Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
June-2018 Volume 41 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2018 Volume 41 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Mangiferin induces islet regeneration in aged mice through regulating p16INK4a

  • Authors:
    • Hailian Wang
    • Xia He
    • Tiantian Lei
    • Yilong Liu
    • Guoli Huai
    • Minghan Sun
    • Shaoping Deng
    • Hongji Yang
    • Rongsheng Tong
    • Yi Wang
  • View Affiliations / Copyright

    Affiliations: Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China, Personalized Drug Therapy Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China, Department of Pharmacy, The People's Hospital of Leshan, Leshan, Sichuan 614000, P.R. China, Department of Gynecology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3231-3242
    |
    Published online on: March 1, 2018
       https://doi.org/10.3892/ijmm.2018.3524
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Previous studies by our group on mangiferin demonstrated that it exerts an anti‑hyperglycemic effect through the regulation of cell cycle proteins in 3‑month‑old, partially pancreatectomized (PPx) mice. However, β‑cell proliferation is known to become severely restricted with advanced age. Therefore, it is unknown whether mangiferin is able to reverse the diabetic condition and retain β‑cell regeneration capability in aged mice. In the present study, 12‑month‑old C57BL/6J mice that had undergone PPx were subjected to mangiferin treatment (90 mg/kg) for 28 days. Mangiferin‑treated aged mice exhibited decreased blood glucose levels and increased glucose tolerance, which was accompanied with higher serum insulin levels when compared with those in untreated PPx control mice. In addition, islet hyperplasia, elevated β‑cell proliferation and reduced β‑cell apoptosis were also identified in the mice that received mangiferin treatment. Further studies on the mRNA transcript and protein expression levels indicated comparatively increased levels of cyclins D1 and D2 and cyclin‑dependent kinase 4 in mangiferin‑treated mice, while the levels of p27Kip1 and p16INK4a were decreased relative to those in the untreated PPx controls. Of note, mangiferin treatment improved the proliferation rate of islet β‑cells in adult mice overexpressing p16INK4a, suggesting that mangiferin induced β‑cell proliferation via the regulation of p16INK4a. In addition, the mRNA transcription levels of critical genes associated with insulin secretion, including pancreatic and duodenal homeobox 1, glucose transporter 2 and glucokinase, were observed to be upregulated after mangiferin treatment. Taken together, it was indicated that mangiferin treatment significantly induced β‑cell proliferation and inhibited β‑cell apoptosis by regulating cell cycle checkpoint proteins. Furthermore, mangiferin was also demonstrated to regulate genes associated with insulin secretion. Collectively these, results suggest the therapeutic potential of mangiferin in the treatment of diabetes in aged individuals.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Dean PG, Kudva YC and Stegall MD: Long-term benefits of pancreas transplantation. Curr Opin Organ Transplant. 13:85–90. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, Secchi A, Brendel MD, Berney T, Brennan DC, et al: International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 355:1318–1330. 2006. View Article : Google Scholar : PubMed/NCBI

3 

Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA and Butler PC: Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 52:102–110. 2003. View Article : Google Scholar

4 

Bock T, Pakkenberg B and Buschard K: Increased islet volume but unchanged islet number in ob/ob mice. Diabetes. 52:1716–1722. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Bonner-Weir S: Islet growth and development in the adult. J Mol Endocrinol. 24:297–302. 2000. View Article : Google Scholar : PubMed/NCBI

6 

Bonner-Weir S and Sharma A: Are there pancreatic progenitor cells from which new islets form after birth? Nat Clin Pract Endocrinol Metab. 2:240–241. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Tschen SI, Dhawan S, Gurlo T and Bhushan A: Age-dependent decline in beta-cell proliferation restricts the capacity of beta-cell regeneration in mice. Diabetes. 58:1312–1320. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Rankin MM and Kushner JA: Adaptive beta-cell proliferation is severely restricted with advanced age. Diabetes. 58:1365–1372. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S and Sharpless NE: p16INK4a induces an age-dependent decline in islet regenerative potential. Nature. 443:453–457. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L and Sharpless NE: Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 114:1299–1307. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Shi W, Deng J, Tong R, Yang Y, He X, Lv J, Wang H, Deng S, Qi P, Zhang D and Wang Y: Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells. Mol Med Rep. 13:3423–3432. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Guha S, Ghosal S and Chattopadhyay U: Antitumor, immunomodulatory and anti-HIV effect of mangiferin, a naturally occurring glucosylxanthone. Chemotherapy. 42:443–451. 1996. View Article : Google Scholar : PubMed/NCBI

13 

Dar A, Faizi S, Naqvi S, Roome T, Zikr-ur-Rehman S, Ali M, Firdous S and Moin ST: Analgesic and antioxidant activity of mangiferin and its derivatives: The structure activity relationship. Biol Pharm Bull. 28:596–600. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Prabhu S, Narayan S and Devi CS: Mechanism of protective action of mangiferin on suppression of inflammatory response and lysosomal instability in rat model of myocardial infarction. Phytother Res. 23:756–760. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Muruganandan S, Srinivasan K, Gupta S, Gupta PK and Lal J: Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J Ethnopharmacol. 97:497–501. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Miura T, Ichiki H, Hashimoto I, Iwamoto N, Kato M, Kubo M, Ishihara E, Komatsu Y, Okada M, Ishida T and Tanigawa K: Antidiabetic activity of a xanthone compound, mangiferin. Phytomedicine. 8:85–87. 2001. View Article : Google Scholar : PubMed/NCBI

17 

Miura T, Iwamoto N, Kato M, Ichiki H, Kubo M, Komatsu Y, Ishida T, Okada M and Tanigawa K: The suppressive effect of mangiferin with exercise on blood lipids in type 2 diabetes. Biol Pharm Bull. 24:1091–1092. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Li X, Cui X, Sun X, Li X, Zhu Q and Li W: Mangiferin prevents diabetic nephropathy progression in streptozotocin-induced diabetic rats. Phytother Res. 24:893–899. 2010.

19 

Liu YW, Zhu X, Zhang L, Lu Q, Wang JY, Zhang F, Guo H, Yin JL and Yin XX: Up-regulation of glyoxalase 1 by mangiferin prevents diabetic nephropathy progression in streptozotocin-induced diabetic rats. Eur J Pharmacol. 721:355–364. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Bwititi P, Musabayane CT and Nhachi CF: Effects of Opuntia megacantha on blood glucose and kidney function in streptozotocin diabetic rats. J Ethnopharmacol. 69:247–252. 2000. View Article : Google Scholar : PubMed/NCBI

21 

Wang HL, Li CY, Zhang B, Liu YD, Lu BM, Shi Z, An N, Zhao LK, Zhang JJ, Bao JK and Wang Y: Mangiferin facilitates islet regeneration and β-cell proliferation through upregulation of cell cycle and β-cell regeneration regulators. Int J Mol Sci. 15:9016–9035. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Miura T, Ichiki H, Iwamoto N, Kato M, Kubo M, Sasaki H, Okada M, Ishida T, Seino Y and Tanigawa K: Antidiabetic activity of the rhizoma of Anemarrhena asphodeloides and active components, mangiferin and its glucoside. Biol Pharm Bull. 24:1009–1011. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Wang Y, Liu Y, Wang H, Li C, Qi P and Bao J: Agaricus bisporus lectins mediates islet β-cell proliferation through regulation of cell cycle proteins. Exp Biol Med. 237:287–296. 2012. View Article : Google Scholar

24 

Li C, Chen J, Lu B, Shi Z, Wang H, Zhang B, Zhao K, Qi W, Bao J and Wang Y: Molecular switch role of Akt in Polygonatum odoratum lectin-induced apoptosis and autophagy in human non-small cell lung cancer A549 cells. PLoS One. 9:e1015262014. View Article : Google Scholar : PubMed/NCBI

25 

Wang Y, Wang H, Liu Y, Li C, Qi P and Bao J: Antihyperglycemic effect of ginsenoside Rh2 by inducing islet β-cell regeneration in mice. Horm Metab Res. 44:33–40. 2012. View Article : Google Scholar

26 

Huang G, Lv J, Li T, Huai G, Li X, Xiang S, Wang L, Qin Z, Pang J, Zou B and Wang Y: Notoginsenoside R1 ameliorates podocyte injury in rats with diabetic nephropathy by activating the PI3K/Akt signaling pathway. Int J Mol Med. 38:1179–1189. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar

28 

Yoon KH, Ko SH, Cho JH, Lee JM, Ahn YB, Song KH, Yoo SJ, Kang MI, Cha BY, Lee KW, et al: Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab. 88:2300–2308. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Porter AG and Janicke RU: Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 6:99–104. 1999. View Article : Google Scholar : PubMed/NCBI

30 

Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B and Martinou JC: Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol. 144:891–901. 1999. View Article : Google Scholar : PubMed/NCBI

31 

Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB and Korsmeyer SJ: Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science. 292:727–730. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Chen S, Shimoda M, Chen J, Matsumoto S and Grayburn PA: Transient overexpression of cyclin D2/CDK4/GLP1 genes induces proliferation and differentiation of adult pancreatic progenitors and mediates islet regeneration. Cell Cycle. 11:695–705. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Fiaschi-Taesch N, Bigatel TA, Sicari B, Takane KK, Salim F, Velazquez-Garcia S, Harb G, Selk K, Cozar-Castellano I and Stewart AF: Survey of the human pancreatic beta-cell G1/S proteome reveals a potential therapeutic role for cdk-6 and cyclin D1 in enhancing human beta-cell replication and function in vivo. Diabetes. 58:882–893. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Takasawa S, Ikeda T and Akiyama T: Cyclin D1 activation through ATF-2 in Reg-induced pancreatic beta-cell regeneration. FEBS letters. 580:585–591. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ and Lowe SW: Rb-mediated hetero-chromatin formation and silencing of E2F target genes during cellular senescence. Cell. 113:703–716. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Dor Y, Brown J, Martinez OI and Melton DA: Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 429:41–46. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Teta M, Rankin MM, Long SY, Stein GM and Kushner JA: Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell. 12:817–826. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Kee N, Sivalingam S, Boonstra R and Wojtowicz JM: The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods. 115:97–105. 2002. View Article : Google Scholar : PubMed/NCBI

39 

Muskhelishvili L, Latendresse JR, Kodell RL and Henderson EB: Evaluation of cell proliferation in rat tissues with BrdU, PCNA, Ki-67(MIB-5) immunohistochemistry and in situ hybridization for histone mRNA. J Histochem Cytochem. 51:1681–1688. 2003. View Article : Google Scholar : PubMed/NCBI

40 

Golias CH, Charalabopoulos A and Charalabopoulos K: Cell proliferation and cell cycle control: A mini review. Int J Clin Pract. 58:1134–1141. 2004. View Article : Google Scholar

41 

Butler AE, Janson J, Soeller WC and Butler PC: Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: Evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes. 52:2304–2314. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Hanley SC, Austin E, Assouline-Thomas B, Kapeluto J, Blaichman J, Moosavi M, Petropavlovskaia M and Rosenberg L: {beta}-Cell mass dynamics and islet cell plasticity in human type 2 diabetes. Endocrinology. 151:1462–1472. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Chen H, Gu X, Su IH, Bottino R, Contreras JL, Tarakhovsky A and Kim SK: Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev. 23:975–985. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B and Bao JK: Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 45:487–498. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Fehsel K, Kolb-Bachofen V and Kröncke KD: Necrosis is the predominant type of islet cell death during development of insulin-dependent diabetes mellitus in BB rats. Lab Invest. 83:549–559. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Hoorens A, Stangé G, Pavlovic D and Pipeleers D: Distinction between interleukin-1-induced necrosis and apoptosis of islet cells. Diabetes. 50:551–557. 2001. View Article : Google Scholar : PubMed/NCBI

47 

Maedler K, Schumann DM, Schulthess F, Oberholzer J, Bosco D, Berney T and Donath MY: Aging correlates with decreased beta-cell proliferative capacity and enhanced sensitivity to apoptosis: A potential role for Fas and pancreatic duodenal homeobox-1. Diabetes. 55:2455–2462. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Donath MY, Gross DJ, Cerasi E and Kaiser N: Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes. 48:738–744. 1999. View Article : Google Scholar : PubMed/NCBI

49 

Xu X, D'Hoker J, Stangé G, Bonné S, De Leu N, Xiao X, Van de Casteele M, Mellitzer G, Ling Z, Pipeleers D, et al: Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell. 132:197–207. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang H, He X, Lei T, Liu Y, Huai G, Sun M, Deng S, Yang H, Tong R, Wang Y, Wang Y, et al: Mangiferin induces islet regeneration in aged mice through regulating p16INK4a. Int J Mol Med 41: 3231-3242, 2018.
APA
Wang, H., He, X., Lei, T., Liu, Y., Huai, G., Sun, M. ... Wang, Y. (2018). Mangiferin induces islet regeneration in aged mice through regulating p16INK4a. International Journal of Molecular Medicine, 41, 3231-3242. https://doi.org/10.3892/ijmm.2018.3524
MLA
Wang, H., He, X., Lei, T., Liu, Y., Huai, G., Sun, M., Deng, S., Yang, H., Tong, R., Wang, Y."Mangiferin induces islet regeneration in aged mice through regulating p16INK4a". International Journal of Molecular Medicine 41.6 (2018): 3231-3242.
Chicago
Wang, H., He, X., Lei, T., Liu, Y., Huai, G., Sun, M., Deng, S., Yang, H., Tong, R., Wang, Y."Mangiferin induces islet regeneration in aged mice through regulating p16INK4a". International Journal of Molecular Medicine 41, no. 6 (2018): 3231-3242. https://doi.org/10.3892/ijmm.2018.3524
Copy and paste a formatted citation
x
Spandidos Publications style
Wang H, He X, Lei T, Liu Y, Huai G, Sun M, Deng S, Yang H, Tong R, Wang Y, Wang Y, et al: Mangiferin induces islet regeneration in aged mice through regulating p16INK4a. Int J Mol Med 41: 3231-3242, 2018.
APA
Wang, H., He, X., Lei, T., Liu, Y., Huai, G., Sun, M. ... Wang, Y. (2018). Mangiferin induces islet regeneration in aged mice through regulating p16INK4a. International Journal of Molecular Medicine, 41, 3231-3242. https://doi.org/10.3892/ijmm.2018.3524
MLA
Wang, H., He, X., Lei, T., Liu, Y., Huai, G., Sun, M., Deng, S., Yang, H., Tong, R., Wang, Y."Mangiferin induces islet regeneration in aged mice through regulating p16INK4a". International Journal of Molecular Medicine 41.6 (2018): 3231-3242.
Chicago
Wang, H., He, X., Lei, T., Liu, Y., Huai, G., Sun, M., Deng, S., Yang, H., Tong, R., Wang, Y."Mangiferin induces islet regeneration in aged mice through regulating p16INK4a". International Journal of Molecular Medicine 41, no. 6 (2018): 3231-3242. https://doi.org/10.3892/ijmm.2018.3524
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team