosine
1-phosphate regulates peritoneal B-cell trafficking for subsequent
intestinal IgA production. Blood. 109:3749–3756. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Garris CS, Blaho VA, Hla T and Han MH:
Sphingosine-1-phosphate receptor 1 signalling in T cells:
Trafficking and beyond. Immunology. 142:347–353. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Matloubian M, Lo CG, Cinamon G, Lesneski
MJ, Xu Y, Brinkmann V, Allende ML, Proia RL and Cyster JG:
Lymphocyte egress from thymus and peripheral lymphoid organs is
dependent on S1P receptor 1. Nature. 427:355–360. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Rivera J, Proia RL and Olivera A: The
alliance of sphingosine-1-phosphate and its receptors in immunity.
Nat Rev Immunol. 8:753–763. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lai WQ, Goh HH, Bao Z, Wong WS, Melendez
AJ and Leung BP: The role of sphingosine kinase in a murine model
of allergic asthma. J Immunol. 180:4323–4329. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Price MM, Oskeritzian CA, Falanga YT,
Harikumar KB, Allegood JC, Alvarez SE, Conrad D, Ryan JJ, Milstien
S and Spiegel S: A specific sphingosine kinase 1 inhibitor
attenuates airway hyperresponsiveness and inflammation in a mast
cell-dependent murine model of allergic asthma. J Allergy Clin
Immunol. 131:501–11.e1. 2013. View Article : Google Scholar
|
|
97
|
Levkau B: Cardiovascular effects of
sphingosine-1-phosphate (S1P). Handb Exp Pharmacol. 216:147–170.
2013. View Article : Google Scholar
|
|
98
|
Argraves KM and Argraves WS: HDL serves as
a S1P signaling platform mediating a multitude of cardiovascular
effects. J Lipid Res. 48:2325–2333. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Levkau B: HDL-S1P: Cardiovascular
functions, disease-associated alterations, and therapeutic
applications. Front Pharmacol. 6:2432015. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Jing XD, Wei XM, Deng SB, Du JL, Liu YJ
and She Q: The relationship between the high-density lipoprotein
(HDL)-associated sphingosine-1-phosphate (S1P) and coronary
in-stent restenosis. Clin Chim Acta. 446:248–252. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Pchejetski D, Foussal C, Alfarano C,
Lairez O, Calise D, Guilbeau-Frugier C, Schaak S, Seguelas MH,
Wanecq E, Valet P, et al: Apelin prevents cardiac fibroblast
activation and collagen production through inhibition of
sphingosine kinase 1. Eur Heart J. 33:2360–2369. 2012. View Article : Google Scholar
|
|
102
|
Frias MA, James RW, Gerber-Wicht C and
Lang U: Native and reconstituted HDL activate Stat3 in ventricular
cardiomyocytes via ERK1/2: Role of sphingosine-1-phosphate.
Cardiovasc Res. 82:313–323. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Whetzel AM, Bolick DT, Srinivasan S,
Macdonald TL, Morris MA, Ley K and Hedrick CC: Sphingosine-1
phosphate prevents monocyte/endothelial interactions in type 1
diabetic NOD mice through activation of the S1P1 receptor. Circ
Res. 99:731–739. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhang F, Xia Y, Yan W, Zhang H, Zhou F,
Zhao S, Wang W, Zhu D, Xin C, Lee Y, et al: Sphingosine 1-phosphate
signaling contributes to cardiac inflammation, dysfunction, and
remodeling following myocardial infarction. Am J Physiol Heart Circ
Physiol. 310:H250–H261. 2016. View Article : Google Scholar
|
|
105
|
Li N and Zhang F: Implication of
sphingosin-1-phosphate in cardiovascular regulation. Front Biosci
(Landmark Ed). 21:1296–1313. 2016. View
Article : Google Scholar
|
|
106
|
Keul P, van Borren MM, Ghanem A, Müller
FU, Baartscheer A, Verkerk AO, Stümpel F, Schulte JS, Hamdani N,
Linke WA, et al: Sphingosine-1-phosphate receptor 1 regulates
cardiac function by modulating Ca2+ sensitivity and
Na+/H+ exchange and mediates protection by
ischemic preconditioning. J Am Heart Assoc. 5:52016. View Article : Google Scholar
|
|
107
|
Song J, Hagiya H, Kurata H, Mizuno H and
Ito T: Prevention of GVHD and graft rejection by a new S1P receptor
agonist, W-061, in rat small bowel transplantation. Transpl
Immunol. 26:163–170. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Trayssac M, Galvani S, Augé N, Sabbadini
R, Calise D, Mucher E, Sallusto F, Thomsen M, Salvayre R and
Nègre-Salvayre A: Role of sphingosine-1-phosphate in transplant
vasculopathy evoked by anti-HLA antibody. Am J Transplant.
15:2050–2061. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Sanna MG, Liao J, Jo E, Alfonso C, Ahn MY,
Peterson MS, Webb B, Lefebvre S, Chun J, Gray N, et al: Sphingosine
1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively,
regulate lymphocyte recirculation and heart rate. J Biol Chem.
279:13839–13848. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Brinkmann V, Cyster JG and Hla T: FTY720:
Sphingosine 1-phosphate receptor-1 in the control of lymphocyte
egress and endothelial barrier function. Am J Transplant.
4:1019–1025. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Li Q, Wang C, Zhang Q, Tang C, Li N and Li
J: The reduction of allograft arteriosclerosis in intestinal
transplant is associated with sphingosine kinase
1/sphingosine-1-phosphate signaling after fish oil treatment.
Transplantation. 93:989–996. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Chiba K1, Yanagawa Y, Masubuchi Y, Kataoka
H, Kawaguchi T, Ohtsuki M and Hoshino Y: FTY720, a novel
immunosuppressant, induces sequestration of circulating mature
lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720
selectively decreases the number of circulating mature lymphocytes
by acceleration of lymphocyte homing. J Immunol. 160:5037–5044.
1998.PubMed/NCBI
|
|
113
|
Zhang J, Zhang A, Sun Y, Cao X and Zhang
N: Treatment with immunosuppressants FTY720 and tacrolimus promotes
functional recovery after spinal cord injury in rats. Tohoku J Exp
Med. 219:295–302. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Yuzawa K, Fukunaga K and Ohkohchi N: Back
transplantation for survival of the graft. Transplant Proc.
37:192–193. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Sugito K, Uekusa S, Kawashima H, Masuko T,
Furuya T, Konuma N, Ohashi K, Inoue M, Ikeda T and Koshinaga T:
Effect of combined treatment with FK506, FTY720, and ex vivo graft
irradiation in rat small bowel transplantation: Expression of
mucosal addressin cell adhesion molecule-1. Pediatr Transplant.
14:614–617. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Lopes CT, Gallo AP, Palma PV, Cury PM and
Bueno V: Skin allograft survival and analysis of renal parameters
after FTY720 + tacrolimus treatment in mice. Transplant Proc.
40:856–860. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Pyne S, Adams DR and Pyne NJ: Sphingosine
1-phosphate and sphingosine kinases in health and disease: Recent
advances. Prog Lipid Res. 62:93–106. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Sivasubramanian M, Kanagaraj N, Dheen ST
and Tay SS: Sphingosine kinase 2 and sphingosine-1-phosphate
promotes mitochondrial function in dopaminergic neurons of mouse
model of Parkinson's disease and in MPP+-treated MN9D
cells in vitro. Neuroscience. 290:636–648. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Pyszko J and Strosznajder JB: Sphingosine
kinase 1 and sphingosine-1-phosphate in oxidative stress evoked by
1-methyl-4-phenylpyridinium (MPP+) in human dopaminergic
neuronal cells. Mol Neurobiol. 50:38–48. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhang Y, Yu Q, Lai TB, Yang Y, Li G and
Sun SG: Effects of small interfering RNA targeting sphingosine
kinase-1 gene on the animal model of Alzheimer's disease. J
Huazhong Univ Sci Technolog Med Sci. 33:427–432. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Yang Y, Wang M, Lv B, Ma R, Hu J, Dun Y,
Sun S and Li G: Sphingosine kinase-1 protects differentiated N2a
cells against beta-amyloid25-35-induced neurotoxicity via the
mitochondrial pathway. Neurochem Res. 39:932–940. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Yi H, Lee SJ, Lee J, Myung CS, Park WK,
Lim HJ, Lee GH, Kong JY and Cho H: Sphingosylphosphorylcholine
attenuated β-amyloid production by reducing BACE1 expression and
catalysis in PC12 cells. Neurochem Res. 36:2083–2090. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Takasugi N, Sasaki T, Suzuki K, Osawa S,
Isshiki H, Hori Y, Shimada N, Higo T, Yokoshima S, Fukuyama T, et
al: BACE1 activity is modulated by cell-associated
sphingosine-1-phosphate. J Neurosci. 31:6850–6857. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Canlas J, Holt P, Carroll A, Rix S, Ryan
P, Davies L, Matusica D, Pitson SM, Jessup CF, Gibbins IL, et al:
Sphingosine kinase 2-deficiency mediated changes in spinal pain
processing. Front Mol Neurosci. 8:292015. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Hunter SF, Bowen JD and Reder AT: The
direct effects of fingolimod in the central nervous system:
Implications for relapsing multiple sclerosis. CNS Drugs.
30:135–147. 2016. View Article : Google Scholar :
|
|
126
|
Aurelio L, Scullino CV, Pitman MR, Sexton
A, Oliver V, Davies L, Rebello RJ, Furic L, Creek DJ, Pitson SM, et
al: From sphingosine kinase to dihydroceramide desaturase: A
structure-activity relationship (SAR) study of the enzyme
inhibitory and anticancer activity of
4-((4-(4-chlorophenyl)thiazol-2-yl)amino) phenol (SKI-II). J Med
Chem. 59:965–984. 2016. View Article : Google Scholar : PubMed/NCBI
|