You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Cavasin MA, Liao TD, Yang XP, Yang JJ and Carretero OA: Decreased endogenous levels of Ac-SDKP promote organ fibrosis. Hypertension. 50:130–136. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Neutel JM, Giles TD, Punzi H, Weiss RJ, Li H and Finck A: Long-term safety of nebivolol and valsartan combination therapy in patients with hypertension: An open-label, single-arm, multicenter study. J Am Soc Hypertens. 8:915–920. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Safaeian L, Hajhashemi V, Haghjoo Javanmard S and Sanaye Naderi H: The effect of protocatechuic acid on blood pressure and oxidative stress in glucocorticoid-induced hypertension in rat. Iran J Pharm Res. 15(Suppl): S83–S91. 2016. | |
|
Chmielewski V, Drupt F and Morfin R: Dexamethasone-induced apoptosis of mouse thymocytes: Prevention by native 7alpha-hydroxysteroids. Immunol Cell Biol. 78:238–246. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Walters SN, Webster KE, Daley S and Grey ST: A role for intrathymic B cells in the generation of natural regulatory T cells. J Immunol. 193:170–176. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R and Sempowski GD: Thymic involution and immune reconstitution. Trends Immunol. 30:366–373. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Murray JM, Kaufmann GR, Hodgkin PD, Lewin SR, Kelleher AD, Davenport MP and Zaunders JJ: Naive T cells are maintained by thymic output in early ages but by proliferation without phenotypic change after age twenty. Immunol Cell Biol. 81:487–495. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Ruan L, Zhang Z, Mu L, Burnley P, Wang L, Coder B, Zhuge Q and Su DM: Biological significance of FoxN1 gain-of-function mutations during T and B lymphopoiesis in juvenile mice. Cell Death Dis. 5:e14572014. View Article : Google Scholar : PubMed/NCBI | |
|
Fukuda S, Tsuchikura S and Iida H: Age-related changes in blood pressure, hematological values, concentrations of serum biochemical constituents and weights of organs in the SHR/Izm, SHRSP/Izm and WKY/Izm. Exp Anim. 53:67–72. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Rodriguez-Iturbe B and Johnson RJ: The role of renal microvascular disease and interstitial inflammation in salt-sensitive hypertension. Hypertens Res. 33:975–980. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Svendsen UG: The importance of thymus in the pathogenesis of the chronic phase of hypertension in mice following partial infarction of the kidney. Acta Pathol Microbiol Scand A. 85:539–547. 1977.PubMed/NCBI | |
|
Svendsen UG: The effect of penicillamine on blood pressure and vascular disease in mice with infarct-kidney hypertension. Scand J Rheumatol. 8:81–86. 1979. View Article : Google Scholar : PubMed/NCBI | |
|
Svendsen UG: The role of thymus for the development and prognosis of hypertension and hypertensive vascular disease in mice following renal infarction. Acta Pathol Microbiol Scand A. 84:235–243. 1976.PubMed/NCBI | |
|
Ba D, Takeichi N, Kodama T and Kobayashi H: Restoration of T cell depression and suppression of blood pressure in spontaneously hypertensive rats (SHR) by thymus grafts or thymus extracts. J Immunol. 128:1211–1216. 1982.PubMed/NCBI | |
|
Bento-de-Souza L, Victor JR, Bento-de-Souza LC, Arrais-Santos M, Rangel-Santos AC, Pereira-Costa É, Raniero-Fernandes E, Seixas-Duarte MI, Oliveira-Filho JB and Silva Duarte AJ: Constitutive expression of genes encoding notch receptors and ligands in developing lymphocytes, nTreg cells and dendritic cells in the human thymus. Results Immunol. 6:15–20. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Plum J, De Smedt M, Leclercq G, Taghon T, Kerre T and Vandekerckhove B: Human intrathymic development: A selective approach. Semin Immunopathol. 30:411–423. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Z, Lancaster JN and Ehrlich LI: The contribution of chemokines and migration to the induction of central tolerance in the Thymus. Front Immunol. 6:3982015. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Z, Lancaster JN, Sasiponganan C and Ehrlich LI: CCR4 promotes medullary entry and thymocyte-dendritic cell interactions required for central tolerance. J Exp Med. 212:1947–1965. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Love PE and Bhandoola A: Signal integration and crosstalk during thymocyte migration and emigration. Nat Rev Immunol. 11:469–477. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Richards DM, Delacher M, Goldfarb Y, Kägebein D, Hofer AC, Abramson J and Feuerer M: Treg cell differentiation: From Thymus to peripheral tissue. Prog Mol Biol Transl Sci. 136:175–205. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S, Jiang S, Kuchroo VK, Mathis D, Roncarolo MG, et al: Regulatory T cells: Recommendations to simplify the nomenclature. Nat Immunol. 14:307–308. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Bod L, Douguet L, Auffray C, Lengagne R, Bekkat F, Rondeau E, Molinier-Frenkel V, Castellano F, Richard Y and Prévost-Blondel A: IL-4-induced gene 1: A negative immune checkpoint controlling B cell differentiation and activation. J Immunol. 200:1027–1038. 2018. View Article : Google Scholar | |
|
McLeod JJ, Baker B and Ryan JJ: Mast cell production and response to IL-4 and IL-13. Cytokine. 75:57–61. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Voskens CJ, Sallin M, Maniar A, Montes CL, Zhang Y, Lin W, Li G, Burch E, Tan M, et al: CD137 promotes proliferation and survival of human B cells. J Immunol. 184:787–795. 2010. View Article : Google Scholar | |
|
Nilsson G and Nilsson K: Effects of interleukin (IL)-13 on immediate-early response gene expression, phenotype and differentiation of human mast cells. Comparison with IL-4. Eur J Immunol. 25:870–873. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Groves AM, Johnston CJ, Misra RS, Williams JP and Finkelstein JN: Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int J Radiat Biol. 92:754–765. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Francos-Quijorna I, Amo-Aparicio J, Martinez-Muriana A and López-Vales R: IL-4 drives microglia and macrophages toward a phenotype conducive for tissue repair and functional recovery after spinal cord injury. Glia. 64:2079–2092. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Czimmerer Z, Varga T, Kiss M, Vázquez CO, Doan-Xuan QM, Rückerl D, Tattikota SG, Yan X, Nagy ZS, Daniel B, et al: The IL-4/STAT6 signaling axis establishes a conserved microRNA signature in human and mouse macrophages regulating cell survival via miR-342-3p. Genome Med. 8:632016. View Article : Google Scholar : PubMed/NCBI | |
|
Miossec P, Korn T and Kuchroo VK: Interleukin-17 and type 17 helper T cells. N Engl J Med. 361:888–898. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM and Stockinger B: TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 24:179–189. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR and Weaver CT: Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 441:231–234. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ and Littman DR: The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 126:1121–1133. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kolls JK and Lindén A: Interleukin-17 family members and inflammation. Immunity. 21:467–476. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Mazidi M, Penson P, Gluba-Brzozka A, Rysz J and Banach M: Relationship between long noncoding RNAs and physiological risk factors of cardiovascular disease. J Clin Lipidol. 11:617–623. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kaur J: A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014:9431622014. View Article : Google Scholar : PubMed/NCBI | |
|
Ahbap E, Sakaci T, Kara E, Sahutoglu T, Koc Y, Basturk T, Sevinc M, Akgol C, Hasbal B, Isleem M, et al: Serum uric acid levels and inflammatory markers with respect to dipping status: A retrospective analysis of hypertensive patients with or without chronic kidney disease. Clin Exp Hypertens. 38:555–563. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Virdis A, Dell'Agnello U and Taddei S: Impact of inflammation on vascular disease in hypertension. Maturitas. 78:179–183. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Taddei S, Caraccio N, Virdis A, Dardano A, Versari D, Ghiadoni L, Ferrannini E, Salvetti A and Monzani F: Low-grade systemic inflammation causes endothelial dysfunction in patients with Hashimoto's thyroiditis. J Clin Endocrinol Metab. 91:5076–5082. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Mirsaeidi M, Omar HR, Ebrahimi G and Campos M: The association between ESR and CRP and systemic hypertension in sarcoidosis. Int J Hypertens. 2016:24025152016. View Article : Google Scholar : PubMed/NCBI | |
|
Hezel M, Peleli M, Liu M, Zollbrecht C, Jensen BL, Checa A, Giulietti A, Wheelock CE, Lundberg JO, Weitzberg E and Carlström M: Dietary nitrate improves age-related hypertension and metabolic abnormalities in rats via modulation of angiotensin II receptor signaling and inhibition of superoxide generation. Free Radic Biol Med. 99:87–98. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Victorio JA, Clerici SP, Palacios R, Alonso MJ, Vassallo DV, Jaffe IZ, Rossoni LV and Davel AP: Spironolactone prevents endothelial nitric oxide synthase uncoupling and vascular dysfunction induced by β-adrenergic overstimulation: Role of perivascular adipose tissue. Hypertension. 68:726–735. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Goto K, Fujii K, Onaka U, Abe I and Fujishima M: Renin-angiotensin system blockade improves endothelial dysfunction in hypertension. Hypertension. 36:575–580. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng ZJ, Vaskonen T, Tikkanen I, Nurminen K, Ruskoaho H, Vapaatalo H, Muller D, Park JK, Luft FC and Mervaala EM: Endothelial dysfunction and salt-sensitive hypertension in spontaneously diabetic Goto-Kakizaki rats. Hypertension. 37:433–439. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
McIntyre M, Bohr DF and Dominiczak AF: Endothelial function in hypertension: The role of superoxide anion. Hypertension. 34:539–545. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Virdis A, Ghiadoni L, Plantinga Y, Taddei S and Salvetti A: C-reactive protein and hypertension: Is there a causal relationship. Curr Pharm Des. 13:1693–1698. 2007. View Article : Google Scholar | |
|
Bautista LE, Vera LM, Arenas IA and Gamarra G: Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J Hum Hypertens. 19:149–154. 2005. View Article : Google Scholar | |
|
Lakoski SG, Cushman M, Palmas W, Blumenthal R, D'Agostino RB Jr and Herrington DM: The relationship between blood pressure and C-reactive protein in the multi-ethnic study of atherosclerosis (MESA). J Am Coll Cardiol. 46:1869–1874. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Schiffrin EL: Immune mechanisms in hypertension and vascular injury. Clin Sci (Lond). 126:267–274. 2014. View Article : Google Scholar | |
|
Blake GJ, Rifai N, Buring JE and Ridker PM: Blood pressure, C-reactive protein, and risk of future cardiovascular events. Circulation. 108:2993–2999. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Bermudez EA, Rifai N, Buring J, Manson JE and Ridker PM: Interrelationships among circulating interleukin-6, C-reactive protein, and traditional cardiovascular risk factors in women. Arterioscler Thromb Vasc Biol. 22:1668–1673. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Chae CU, Lee RT, Rifai N and Ridker PM: Blood pressure and inflammation in apparently healthy men. Hypertension. 38:399–403. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Yamada S, Gotoh T, Nakashima Y, Kayaba K, Ishikawa S, Nago N, Nakamura Y, Itoh Y and Kajii E: Distribution of serum C-reactive protein and its association with atherosclerotic risk factors in a Japanese population: Jichi medical school cohort study. Am J Epidemiol. 153:1183–1190. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Ford ES and Giles WH: Serum C-reactive protein and fibrinogen concentrations and self-reported angina pectoris and myocardial infarction: Findings from national health and nutrition examination survey III. J Clin Epidemiol. 53:95–102. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Rohde LE, Hennekens CH and Ridker PM: Survey of C-reactive protein and cardiovascular risk factors in apparently healthy men. Am J Cardiol. 84:1018–1022. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Venugopal SK, Devaraj S, Yuhanna I, Shaul P and Jialal I: Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation. 106:1439–1441. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Verma S, Li SH, Badiwala MV, Weisel RD, Fedak PW, Li RK, Dhillon B and Mickle DA: Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation. 105:1890–1896. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Verma S, Wang CH, Li SH, Dumont AS, Fedak PW, Badiwala MV, Dhillon B, Weisel RD, Li RK, Mickle DA and Stewart DJ: A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 106:913–919. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Romero JC and Reckelhoff JF: State-of-the-Art lecture. Role of angiotensin and oxidative stress in essential hypertension. Hypertension. 34:943–949. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Mervaala E, Müller DN, Schmidt F, Park JK, Gross V, Bader M, Breu V, Ganten D, Haller H and Luft FC: Blood pressure-independent effects in rats with human renin and angiotensinogen genes. Hypertension. 35:587–594. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Muller DN, Dechend R, Mervaala EM, Park JK, Schmidt F, Fiebeler A, Theuer J, Breu V, Ganten D, Haller H and Luft FC: NF-kappaB inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension. 35:193–201. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Müller DN, Mervaala EM, Dechend R, Fiebeler A, Park JK, Schmidt F, Theuer J, Breu V, Mackman N, Luther T, et al: Angiotensin II (AT(1)) receptor blockade reduces vascular tissue factor in angiotensin II-induced cardiac vasculopathy. Am J Pathol. 157:111–122. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Ji Q, Cheng G, Ma N, Huang Y, Lin Y, Zhou Q, Que B, Dong J, Zhou Y and Nie S: Circulating Th1, Th2, and Th17 levels in hypertensive patients. Dis Markers. 2017:71462902017. View Article : Google Scholar : PubMed/NCBI | |
|
McMaster WG, Kirabo A, Madhur MS and Harrison DG: Inflammation, immunity, and hypertensive end-organ damage. Circ Res. 116:1022–1033. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ and Harrison DG: Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 55:500–507. 2010. View Article : Google Scholar : | |
|
De Ciuceis C, Rossini C, La Boria E, Porteri E, Petroboni B, Gavazzi A, Sarkar A, Rosei EA and Rizzoni D: Immune mechanisms in hypertension. High Blood Press Cardiovasc Prev. 21:227–234. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Dai X, Huang S, He Z, Wu F, Ding R, Chen Y, Liang C and Wu Z: Dysfunction of the thymus in mice with hypertension. Exp Ther Med. 13:1386–1392. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ebringer A and Doyle AE: Raised serum IgG levels in hypertension. Br Med J. 2:146–148. 1970. View Article : Google Scholar : PubMed/NCBI | |
|
Leibowitz A and Schiffrin EL: Immune mechanisms in hypertension. Curr Hypertens Rep. 13:465–472. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Lin J, Yang L, Silva HM, Trzeciak A, Choi Y, Schwab SR, Dustin ML and Lafaille JJ: Increased generation of Foxp3(+) regulatory T cells by manipulating antigen presentation in the thymus. Nat Commun. 7:105622016. View Article : Google Scholar : PubMed/NCBI | |
|
Wing K and Sakaguchi S: Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol. 11:7–13. 2010. View Article : Google Scholar | |
|
Mellanby RJ, Thomas DC and Lamb J: Role of regulatory T-cells in autoimmunity. Clin Sci (Lond). 116:639–649. 2009. View Article : Google Scholar | |
|
Piccirillo CA, d'Hennezel E, Sgouroudis E and Yurchenko E: CD4+Foxp3+ regulatory T cells in the control of autoimmunity: In vivo veritas. Curr Opin Immunol. 20:655–662. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Takeichi N, Suzuki K and Kobayashi H: Characterization of immunological depression in spontaneously hypertensive rats. Eur J Immunol. 11:483–487. 1981. View Article : Google Scholar : PubMed/NCBI | |
|
Olsen F: Transfer of arterial hypertension by splenic cells from DOCA-salt hypertensive and renal hypertensive rats to normotensive recipients. Acta Pathol Microbiol Scand C. 88:1–5. 1980.PubMed/NCBI | |
|
Takeichi N, Suzuki K, Okayasu T and Kobayashi H: Immunological depression in spontaneously hypertensive rats. Clin Exp Immunol. 40:120–126. 1980.PubMed/NCBI | |
|
Svendsen UG: Evidence for an initial, thymus independent and a chronic, thymus dependent phase of DOCA and salt hypertension in mice. Acta Pathol Microbiol Scand A. 84:523–528. 1976.PubMed/NCBI | |
|
Marvar PJ, Vinh A, Thabet S, Lob HE, Geem D, Ressler KJ and Harrison DG: T lymphocytes and vascular inflammation contribute to stress-dependent hypertension. Biol Psychiatry. 71:774–782. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A and Weyand CM: Inflammation, immunity, and hypertension. Hypertension. 57:132–140. 2011. View Article : Google Scholar | |
|
Muller DN, Kvakan H and Luft FC: Immune-related effects in hypertension and target-organ damage. Curr Opin Nephrol Hypertens. 20:113–117. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Calame DG, Mueller-Ortiz SL and Wetsel RA: Innate and adaptive immunologic functions of complement in the host response to Listeria monocytogenes infection. Immunobiology. 221:1407–1417. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
D'Alincourt Salazar M, Manuel ER, Tsai W, D'Apuzzo M, Goldstein L, Blazar BR and Diamond DJ: Evaluation of innate and adaptive immunity contributing to the antitumor effects of PD1 blockade in an orthotopic murine model of pancreatic cancer. Oncoimmunology. 5:e11601842016. View Article : Google Scholar : PubMed/NCBI | |
|
Weyd H: More than just innate affairs-on the role of annexins in adaptive immunity. Biol Chem. 397:1017–1029. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kvakan H, Luft FC and Muller DN: Role of the immune system in hypertensive target organ damage. Trends Cardiovasc Med. 19:242–246. 2009. View Article : Google Scholar | |
|
Vergaro G, Prud'homme M, Fazal L, Merval R, Passino C, Emdin M, Samuel JL, Cohen Solal A and Delcayre C: Inhibition of Galectin-3 pathway prevents isoproterenol-induced left ventricular dysfunction and fibrosis in mice. Hypertension. 67:606–612. 2016.PubMed/NCBI | |
|
Wenzel U, Turner JE, Krebs C, Kurts C, Harrison DG and Ehmke H: Immune mechanisms in arterial hypertension. J Am Soc Nephrol. 27:677–686. 2016. View Article : Google Scholar : | |
|
Harrison DG: The immune system in hypertension. Trans Am Clin Climatol Assoc. 125:130–140. 2014.PubMed/NCBI | |
|
Kossmann S, Hu H, Steven S, Schönfelder T, Fraccarollo D, Mikhed Y, Brahler M, Knorr M, Brandt M, Karbach SH, et al: Inflammatory monocytes determine endothelial nitric-oxide synthase uncoupling and nitro-oxidative stress induced by angiotensin II. J Biol Chem. 289:27540–27550. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Yang F, Yang XP, Jankowski M and Pagano PJ: NAD(P)H oxidase mediates angiotensin II-induced vascular macrophage infiltration and medial hypertrophy. Arterioscler Thromb Vasc Biol. 23:776–782. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Wenzel P, Knorr M, Kossmann S, Stratmann J, Hausding M, Schuhmacher S, Karbach SH, Schwenk M, Yogev N, Schulz E, et al: Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation. 124:1370–1381. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ko EA, Amiri F, Pandey NR, Javeshghani D, Leibovitz E, Touyz RM and Schiffrin EL: Resistance artery remodeling in deoxycorticosterone acetate-salt hypertension is dependent on vascular inflammation: Evidence from m-CSF-deficient mice. Am J Physiol Heart Circ Physiol. 292:H1789–H1795. 2007. View Article : Google Scholar | |
|
De Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM and Schiffrin EL: Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: Evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol. 25:2106–2113. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Abais-Battad JM, Rudemiller NP and Mattson DL: Hypertension and immunity: Mechanisms of T cell activation and pathways of hypertension. Curr Opin Nephrol Hypertens. 24:470–474. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Schiffrin EL: The immune system: Role in hypertension. Can J Cardiol. 29:543–548. 2013. View Article : Google Scholar | |
|
Verlohren S, Muller DN, Luft FC and Dechend R: Immunology in hypertension, preeclampsia, and target-organ damage. Hypertension. 54:439–443. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Idris-Khodja N, Mian MO, Paradis P and Schiffrin EL: Dual opposing roles of adaptive immunity in hypertension. Eur Heart J. 35:1238–1244. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C and Harrison DG: Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 204:2449–2460. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W and Victor RG: Calcineurin inhibitors cause renal afferent activation in rats: A novel mechanism of cyclosporine-induced hypertension. Am J Hypertens. 13:999–1004. 2000. View Article : Google Scholar | |
|
Rodríguez-Iturbe B, Pons H, Quiroz Y, Gordon K, Rincón J, Chávez M, Parra G, Herrera-Acosta J, Gómez-Garre D, Largo R, et al: Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney Int. 59:2222–2232. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Crowley SD, Frey CW, Gould SK, Griffiths R, Ruiz P, Burchette JL, Howell DN, Makhanova N, Yan M, Kim HS, et al: Stimulation of lymphocyte responses by angiotensin II promotes kidney injury in hypertension. Am J Physiol Renal Physiol. 295:F515–F524. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wei Z, Spizzo I, Diep H, Drummond GR, Widdop RE and Vinh A: Differential phenotypes of tissue-infiltrating T cells during angiotensin II-induced hypertension in mice. PLoS One. 9:e1148952014. View Article : Google Scholar : PubMed/NCBI | |
|
Rosenthal AS: Regulation of the immune response-role of the macrophage. N Engl J Med. 303:1153–1156. 1980. View Article : Google Scholar : PubMed/NCBI | |
|
Gordon S: The role of the macrophage in immune regulation. Res Immunol. 149:685–688. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Lam RS, O'Brien-Simpson NM, Holden JA, Lenzo JC and Fong SB: Reynolds EC. Unprimed, M1 and M2 macrophages differentially interact with porphyromonas gingivalis. PLoS One. 11:e01586292016. View Article : Google Scholar : PubMed/NCBI | |
|
Mellman I and Steinman RM: Dendritic cells: Specialized and regulated antigen processing machines. Cell. 106:255–258. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Goldschneider I and Cone RE: A central role for peripheral dendritic cells in the induction of acquired thymic tolerance. Trends Immunol. 24:77–81. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Oh J and Shin JS: The role of dendritic cells in central tolerance. Immune Netw. 15:111–120. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Gelosa P, Pignieri A, Gianazza E, Criniti S, Guerrini U, Cappellini MD, Banfi C, Tremoli E and Sironi L: Altered iron homeostasis in an animal model of hypertensive nephropathy: Stroke-prone rats. J Hypertens. 31:2259–2269. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Singh MV, Chapleau MW, Harwani SC and Abboud FM: The immune system and hypertension. Immunol Res. 59:243–253. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Rudemiller N, Lund H, Jacob HJ, Geurts AM and Mattson DL: PhysGen Knockout Program: CD247 modulates blood pressure by altering T-lymphocyte infiltration in the kidney. Hypertension. 63:559–564. 2014. View Article : Google Scholar | |
|
Luft FC, Dechend R and Muller DN: Immune mechanisms in angiotensin II-induced target-organ damage. Ann Med. 44(Suppl 1): S49–S54. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Rodríguez-Iturbe B, Franco M, Tapia E, Quiroz Y and Johnson RJ: Renal inflammation, autoimmunity and salt-sensitive hypertension. Clin Exp Pharmacol Physiol. 39:96–103. 2012. View Article : Google Scholar | |
|
Moon JY: Recent update of renin-angiotensin-aldosterone system in the pathogenesis of hypertension. Electrolyte Blood Press. 11:41–45. 2013. View Article : Google Scholar | |
|
White FN and Grollman A: Autoimmune factors associated with infarction of the kidney. Nephron. 1:93–102. 1964. View Article : Google Scholar : PubMed/NCBI | |
|
Rodríguez-Iturbe B, Quiroz Y, Ferrebuz A, Parra G and Vaziri ND: Evolution of renal interstitial inflammation and NF-kappaB activation in spontaneously hypertensive rats. Am J Nephrol. 24:587–594. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Rodríguez-Iturbe B, Ferrebuz A, Vanegas V, Quiroz Y, Mezzano S and Vaziri ND: Early and sustained inhibition of nuclear factor-kappaB prevents hypertension in spontaneously hypertensive rats. J Pharmacol Exp Ther. 315:51–57. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Marvar PJ, Gordon FJ and Harrison DG: Blood pressure control: Salt gets under your skin. Nat Med. 15:487–488. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Crowley SD, Song YS, Lin EE, Griffiths R, Kim HS and Ruiz P: Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am J Physiol Regul Integr Comp Physiol. 298:R1089–R1097. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
De Miguel C, Das S, Lund H and Mattson DL: T lymphocytes mediate hypertension and kidney damage in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol. 298:R1136–R1142. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Yang T, Zollbrecht C, Winerdal ME, Zhuge Z, Zhang XM, Terrando N, Checa A, Sällström J, Wheelock CE, Winqvist O, et al: Genetic abrogation of adenosine A3 receptor prevents uninephrectomy and high salt-induced hypertension. J Am Heart Assoc. 5:e0038682016. View Article : Google Scholar : PubMed/NCBI | |
|
Dong L, Nordlohne J, Ge S, Hertel B, Melk A, Rong S, Haller H and von Vietinghoff S: T Cell CX3CR1 Mediates excess atherosclerotic inflammation in renal impairment. J Am Soc Nephrol. 27:1753–1764. 2016. View Article : Google Scholar : | |
|
Lucchini M, Fifer WP, Sahni R and Signorini MG: Novel heart rate parameters for the assessment of autonomic nervous system function in premature infants. Physiol Meas. 37:1436–1446. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Reijman S, Bakermans-Kranenburg MJ, Hiraoka R, Crouch JL, Milner JS, Alink LR and van IJzendoorn MH: Baseline functioning and stress reactivity in maltreating parents and at-risk adults: Review and meta-analyses of autonomic nervous system studies. Child Maltreat. 1077559516659937. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Olofsson PS, Rosas-Ballina M, Levine YA and Tracey KJ: Rethinking inflammation: Neural circuits in the regulation of immunity. Immunol Rev. 248:188–204. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Marvar PJ, Thabet SR, Guzik TJ, Lob HE, McCann LA, Weyand C, Gordon FJ and Harrison DG: Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ Res. 107:263–270. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ganta CK, Lu N, Helwig BG, Blecha F, Ganta RR, Zheng L, Ross CR, Musch TI, Fels RJ and Kenney MJ: Central angiotensin II-enhanced splenic cytokine gene expression is mediated by the sympathetic nervous system. Am J Physiol Heart Circ Physiol. 289:H1683–H1691. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW and Tracey KJ: Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 405:458–462. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Ader R, Felten D and Cohen N: Interactions between the brain and the immune system. Annu Rev Pharmacol Toxicol. 30:561–602. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Bulloch K and Pomerantz W: Autonomic nervous system innervation of thymic-related lymphoid tissue in wildtype and nude mice. J Comp Neurol. 228:57–68. 1984. View Article : Google Scholar : PubMed/NCBI | |
|
Nance DM, Hopkins DA and Bieger D: Re-investigation of the innervation of the thymus gland in mice and rats. Brain Behav Immun. 1:134–147. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
Tollefson L and Bulloch K: Dual-label retrograde transport: CNS innervation of the mouse thymus distinct from other mediastinum viscera. J Neurosci Res. 25:20–28. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Roggero E, Besedovsky HO and del Rey A: The role of the sympathetic nervous system in the thymus in health and disease. Neuroimmunomodulation. 18:339–349. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Winklewski PJ, Radkowski M and Demkow U: Relevance of immune-sympathetic nervous system interplay for the development of hypertension. Adv Exp Med Biol. 884:37–43. 2016. View Article : Google Scholar | |
|
Pongratz G and Straub RH: The sympathetic nervous response in inflammation. Arthritis Res Ther. 16:5042014. View Article : Google Scholar : PubMed/NCBI | |
|
Fisher JP and Paton JF: The sympathetic nervous system and blood pressure in humans: Implications for hypertension. J Hum Hypertens. 26:463–475. 2012. View Article : Google Scholar | |
|
Cupić V, Colić M, Jandrić D, Milojković B and Varagić VM: Xylazine, an alpha 2-adrenergic agonist, induces apoptosis of rat thymocytes and a thymocyte hybridoma line in vitro. Methods Find Exp Clin Pharmacol. 25:5–10. 2003. View Article : Google Scholar | |
|
Trotter RN, Stornetta RL, Guyenet PG and Roberts MR: Transneuronal mapping of the CNS network controlling sympathetic outflow to the rat thymus. Auton Neurosci. 131:9–20. 2007. View Article : Google Scholar | |
|
Elenkov IJ, Wilder RL, Chrousos GP and Vizi ES: The sympathetic nerve-an integrative interface between two supersystems: The brain and the immune system. Pharmacol Rev. 52:595–638. 2000.PubMed/NCBI | |
|
Vizi ES, Orsó E, Osipenko ON, Haskó G and Elenkov IJ: Neurochemical, electrophysiological and immunocytochemical evidence for a noradrenergic link between the sympathetic nervous system and thymocytes. Neuroscience. 68:1263–1276. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
ThyagaRajan S, Madden KS, Teruya B, Stevens SY and Felten DL: Bellinger DL. Age-associated alterations in sympathetic noradrenergic innervation of primary and secondary lymphoid organs in female Fischer 344 rats. J Neuroimmunol. 233:54–64. 2011. View Article : Google Scholar : | |
|
Leposavić G, Ugresić N, Pejcić-Karapetrović B and Mićić M: Castration of sexually immature rats affects sympathetic innervation of the adult thymus. Neuroimmunomodulation. 7:59–67. 2000. View Article : Google Scholar | |
|
Leposavić G, Mićić M, Ugresić N, Bogojević M and Isaković K: Components of sympathetic innervation of the rat thymus during late fetal and postnatal development: Histofluorescence and biochemical study. Sympathetic innervation of the rat thymus Thymus. 19:77–87. 1992. | |
|
Vink EE, Boer A, Verloop WL, Spiering W, Voskuil M, Vonken E, Hoogduin JM, Leiner T, Bots ML and Blankestijn PJ: The effect of renal denervation on kidney oxygenation as determined by BOLD MRI in patients with hypertension. Eur Radiol. 25:1984–1992. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Abboud FM, Harwani SC and Chapleau MW: Autonomic neural regulation of the immune system: Implications for hypertension and cardiovascular disease. Hypertension. 59:755–762. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Heran BS, Galm BP and Wright JM: Blood pressure lowering efficacy of alpha blockers for primary hypertension. Cochrane Database Syst Rev. CD004643. 2012. | |
|
Esler M: The sympathetic nervous system through the ages: From Thomas Willis to resistant hypertension. Exp Physiol. 96:611–622. 2011.PubMed/NCBI | |
|
Frishman WH: Saunders E. β-adrenergic blockers. J Clin Hypertens (Greenwich). 13:649–653. 2011. View Article : Google Scholar | |
|
Abboud FM: The Walter B. Cannon Memorial Award Lecture, 2009. Physiology in perspective: The wisdom of the body. In search of autonomic balance: The good, the bad, and the ugly. Am J Physiol Regul Integr Comp Physiol. 298:R1449–R1467. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zucker IH, Hackley JF, Cornish KG, Hiser BA, Anderson NR, Kieval R, Irwin ED, Serdar DJ, Peuler JD and Rossing MA: Chronic baroreceptor activation enhances survival in dogs with pacing-induced heart failure. Hypertension. 50:904–910. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Zheng C, Sato T, Kawada T, Sugimachi M and Sunagawa K: Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 109:120–124. 2004. View Article : Google Scholar | |
|
Hering D and Schlaich M: The role of central nervous system mechanisms in resistant hypertension. Curr Hypertens Rep. 17:582015. View Article : Google Scholar : PubMed/NCBI | |
|
Brody MJ, Varner KJ and Vasquez EC: Lewis SJ. Central nervous system and the pathogenesis of hypertension. Sites and mechanisms. Hypertension. 18(Suppl 5): pp. III7–III12. 1991, View Article : Google Scholar | |
|
Zubcevic J, Waki H, Raizada MK and Paton JF: Autonomic-immune-vascular interaction: An emerging concept for neurogenic hypertension. Hypertension. 57:1026–1033. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Raizada MK and Paton JF: Recent advances in the renin-angiotensin system: Angiotensin-converting enzyme 2 and (pro) renin receptor. Exp Physiol. 93:517–518. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wyss JM: The role of the sympathetic nervous system in hypertension. Curr Opin Nephrol Hypertens. 2:265–273. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Felder RB, Francis J, Zhang ZH, Wei SG, Weiss RM and Johnson AK: Heart failure and the brain: New perspectives. Am J Physiol Regul Integr Comp Physiol. 284:R259–R276. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Eikelis N, Hering D, Marusic P, Walton A, Lambert E, Krum H, Lambert G, Esler M and Schlaich M: [Op.7d.10]. The effect of renal denervation on adipokines in patients with resistant hypertension. J Hypertens. 34(Suppl 2): e972016. View Article : Google Scholar | |
|
Rosa J, Widimsky P, Waldauf P, Lambert L, Zelinka T, Taborsky M, Branny M, Tousek P, Petrak O, Curila K, et al: [Op.7d.09] the role of adding spironolactone and renal denervation in true resistant hypertension. One-year outcomes of randomized prague-15 study. J Hypertens. 34(Suppl 2): e96–e97. 2016. View Article : Google Scholar | |
|
Rosa J, Widimský P, Waldauf P, Lambert L, Zelinka T, Táborský M, Branny M, Toušek P, Petrák O, Čurila K, et al: Role of adding spironolactone and renal denervation in true resistant hypertension: One-year outcomes of randomized PRAGUE-15 study. Hypertension. 67:397–403. 2016. | |
|
Calhoun DA: Spironolactone versus renal nerve denervation for treatment of uncontrolled resistant hypertension. J Hypertens. 34:1701–1703. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Qi XY, Cheng B, Li YL and Wang YF: Renal denervation, adjusted drugs, or combined therapy for resistant hypertension: A meta-regression. Medicine (Baltimore). 95:e39392016. View Article : Google Scholar | |
|
Esler M: Renal denervation for treatment of drug-resistant hypertension. Trends Cardiovasc Med. 25:107–115. 2015. View Article : Google Scholar | |
|
Esler MD, Krum H, Schlaich M, Schmieder RE, Böhm M and Sobotka PA: Symplicity HTN-2 Investigators: Renal sympathetic denervation for treatment of drug-resistant hypertension: One-year results from the Symplicity HTN-2 randomized, controlled trial. Circulation. 126:2976–2982. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Fink GD and Osborn JW: Renal nerves: Time for reassessment of their role in hypertension. Am J Hypertens. 27:1245–1247. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M, Flack JM, Katzen BT, Lea J, Lee DP, et al: Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J. 36:219–227. 2015. View Article : Google Scholar : | |
|
Schlaich MP, Esler MD, Fink GD, Osborn JW and Euler DE: Targeting the sympathetic nervous system: Critical issues in patient selection, efficacy, and safety of renal denervation. Hypertension. 63:426–432. 2014. View Article : Google Scholar | |
|
Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, et al: Catheter-based renal sympathetic denervation for resistant hypertension: A multicentre safety and proof-of-principle cohort study. Lancet. 373:1275–1281. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Symplicity HTN-2 Investigators; Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE and Böhm M: Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): A randomised controlled trial. Lancet. 376:1903–1909. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Symplicity HTN-1 Investigators: Catheter-based renal sympathetic denervation for resistant hypertension: Durability of blood pressure reduction out to 24 months. Hypertension. 57:911–917. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Worthley SG, Tsioufis CP, Worthley MI, Sinhal A, Chew DP, Meredith IT, Malaiapan Y and Papademetriou V: Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: The EnligHTN I trial. Eur Heart J. 34:2132–2140. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Guo J, Feng Y, Barnes P, Huang FF, Idell S and Su DM: Shams H. Deletion of FoxN1 in the thymic medullary epithelium reduces peripheral T cell responses to infection and mimics changes of aging. PLoS One. 7:e346812012. View Article : Google Scholar : PubMed/NCBI | |
|
Chidgey A, Dudakov J, Seach N and Boyd R: Impact of niche aging on thymic regeneration and immune reconstitution. Semin Immunol. 19:331–340. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Taub DD and Longo DL: Insights into thymic aging and regeneration. Immunol Rev. 205:72–93. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Fry TJ and Mackall CL: Current concepts of thymic aging. Springer Semin Immunopathol. 24:7–22. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Zook EC, Krishack PA, Zhang S, Zeleznik-Le NJ, Firulli AB and Witte PL: Le PT. Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells. Blood. 118:5723–5731. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Swain S, Clise-Dwyer K and Haynes L: Homeostasis and the age-associated defect of CD4 T cells. Semin Immunol. 17:370–377. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Haynes BF, Markert ML, Sempowski GD, Patel DD and Hale LP: The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu Rev Immunol. 18:529–560. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Stutman O and Good RA: Duration of thymic function. Ser Haematol. 7:505–523. 1974.PubMed/NCBI | |
|
Thoman ML: The pattern of T lymphocyte differentiation is altered during thymic involution. Mech Ageing Dev. 82:155–170. 1995. View Article : Google Scholar | |
|
Ortman CL, Dittmar KA, Witte PL and Le PT: Molecular characterization of the mouse involuted thymus: Aberrations in expression of transcription regulators in thymocyte and epithelial compartments. Int Immunol. 14:813–822. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Bredenkamp N, Nowell CS and Blackburn CC: Regeneration of the aged thymus by a single transcription factor. Development. 141:1627–1637. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Žuklys S, Handel A, Zhanybekova S, Govani F, Keller M, Maio S, Mayer CE, Teh HY, Hafen K, Gallone G, et al: Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells. Nat Immunol. 17:1206–1215. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J, Wang S, Hyun J, Choi SS, Cha H and Ock M: Jung Y. Hepatic stellate cells express thymosin Beta 4 in chronically damaged liver. PLoS One. 10:e01227582015. View Article : Google Scholar : PubMed/NCBI | |
|
Paulussen M, Landuyt B, Schoofs L, Luyten W and Arckens L: Thymosin beta 4 mRNA and peptide expression in phagocytic cells of different mouse tissues. Peptides. 30:1822–1832. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Low TL and Goldstein AL: Chemical characterization of thymosin beta 4. J Biol Chem. 257:1000–1006. 1982.PubMed/NCBI | |
|
Low TL, Hu SK and Goldstein AL: Complete amino acid sequence of bovine thymosin beta 4: A thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci USA. 78:1162–1166. 1981. View Article : Google Scholar : PubMed/NCBI | |
|
Dedova IV, Nikolaeva OP, Safer D, De La, Cruz EM and dos Remedios CG: Thymosin beta4 induces a conformational change in actin monomers. Biophys J. 90:985–992. 2006. View Article : Google Scholar | |
|
Ballweber E, Hannappel E, Huff T, Stephan H, Haener M, Taschner N, Stoffler D, Aebi U and Mannherz HG: Polymerisation of chemically cross-linked actin: Thymosin beta(4) complex to filamentous actin: Alteration in helical parameters and visualisation of thymosin beta(4) binding on F-actin. J Mol Biol. 315:613–625. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Safer D, Elzinga M and Nachmias VT: Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J Biol Chem. 266:4029–4032. 1991.PubMed/NCBI | |
|
Pearse G: Normal structure, function and histology of the thymus. Toxicol Pathol. 34:504–514. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Bock-Marquette I, Saxena A, White MD, Dimaio JM and Srivastava D: Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature. 432:466–472. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Sosne G, Szliter EA, Barrett R, Kernacki KA, Kleinman H and Hazlett LD: Thymosin beta 4 promotes corneal wound healing and decreases inflammation in vivo following alkali injury. Exp Eye Res. 74:293–299. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Malinda KM, Sidhu GS, Mani H, Banaudha K, Maheshwari RK, Goldstein AL and Kleinman HK: Thymosin beta4 accelerates wound healing. J Invest Dermatol. 113:364–368. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Goldstein AL, Hannappel E and Kleinman HK: Thymosin beta4: Actin-sequestering protein moonlights to repair injured tissues. Trends Mol Med. 11:421–429. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Xu BJ, Shyr Y, Liang X, Ma LJ, Donnert EM, Roberts JD, Zhang X, Kon V, Brown NJ, Caprioli RM and Fogo AB: Proteomic patterns and prediction of glomerulosclerosis and its mechanisms. J Am Soc Nephrol. 16:2967–2975. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Vasilopoulou E, Winyard PJ, Riley PR and Long DA: The role of thymosin-β4 in kidney disease. Expert Opin Biol Ther. 15(Suppl 1): S187–S190. 2015. View Article : Google Scholar | |
|
Zuo Y, Chun B, Potthoff SA, Kazi N, Brolin TJ, Orhan D, Yang HC, Ma LJ, Kon V, Myöhänen T, et al: Thymosin β4 and its degradation product, Ac-SDKP, are novel reparative factors in renal fibrosis. Kidney Int. 84:1166–1175. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ghosh AK, Murphy SB and Kishore R: Vaughan DE. Global gene expression profiling in PAI-1 knockout murine heart and kidney: Molecular basis of cardiac-selective fibrosis. PLoS One. 8:e638252013. View Article : Google Scholar : PubMed/NCBI | |
|
Ma LJ and Fogo AB: PAI-1 and kidney fibrosis. Front Biosci (Landmark Ed). 14:2028–2041. 2009. View Article : Google Scholar | |
|
Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien KR and Riley PR: Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature. 445:177–182. 2007. View Article : Google Scholar | |
|
Grant DS, Rose W, Yaen C, Goldstein A, Martinez J and Kleinman H: Thymosin beta4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis. 3:125–135. 1999. View Article : Google Scholar | |
|
Liao TD, Yang XP, D'Ambrosio M, Zhang Y, Rhaleb NE and Carretero OA: N-acetyl-seryl-aspartyl-lysyl-proline attenuates renal injury and dysfunction in hypertensive rats with reduced renal mass: Council for high blood pressure research. Hypertension. 55:459–467. 2010. View Article : Google Scholar | |
|
Cavasin MA, Rhaleb NE, Yang XP and Carretero OA: Prolyl oligopeptidase is involved in release of the antifibrotic peptide Ac-SDKP. Hypertension. 43:1140–1145. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Myöhänen TT, Tenorio-Laranga J, Jokinen B, Vázquez-Sánchez R, Moreno-Baylach MJ, García-Horsman JA and Männistö PT: Prolyl oligopeptidase induces angiogenesis both in vitro and in vivo in a novel regulatory manner. Br J Pharmacol. 163:1666–1678. 2011. View Article : Google Scholar : | |
|
García-Horsman JA, Männistö PT and Venäläinen JI: On the role of prolyl oligopeptidase in health and disease. Neuropeptides. 41:1–24. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Myöhänen TT, García-Horsman JA, Tenorio-Laranga J and Männistö PT: Issues about the physiological functions of prolyl oligopeptidase based on its discordant spatial association with substrates and inconsistencies among mRNA, protein levels, and enzymatic activity. J Histochem Cytochem. 57:831–848. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Shibuya K, Kanasaki K, Isono M, Sato H, Omata M, Sugimoto T, Araki S, Isshiki K, Kashiwagi A, Haneda M and Koya D: N-ace tyl-seryl-aspartyl-lysyl-proline prevents renal insufficiency and mesangial matrix expansion in diabetic db/db mice. Diabetes. 54:838–845. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Cingolani OH, Yang XP, Liu YH, Villanueva M, Rhaleb NE and Carretero OA: Reduction of cardiac fibrosis decreases systolic performance without affecting diastolic function in hypertensive rats. Hypertension. 43:1067–1073. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Yang F, Yang XP, Liu YH, Xu J, Cingolani O, Rhaleb NE and Carretero OA: Ac-SDKP reverses inflammation and fibrosis in rats with heart failure after myocardial infarction. Hypertension. 43:229–236. 2004. View Article : Google Scholar | |
|
Peng H, Carretero OA, Brigstock DR, Oja-Tebbe N and Rhaleb NE: Ac-SDKP reverses cardiac fibrosis in rats with renovascular hypertension. Hypertension. 42:1164–1170. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Pradelles P, Frobert Y, Creminon C, Liozon E, Massé A and Frindel E: Negative regulator of pluripotent hematopoietic stem cell proliferation in human white blood cells and plasma as analysed by enzyme immunoassay. Biochem Biophys Res Commun. 170:986–993. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Pradelles P, Frobert Y, Créminon C, Ivonine H and Frindel E: Distribution of a negative regulator of haematopoietic stem cell proliferation (AcSDKP) and thymosin beta 4 in mouse tissues. FEBS Lett. 289:171–175. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Hrenak J, Paulis L and Simko F: N-acetyl-seryl-aspartyl-lysy l-proline (Ac-SDKP): Potential target molecule in research of heart, kidney and brain. Curr Pharm Des. 21:5135–5143. 2015. View Article : Google Scholar | |
|
Worou ME, Liao TD, D'Ambrosio M, Nakagawa P, Janic B, Peterson EL, Rhaleb NE and Carretero OA: Renal protective effect of N-acetyl-seryl-aspartyl-lysyl-proline in dahl salt-sensitive rats. Hypertension. 66:816–822. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Omata M, Taniguchi H, Koya D, Kanasaki K, Sho R, Kato Y, Kojima R, Haneda M and Inomata N: N-acetyl-seryl-aspartyl-lysyl-proline ameliorates the progression of renal dysfunction and fibrosis in WKY rats with established anti-glomerular basement membrane nephritis. J Am Soc Nephrol. 17:674–685. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Lopez-Ilasaca M, Liu X, Tamura K and Dzau VJ: The angiotensin II type I receptor-associated protein, ATRAP, is a transmembrane protein and a modulator of angiotensin II signaling. Mol Biol Cell. 14:5038–5050. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Daviet L, Lehtonen JY, Tamura K, Griese DP, Horiuchi M and Dzau VJ: Cloning and characterization of ATRAP, a novel protein that interacts with the angiotensin II type 1 receptor. J Biol Chem. 274:17058–17062. 1999. View Article : Google Scholar : PubMed/NCBI |