Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
July-2018 Volume 42 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2018 Volume 42 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Mechanisms in hypertension and target organ damage: Is the role of the thymus key? (Review)

  • Authors:
    • Xianliang Dai
    • Li Hua
    • Yihong Chen
    • Jiamei Wang
    • Jingyi Li
    • Feng Wu
    • Yanda Zhang
    • Jiyuan Su
    • Zonggui Wu
    • Chun Liang
  • View Affiliations / Copyright

    Affiliations: Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
    Copyright: © Dai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3-12
    |
    Published online on: March 30, 2018
       https://doi.org/10.3892/ijmm.2018.3605
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

A variety of cells and cytokines have been shown to be involved in the whole process of hypertension. Data from experimental and clinical studies on hypertension have confirmed the key roles of immune cells and inflammation in the process. Dysfunction of the thymus, which modulates the development and maturation of lymphocytes, has been shown to be associated with the severity of hypertension. Furthermore, gradual atrophy, functional decline or loss of the thymus has been revealed to be associated with aging. The restoration or enhancement of thymus function via upregulation in the expression of thymus transcription factors forkhead box N1 or thymus transplantation may provide an option to halt or reverse the pathological process of hypertension. Therefore, the thymus may be key in hypertension and associated target organ damage, and may provide a novel treatment strategy for the clinical management of patients with hypertension in addition to different commercial drugs. The purpose of this review is to summarize and discuss the advances in our understanding of the impact of thymus function on hypertension from data from animal and human studies, and the potential mechanisms.
View Figures

Figure 1

Figure 2

View References

1 

Cavasin MA, Liao TD, Yang XP, Yang JJ and Carretero OA: Decreased endogenous levels of Ac-SDKP promote organ fibrosis. Hypertension. 50:130–136. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Neutel JM, Giles TD, Punzi H, Weiss RJ, Li H and Finck A: Long-term safety of nebivolol and valsartan combination therapy in patients with hypertension: An open-label, single-arm, multicenter study. J Am Soc Hypertens. 8:915–920. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Safaeian L, Hajhashemi V, Haghjoo Javanmard S and Sanaye Naderi H: The effect of protocatechuic acid on blood pressure and oxidative stress in glucocorticoid-induced hypertension in rat. Iran J Pharm Res. 15(Suppl): S83–S91. 2016.

4 

Chmielewski V, Drupt F and Morfin R: Dexamethasone-induced apoptosis of mouse thymocytes: Prevention by native 7alpha-hydroxysteroids. Immunol Cell Biol. 78:238–246. 2000. View Article : Google Scholar : PubMed/NCBI

5 

Walters SN, Webster KE, Daley S and Grey ST: A role for intrathymic B cells in the generation of natural regulatory T cells. J Immunol. 193:170–176. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R and Sempowski GD: Thymic involution and immune reconstitution. Trends Immunol. 30:366–373. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Murray JM, Kaufmann GR, Hodgkin PD, Lewin SR, Kelleher AD, Davenport MP and Zaunders JJ: Naive T cells are maintained by thymic output in early ages but by proliferation without phenotypic change after age twenty. Immunol Cell Biol. 81:487–495. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Ruan L, Zhang Z, Mu L, Burnley P, Wang L, Coder B, Zhuge Q and Su DM: Biological significance of FoxN1 gain-of-function mutations during T and B lymphopoiesis in juvenile mice. Cell Death Dis. 5:e14572014. View Article : Google Scholar : PubMed/NCBI

9 

Fukuda S, Tsuchikura S and Iida H: Age-related changes in blood pressure, hematological values, concentrations of serum biochemical constituents and weights of organs in the SHR/Izm, SHRSP/Izm and WKY/Izm. Exp Anim. 53:67–72. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Rodriguez-Iturbe B and Johnson RJ: The role of renal microvascular disease and interstitial inflammation in salt-sensitive hypertension. Hypertens Res. 33:975–980. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Svendsen UG: The importance of thymus in the pathogenesis of the chronic phase of hypertension in mice following partial infarction of the kidney. Acta Pathol Microbiol Scand A. 85:539–547. 1977.PubMed/NCBI

12 

Svendsen UG: The effect of penicillamine on blood pressure and vascular disease in mice with infarct-kidney hypertension. Scand J Rheumatol. 8:81–86. 1979. View Article : Google Scholar : PubMed/NCBI

13 

Svendsen UG: The role of thymus for the development and prognosis of hypertension and hypertensive vascular disease in mice following renal infarction. Acta Pathol Microbiol Scand A. 84:235–243. 1976.PubMed/NCBI

14 

Ba D, Takeichi N, Kodama T and Kobayashi H: Restoration of T cell depression and suppression of blood pressure in spontaneously hypertensive rats (SHR) by thymus grafts or thymus extracts. J Immunol. 128:1211–1216. 1982.PubMed/NCBI

15 

Bento-de-Souza L, Victor JR, Bento-de-Souza LC, Arrais-Santos M, Rangel-Santos AC, Pereira-Costa É, Raniero-Fernandes E, Seixas-Duarte MI, Oliveira-Filho JB and Silva Duarte AJ: Constitutive expression of genes encoding notch receptors and ligands in developing lymphocytes, nTreg cells and dendritic cells in the human thymus. Results Immunol. 6:15–20. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Plum J, De Smedt M, Leclercq G, Taghon T, Kerre T and Vandekerckhove B: Human intrathymic development: A selective approach. Semin Immunopathol. 30:411–423. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Hu Z, Lancaster JN and Ehrlich LI: The contribution of chemokines and migration to the induction of central tolerance in the Thymus. Front Immunol. 6:3982015. View Article : Google Scholar : PubMed/NCBI

18 

Hu Z, Lancaster JN, Sasiponganan C and Ehrlich LI: CCR4 promotes medullary entry and thymocyte-dendritic cell interactions required for central tolerance. J Exp Med. 212:1947–1965. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Love PE and Bhandoola A: Signal integration and crosstalk during thymocyte migration and emigration. Nat Rev Immunol. 11:469–477. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Richards DM, Delacher M, Goldfarb Y, Kägebein D, Hofer AC, Abramson J and Feuerer M: Treg cell differentiation: From Thymus to peripheral tissue. Prog Mol Biol Transl Sci. 136:175–205. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S, Jiang S, Kuchroo VK, Mathis D, Roncarolo MG, et al: Regulatory T cells: Recommendations to simplify the nomenclature. Nat Immunol. 14:307–308. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Bod L, Douguet L, Auffray C, Lengagne R, Bekkat F, Rondeau E, Molinier-Frenkel V, Castellano F, Richard Y and Prévost-Blondel A: IL-4-induced gene 1: A negative immune checkpoint controlling B cell differentiation and activation. J Immunol. 200:1027–1038. 2018. View Article : Google Scholar

23 

McLeod JJ, Baker B and Ryan JJ: Mast cell production and response to IL-4 and IL-13. Cytokine. 75:57–61. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Zhang X, Voskens CJ, Sallin M, Maniar A, Montes CL, Zhang Y, Lin W, Li G, Burch E, Tan M, et al: CD137 promotes proliferation and survival of human B cells. J Immunol. 184:787–795. 2010. View Article : Google Scholar

25 

Nilsson G and Nilsson K: Effects of interleukin (IL)-13 on immediate-early response gene expression, phenotype and differentiation of human mast cells. Comparison with IL-4. Eur J Immunol. 25:870–873. 1995. View Article : Google Scholar : PubMed/NCBI

26 

Groves AM, Johnston CJ, Misra RS, Williams JP and Finkelstein JN: Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int J Radiat Biol. 92:754–765. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Francos-Quijorna I, Amo-Aparicio J, Martinez-Muriana A and López-Vales R: IL-4 drives microglia and macrophages toward a phenotype conducive for tissue repair and functional recovery after spinal cord injury. Glia. 64:2079–2092. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Czimmerer Z, Varga T, Kiss M, Vázquez CO, Doan-Xuan QM, Rückerl D, Tattikota SG, Yan X, Nagy ZS, Daniel B, et al: The IL-4/STAT6 signaling axis establishes a conserved microRNA signature in human and mouse macrophages regulating cell survival via miR-342-3p. Genome Med. 8:632016. View Article : Google Scholar : PubMed/NCBI

29 

Miossec P, Korn T and Kuchroo VK: Interleukin-17 and type 17 helper T cells. N Engl J Med. 361:888–898. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM and Stockinger B: TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 24:179–189. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR and Weaver CT: Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 441:231–234. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ and Littman DR: The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 126:1121–1133. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Kolls JK and Lindén A: Interleukin-17 family members and inflammation. Immunity. 21:467–476. 2004. View Article : Google Scholar : PubMed/NCBI

34 

Mazidi M, Penson P, Gluba-Brzozka A, Rysz J and Banach M: Relationship between long noncoding RNAs and physiological risk factors of cardiovascular disease. J Clin Lipidol. 11:617–623. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Kaur J: A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014:9431622014. View Article : Google Scholar : PubMed/NCBI

36 

Ahbap E, Sakaci T, Kara E, Sahutoglu T, Koc Y, Basturk T, Sevinc M, Akgol C, Hasbal B, Isleem M, et al: Serum uric acid levels and inflammatory markers with respect to dipping status: A retrospective analysis of hypertensive patients with or without chronic kidney disease. Clin Exp Hypertens. 38:555–563. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Virdis A, Dell'Agnello U and Taddei S: Impact of inflammation on vascular disease in hypertension. Maturitas. 78:179–183. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Taddei S, Caraccio N, Virdis A, Dardano A, Versari D, Ghiadoni L, Ferrannini E, Salvetti A and Monzani F: Low-grade systemic inflammation causes endothelial dysfunction in patients with Hashimoto's thyroiditis. J Clin Endocrinol Metab. 91:5076–5082. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Mirsaeidi M, Omar HR, Ebrahimi G and Campos M: The association between ESR and CRP and systemic hypertension in sarcoidosis. Int J Hypertens. 2016:24025152016. View Article : Google Scholar : PubMed/NCBI

40 

Hezel M, Peleli M, Liu M, Zollbrecht C, Jensen BL, Checa A, Giulietti A, Wheelock CE, Lundberg JO, Weitzberg E and Carlström M: Dietary nitrate improves age-related hypertension and metabolic abnormalities in rats via modulation of angiotensin II receptor signaling and inhibition of superoxide generation. Free Radic Biol Med. 99:87–98. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Victorio JA, Clerici SP, Palacios R, Alonso MJ, Vassallo DV, Jaffe IZ, Rossoni LV and Davel AP: Spironolactone prevents endothelial nitric oxide synthase uncoupling and vascular dysfunction induced by β-adrenergic overstimulation: Role of perivascular adipose tissue. Hypertension. 68:726–735. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Goto K, Fujii K, Onaka U, Abe I and Fujishima M: Renin-angiotensin system blockade improves endothelial dysfunction in hypertension. Hypertension. 36:575–580. 2000. View Article : Google Scholar : PubMed/NCBI

43 

Cheng ZJ, Vaskonen T, Tikkanen I, Nurminen K, Ruskoaho H, Vapaatalo H, Muller D, Park JK, Luft FC and Mervaala EM: Endothelial dysfunction and salt-sensitive hypertension in spontaneously diabetic Goto-Kakizaki rats. Hypertension. 37:433–439. 2001. View Article : Google Scholar : PubMed/NCBI

44 

McIntyre M, Bohr DF and Dominiczak AF: Endothelial function in hypertension: The role of superoxide anion. Hypertension. 34:539–545. 1999. View Article : Google Scholar : PubMed/NCBI

45 

Virdis A, Ghiadoni L, Plantinga Y, Taddei S and Salvetti A: C-reactive protein and hypertension: Is there a causal relationship. Curr Pharm Des. 13:1693–1698. 2007. View Article : Google Scholar

46 

Bautista LE, Vera LM, Arenas IA and Gamarra G: Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J Hum Hypertens. 19:149–154. 2005. View Article : Google Scholar

47 

Lakoski SG, Cushman M, Palmas W, Blumenthal R, D'Agostino RB Jr and Herrington DM: The relationship between blood pressure and C-reactive protein in the multi-ethnic study of atherosclerosis (MESA). J Am Coll Cardiol. 46:1869–1874. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Schiffrin EL: Immune mechanisms in hypertension and vascular injury. Clin Sci (Lond). 126:267–274. 2014. View Article : Google Scholar

49 

Blake GJ, Rifai N, Buring JE and Ridker PM: Blood pressure, C-reactive protein, and risk of future cardiovascular events. Circulation. 108:2993–2999. 2003. View Article : Google Scholar : PubMed/NCBI

50 

Bermudez EA, Rifai N, Buring J, Manson JE and Ridker PM: Interrelationships among circulating interleukin-6, C-reactive protein, and traditional cardiovascular risk factors in women. Arterioscler Thromb Vasc Biol. 22:1668–1673. 2002. View Article : Google Scholar : PubMed/NCBI

51 

Chae CU, Lee RT, Rifai N and Ridker PM: Blood pressure and inflammation in apparently healthy men. Hypertension. 38:399–403. 2001. View Article : Google Scholar : PubMed/NCBI

52 

Yamada S, Gotoh T, Nakashima Y, Kayaba K, Ishikawa S, Nago N, Nakamura Y, Itoh Y and Kajii E: Distribution of serum C-reactive protein and its association with atherosclerotic risk factors in a Japanese population: Jichi medical school cohort study. Am J Epidemiol. 153:1183–1190. 2001. View Article : Google Scholar : PubMed/NCBI

53 

Ford ES and Giles WH: Serum C-reactive protein and fibrinogen concentrations and self-reported angina pectoris and myocardial infarction: Findings from national health and nutrition examination survey III. J Clin Epidemiol. 53:95–102. 2000. View Article : Google Scholar : PubMed/NCBI

54 

Rohde LE, Hennekens CH and Ridker PM: Survey of C-reactive protein and cardiovascular risk factors in apparently healthy men. Am J Cardiol. 84:1018–1022. 1999. View Article : Google Scholar : PubMed/NCBI

55 

Venugopal SK, Devaraj S, Yuhanna I, Shaul P and Jialal I: Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation. 106:1439–1441. 2002. View Article : Google Scholar : PubMed/NCBI

56 

Verma S, Li SH, Badiwala MV, Weisel RD, Fedak PW, Li RK, Dhillon B and Mickle DA: Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation. 105:1890–1896. 2002. View Article : Google Scholar : PubMed/NCBI

57 

Verma S, Wang CH, Li SH, Dumont AS, Fedak PW, Badiwala MV, Dhillon B, Weisel RD, Li RK, Mickle DA and Stewart DJ: A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 106:913–919. 2002. View Article : Google Scholar : PubMed/NCBI

58 

Romero JC and Reckelhoff JF: State-of-the-Art lecture. Role of angiotensin and oxidative stress in essential hypertension. Hypertension. 34:943–949. 1999. View Article : Google Scholar : PubMed/NCBI

59 

Mervaala E, Müller DN, Schmidt F, Park JK, Gross V, Bader M, Breu V, Ganten D, Haller H and Luft FC: Blood pressure-independent effects in rats with human renin and angiotensinogen genes. Hypertension. 35:587–594. 2000. View Article : Google Scholar : PubMed/NCBI

60 

Muller DN, Dechend R, Mervaala EM, Park JK, Schmidt F, Fiebeler A, Theuer J, Breu V, Ganten D, Haller H and Luft FC: NF-kappaB inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension. 35:193–201. 2000. View Article : Google Scholar : PubMed/NCBI

61 

Müller DN, Mervaala EM, Dechend R, Fiebeler A, Park JK, Schmidt F, Theuer J, Breu V, Mackman N, Luther T, et al: Angiotensin II (AT(1)) receptor blockade reduces vascular tissue factor in angiotensin II-induced cardiac vasculopathy. Am J Pathol. 157:111–122. 2000. View Article : Google Scholar : PubMed/NCBI

62 

Ji Q, Cheng G, Ma N, Huang Y, Lin Y, Zhou Q, Que B, Dong J, Zhou Y and Nie S: Circulating Th1, Th2, and Th17 levels in hypertensive patients. Dis Markers. 2017:71462902017. View Article : Google Scholar : PubMed/NCBI

63 

McMaster WG, Kirabo A, Madhur MS and Harrison DG: Inflammation, immunity, and hypertensive end-organ damage. Circ Res. 116:1022–1033. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ and Harrison DG: Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 55:500–507. 2010. View Article : Google Scholar :

65 

De Ciuceis C, Rossini C, La Boria E, Porteri E, Petroboni B, Gavazzi A, Sarkar A, Rosei EA and Rizzoni D: Immune mechanisms in hypertension. High Blood Press Cardiovasc Prev. 21:227–234. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Dai X, Huang S, He Z, Wu F, Ding R, Chen Y, Liang C and Wu Z: Dysfunction of the thymus in mice with hypertension. Exp Ther Med. 13:1386–1392. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Ebringer A and Doyle AE: Raised serum IgG levels in hypertension. Br Med J. 2:146–148. 1970. View Article : Google Scholar : PubMed/NCBI

68 

Leibowitz A and Schiffrin EL: Immune mechanisms in hypertension. Curr Hypertens Rep. 13:465–472. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Lin J, Yang L, Silva HM, Trzeciak A, Choi Y, Schwab SR, Dustin ML and Lafaille JJ: Increased generation of Foxp3(+) regulatory T cells by manipulating antigen presentation in the thymus. Nat Commun. 7:105622016. View Article : Google Scholar : PubMed/NCBI

70 

Wing K and Sakaguchi S: Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol. 11:7–13. 2010. View Article : Google Scholar

71 

Mellanby RJ, Thomas DC and Lamb J: Role of regulatory T-cells in autoimmunity. Clin Sci (Lond). 116:639–649. 2009. View Article : Google Scholar

72 

Piccirillo CA, d'Hennezel E, Sgouroudis E and Yurchenko E: CD4+Foxp3+ regulatory T cells in the control of autoimmunity: In vivo veritas. Curr Opin Immunol. 20:655–662. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Takeichi N, Suzuki K and Kobayashi H: Characterization of immunological depression in spontaneously hypertensive rats. Eur J Immunol. 11:483–487. 1981. View Article : Google Scholar : PubMed/NCBI

74 

Olsen F: Transfer of arterial hypertension by splenic cells from DOCA-salt hypertensive and renal hypertensive rats to normotensive recipients. Acta Pathol Microbiol Scand C. 88:1–5. 1980.PubMed/NCBI

75 

Takeichi N, Suzuki K, Okayasu T and Kobayashi H: Immunological depression in spontaneously hypertensive rats. Clin Exp Immunol. 40:120–126. 1980.PubMed/NCBI

76 

Svendsen UG: Evidence for an initial, thymus independent and a chronic, thymus dependent phase of DOCA and salt hypertension in mice. Acta Pathol Microbiol Scand A. 84:523–528. 1976.PubMed/NCBI

77 

Marvar PJ, Vinh A, Thabet S, Lob HE, Geem D, Ressler KJ and Harrison DG: T lymphocytes and vascular inflammation contribute to stress-dependent hypertension. Biol Psychiatry. 71:774–782. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A and Weyand CM: Inflammation, immunity, and hypertension. Hypertension. 57:132–140. 2011. View Article : Google Scholar

79 

Muller DN, Kvakan H and Luft FC: Immune-related effects in hypertension and target-organ damage. Curr Opin Nephrol Hypertens. 20:113–117. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Calame DG, Mueller-Ortiz SL and Wetsel RA: Innate and adaptive immunologic functions of complement in the host response to Listeria monocytogenes infection. Immunobiology. 221:1407–1417. 2016. View Article : Google Scholar : PubMed/NCBI

81 

D'Alincourt Salazar M, Manuel ER, Tsai W, D'Apuzzo M, Goldstein L, Blazar BR and Diamond DJ: Evaluation of innate and adaptive immunity contributing to the antitumor effects of PD1 blockade in an orthotopic murine model of pancreatic cancer. Oncoimmunology. 5:e11601842016. View Article : Google Scholar : PubMed/NCBI

82 

Weyd H: More than just innate affairs-on the role of annexins in adaptive immunity. Biol Chem. 397:1017–1029. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Kvakan H, Luft FC and Muller DN: Role of the immune system in hypertensive target organ damage. Trends Cardiovasc Med. 19:242–246. 2009. View Article : Google Scholar

84 

Vergaro G, Prud'homme M, Fazal L, Merval R, Passino C, Emdin M, Samuel JL, Cohen Solal A and Delcayre C: Inhibition of Galectin-3 pathway prevents isoproterenol-induced left ventricular dysfunction and fibrosis in mice. Hypertension. 67:606–612. 2016.PubMed/NCBI

85 

Wenzel U, Turner JE, Krebs C, Kurts C, Harrison DG and Ehmke H: Immune mechanisms in arterial hypertension. J Am Soc Nephrol. 27:677–686. 2016. View Article : Google Scholar :

86 

Harrison DG: The immune system in hypertension. Trans Am Clin Climatol Assoc. 125:130–140. 2014.PubMed/NCBI

87 

Kossmann S, Hu H, Steven S, Schönfelder T, Fraccarollo D, Mikhed Y, Brahler M, Knorr M, Brandt M, Karbach SH, et al: Inflammatory monocytes determine endothelial nitric-oxide synthase uncoupling and nitro-oxidative stress induced by angiotensin II. J Biol Chem. 289:27540–27550. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Liu J, Yang F, Yang XP, Jankowski M and Pagano PJ: NAD(P)H oxidase mediates angiotensin II-induced vascular macrophage infiltration and medial hypertrophy. Arterioscler Thromb Vasc Biol. 23:776–782. 2003. View Article : Google Scholar : PubMed/NCBI

89 

Wenzel P, Knorr M, Kossmann S, Stratmann J, Hausding M, Schuhmacher S, Karbach SH, Schwenk M, Yogev N, Schulz E, et al: Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation. 124:1370–1381. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Ko EA, Amiri F, Pandey NR, Javeshghani D, Leibovitz E, Touyz RM and Schiffrin EL: Resistance artery remodeling in deoxycorticosterone acetate-salt hypertension is dependent on vascular inflammation: Evidence from m-CSF-deficient mice. Am J Physiol Heart Circ Physiol. 292:H1789–H1795. 2007. View Article : Google Scholar

91 

De Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM and Schiffrin EL: Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: Evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol. 25:2106–2113. 2005. View Article : Google Scholar : PubMed/NCBI

92 

Abais-Battad JM, Rudemiller NP and Mattson DL: Hypertension and immunity: Mechanisms of T cell activation and pathways of hypertension. Curr Opin Nephrol Hypertens. 24:470–474. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Schiffrin EL: The immune system: Role in hypertension. Can J Cardiol. 29:543–548. 2013. View Article : Google Scholar

94 

Verlohren S, Muller DN, Luft FC and Dechend R: Immunology in hypertension, preeclampsia, and target-organ damage. Hypertension. 54:439–443. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Idris-Khodja N, Mian MO, Paradis P and Schiffrin EL: Dual opposing roles of adaptive immunity in hypertension. Eur Heart J. 35:1238–1244. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C and Harrison DG: Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 204:2449–2460. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Zhang W and Victor RG: Calcineurin inhibitors cause renal afferent activation in rats: A novel mechanism of cyclosporine-induced hypertension. Am J Hypertens. 13:999–1004. 2000. View Article : Google Scholar

98 

Rodríguez-Iturbe B, Pons H, Quiroz Y, Gordon K, Rincón J, Chávez M, Parra G, Herrera-Acosta J, Gómez-Garre D, Largo R, et al: Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney Int. 59:2222–2232. 2001. View Article : Google Scholar : PubMed/NCBI

99 

Crowley SD, Frey CW, Gould SK, Griffiths R, Ruiz P, Burchette JL, Howell DN, Makhanova N, Yan M, Kim HS, et al: Stimulation of lymphocyte responses by angiotensin II promotes kidney injury in hypertension. Am J Physiol Renal Physiol. 295:F515–F524. 2008. View Article : Google Scholar : PubMed/NCBI

100 

Wei Z, Spizzo I, Diep H, Drummond GR, Widdop RE and Vinh A: Differential phenotypes of tissue-infiltrating T cells during angiotensin II-induced hypertension in mice. PLoS One. 9:e1148952014. View Article : Google Scholar : PubMed/NCBI

101 

Rosenthal AS: Regulation of the immune response-role of the macrophage. N Engl J Med. 303:1153–1156. 1980. View Article : Google Scholar : PubMed/NCBI

102 

Gordon S: The role of the macrophage in immune regulation. Res Immunol. 149:685–688. 1998. View Article : Google Scholar : PubMed/NCBI

103 

Lam RS, O'Brien-Simpson NM, Holden JA, Lenzo JC and Fong SB: Reynolds EC. Unprimed, M1 and M2 macrophages differentially interact with porphyromonas gingivalis. PLoS One. 11:e01586292016. View Article : Google Scholar : PubMed/NCBI

104 

Mellman I and Steinman RM: Dendritic cells: Specialized and regulated antigen processing machines. Cell. 106:255–258. 2001. View Article : Google Scholar : PubMed/NCBI

105 

Goldschneider I and Cone RE: A central role for peripheral dendritic cells in the induction of acquired thymic tolerance. Trends Immunol. 24:77–81. 2003. View Article : Google Scholar : PubMed/NCBI

106 

Oh J and Shin JS: The role of dendritic cells in central tolerance. Immune Netw. 15:111–120. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Gelosa P, Pignieri A, Gianazza E, Criniti S, Guerrini U, Cappellini MD, Banfi C, Tremoli E and Sironi L: Altered iron homeostasis in an animal model of hypertensive nephropathy: Stroke-prone rats. J Hypertens. 31:2259–2269. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Singh MV, Chapleau MW, Harwani SC and Abboud FM: The immune system and hypertension. Immunol Res. 59:243–253. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Rudemiller N, Lund H, Jacob HJ, Geurts AM and Mattson DL: PhysGen Knockout Program: CD247 modulates blood pressure by altering T-lymphocyte infiltration in the kidney. Hypertension. 63:559–564. 2014. View Article : Google Scholar

110 

Luft FC, Dechend R and Muller DN: Immune mechanisms in angiotensin II-induced target-organ damage. Ann Med. 44(Suppl 1): S49–S54. 2012. View Article : Google Scholar : PubMed/NCBI

111 

Rodríguez-Iturbe B, Franco M, Tapia E, Quiroz Y and Johnson RJ: Renal inflammation, autoimmunity and salt-sensitive hypertension. Clin Exp Pharmacol Physiol. 39:96–103. 2012. View Article : Google Scholar

112 

Moon JY: Recent update of renin-angiotensin-aldosterone system in the pathogenesis of hypertension. Electrolyte Blood Press. 11:41–45. 2013. View Article : Google Scholar

113 

White FN and Grollman A: Autoimmune factors associated with infarction of the kidney. Nephron. 1:93–102. 1964. View Article : Google Scholar : PubMed/NCBI

114 

Rodríguez-Iturbe B, Quiroz Y, Ferrebuz A, Parra G and Vaziri ND: Evolution of renal interstitial inflammation and NF-kappaB activation in spontaneously hypertensive rats. Am J Nephrol. 24:587–594. 2004. View Article : Google Scholar : PubMed/NCBI

115 

Rodríguez-Iturbe B, Ferrebuz A, Vanegas V, Quiroz Y, Mezzano S and Vaziri ND: Early and sustained inhibition of nuclear factor-kappaB prevents hypertension in spontaneously hypertensive rats. J Pharmacol Exp Ther. 315:51–57. 2005. View Article : Google Scholar : PubMed/NCBI

116 

Marvar PJ, Gordon FJ and Harrison DG: Blood pressure control: Salt gets under your skin. Nat Med. 15:487–488. 2009. View Article : Google Scholar : PubMed/NCBI

117 

Crowley SD, Song YS, Lin EE, Griffiths R, Kim HS and Ruiz P: Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am J Physiol Regul Integr Comp Physiol. 298:R1089–R1097. 2010. View Article : Google Scholar : PubMed/NCBI

118 

De Miguel C, Das S, Lund H and Mattson DL: T lymphocytes mediate hypertension and kidney damage in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol. 298:R1136–R1142. 2010. View Article : Google Scholar : PubMed/NCBI

119 

Yang T, Zollbrecht C, Winerdal ME, Zhuge Z, Zhang XM, Terrando N, Checa A, Sällström J, Wheelock CE, Winqvist O, et al: Genetic abrogation of adenosine A3 receptor prevents uninephrectomy and high salt-induced hypertension. J Am Heart Assoc. 5:e0038682016. View Article : Google Scholar : PubMed/NCBI

120 

Dong L, Nordlohne J, Ge S, Hertel B, Melk A, Rong S, Haller H and von Vietinghoff S: T Cell CX3CR1 Mediates excess atherosclerotic inflammation in renal impairment. J Am Soc Nephrol. 27:1753–1764. 2016. View Article : Google Scholar :

121 

Lucchini M, Fifer WP, Sahni R and Signorini MG: Novel heart rate parameters for the assessment of autonomic nervous system function in premature infants. Physiol Meas. 37:1436–1446. 2016. View Article : Google Scholar : PubMed/NCBI

122 

Reijman S, Bakermans-Kranenburg MJ, Hiraoka R, Crouch JL, Milner JS, Alink LR and van IJzendoorn MH: Baseline functioning and stress reactivity in maltreating parents and at-risk adults: Review and meta-analyses of autonomic nervous system studies. Child Maltreat. 1077559516659937. 2016. View Article : Google Scholar : PubMed/NCBI

123 

Olofsson PS, Rosas-Ballina M, Levine YA and Tracey KJ: Rethinking inflammation: Neural circuits in the regulation of immunity. Immunol Rev. 248:188–204. 2012. View Article : Google Scholar : PubMed/NCBI

124 

Marvar PJ, Thabet SR, Guzik TJ, Lob HE, McCann LA, Weyand C, Gordon FJ and Harrison DG: Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ Res. 107:263–270. 2010. View Article : Google Scholar : PubMed/NCBI

125 

Ganta CK, Lu N, Helwig BG, Blecha F, Ganta RR, Zheng L, Ross CR, Musch TI, Fels RJ and Kenney MJ: Central angiotensin II-enhanced splenic cytokine gene expression is mediated by the sympathetic nervous system. Am J Physiol Heart Circ Physiol. 289:H1683–H1691. 2005. View Article : Google Scholar : PubMed/NCBI

126 

Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW and Tracey KJ: Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 405:458–462. 2000. View Article : Google Scholar : PubMed/NCBI

127 

Ader R, Felten D and Cohen N: Interactions between the brain and the immune system. Annu Rev Pharmacol Toxicol. 30:561–602. 1990. View Article : Google Scholar : PubMed/NCBI

128 

Bulloch K and Pomerantz W: Autonomic nervous system innervation of thymic-related lymphoid tissue in wildtype and nude mice. J Comp Neurol. 228:57–68. 1984. View Article : Google Scholar : PubMed/NCBI

129 

Nance DM, Hopkins DA and Bieger D: Re-investigation of the innervation of the thymus gland in mice and rats. Brain Behav Immun. 1:134–147. 1987. View Article : Google Scholar : PubMed/NCBI

130 

Tollefson L and Bulloch K: Dual-label retrograde transport: CNS innervation of the mouse thymus distinct from other mediastinum viscera. J Neurosci Res. 25:20–28. 1990. View Article : Google Scholar : PubMed/NCBI

131 

Roggero E, Besedovsky HO and del Rey A: The role of the sympathetic nervous system in the thymus in health and disease. Neuroimmunomodulation. 18:339–349. 2011. View Article : Google Scholar : PubMed/NCBI

132 

Winklewski PJ, Radkowski M and Demkow U: Relevance of immune-sympathetic nervous system interplay for the development of hypertension. Adv Exp Med Biol. 884:37–43. 2016. View Article : Google Scholar

133 

Pongratz G and Straub RH: The sympathetic nervous response in inflammation. Arthritis Res Ther. 16:5042014. View Article : Google Scholar : PubMed/NCBI

134 

Fisher JP and Paton JF: The sympathetic nervous system and blood pressure in humans: Implications for hypertension. J Hum Hypertens. 26:463–475. 2012. View Article : Google Scholar

135 

Cupić V, Colić M, Jandrić D, Milojković B and Varagić VM: Xylazine, an alpha 2-adrenergic agonist, induces apoptosis of rat thymocytes and a thymocyte hybridoma line in vitro. Methods Find Exp Clin Pharmacol. 25:5–10. 2003. View Article : Google Scholar

136 

Trotter RN, Stornetta RL, Guyenet PG and Roberts MR: Transneuronal mapping of the CNS network controlling sympathetic outflow to the rat thymus. Auton Neurosci. 131:9–20. 2007. View Article : Google Scholar

137 

Elenkov IJ, Wilder RL, Chrousos GP and Vizi ES: The sympathetic nerve-an integrative interface between two supersystems: The brain and the immune system. Pharmacol Rev. 52:595–638. 2000.PubMed/NCBI

138 

Vizi ES, Orsó E, Osipenko ON, Haskó G and Elenkov IJ: Neurochemical, electrophysiological and immunocytochemical evidence for a noradrenergic link between the sympathetic nervous system and thymocytes. Neuroscience. 68:1263–1276. 1995. View Article : Google Scholar : PubMed/NCBI

139 

ThyagaRajan S, Madden KS, Teruya B, Stevens SY and Felten DL: Bellinger DL. Age-associated alterations in sympathetic noradrenergic innervation of primary and secondary lymphoid organs in female Fischer 344 rats. J Neuroimmunol. 233:54–64. 2011. View Article : Google Scholar :

140 

Leposavić G, Ugresić N, Pejcić-Karapetrović B and Mićić M: Castration of sexually immature rats affects sympathetic innervation of the adult thymus. Neuroimmunomodulation. 7:59–67. 2000. View Article : Google Scholar

141 

Leposavić G, Mićić M, Ugresić N, Bogojević M and Isaković K: Components of sympathetic innervation of the rat thymus during late fetal and postnatal development: Histofluorescence and biochemical study. Sympathetic innervation of the rat thymus Thymus. 19:77–87. 1992.

142 

Vink EE, Boer A, Verloop WL, Spiering W, Voskuil M, Vonken E, Hoogduin JM, Leiner T, Bots ML and Blankestijn PJ: The effect of renal denervation on kidney oxygenation as determined by BOLD MRI in patients with hypertension. Eur Radiol. 25:1984–1992. 2015. View Article : Google Scholar : PubMed/NCBI

143 

Abboud FM, Harwani SC and Chapleau MW: Autonomic neural regulation of the immune system: Implications for hypertension and cardiovascular disease. Hypertension. 59:755–762. 2012. View Article : Google Scholar : PubMed/NCBI

144 

Heran BS, Galm BP and Wright JM: Blood pressure lowering efficacy of alpha blockers for primary hypertension. Cochrane Database Syst Rev. CD004643. 2012.

145 

Esler M: The sympathetic nervous system through the ages: From Thomas Willis to resistant hypertension. Exp Physiol. 96:611–622. 2011.PubMed/NCBI

146 

Frishman WH: Saunders E. β-adrenergic blockers. J Clin Hypertens (Greenwich). 13:649–653. 2011. View Article : Google Scholar

147 

Abboud FM: The Walter B. Cannon Memorial Award Lecture, 2009. Physiology in perspective: The wisdom of the body. In search of autonomic balance: The good, the bad, and the ugly. Am J Physiol Regul Integr Comp Physiol. 298:R1449–R1467. 2010. View Article : Google Scholar : PubMed/NCBI

148 

Zucker IH, Hackley JF, Cornish KG, Hiser BA, Anderson NR, Kieval R, Irwin ED, Serdar DJ, Peuler JD and Rossing MA: Chronic baroreceptor activation enhances survival in dogs with pacing-induced heart failure. Hypertension. 50:904–910. 2007. View Article : Google Scholar : PubMed/NCBI

149 

Li M, Zheng C, Sato T, Kawada T, Sugimachi M and Sunagawa K: Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 109:120–124. 2004. View Article : Google Scholar

150 

Hering D and Schlaich M: The role of central nervous system mechanisms in resistant hypertension. Curr Hypertens Rep. 17:582015. View Article : Google Scholar : PubMed/NCBI

151 

Brody MJ, Varner KJ and Vasquez EC: Lewis SJ. Central nervous system and the pathogenesis of hypertension. Sites and mechanisms. Hypertension. 18(Suppl 5): pp. III7–III12. 1991, View Article : Google Scholar

152 

Zubcevic J, Waki H, Raizada MK and Paton JF: Autonomic-immune-vascular interaction: An emerging concept for neurogenic hypertension. Hypertension. 57:1026–1033. 2011. View Article : Google Scholar : PubMed/NCBI

153 

Raizada MK and Paton JF: Recent advances in the renin-angiotensin system: Angiotensin-converting enzyme 2 and (pro) renin receptor. Exp Physiol. 93:517–518. 2008. View Article : Google Scholar : PubMed/NCBI

154 

Wyss JM: The role of the sympathetic nervous system in hypertension. Curr Opin Nephrol Hypertens. 2:265–273. 1993. View Article : Google Scholar : PubMed/NCBI

155 

Felder RB, Francis J, Zhang ZH, Wei SG, Weiss RM and Johnson AK: Heart failure and the brain: New perspectives. Am J Physiol Regul Integr Comp Physiol. 284:R259–R276. 2003. View Article : Google Scholar : PubMed/NCBI

156 

Eikelis N, Hering D, Marusic P, Walton A, Lambert E, Krum H, Lambert G, Esler M and Schlaich M: [Op.7d.10]. The effect of renal denervation on adipokines in patients with resistant hypertension. J Hypertens. 34(Suppl 2): e972016. View Article : Google Scholar

157 

Rosa J, Widimsky P, Waldauf P, Lambert L, Zelinka T, Taborsky M, Branny M, Tousek P, Petrak O, Curila K, et al: [Op.7d.09] the role of adding spironolactone and renal denervation in true resistant hypertension. One-year outcomes of randomized prague-15 study. J Hypertens. 34(Suppl 2): e96–e97. 2016. View Article : Google Scholar

158 

Rosa J, Widimský P, Waldauf P, Lambert L, Zelinka T, Táborský M, Branny M, Toušek P, Petrák O, Čurila K, et al: Role of adding spironolactone and renal denervation in true resistant hypertension: One-year outcomes of randomized PRAGUE-15 study. Hypertension. 67:397–403. 2016.

159 

Calhoun DA: Spironolactone versus renal nerve denervation for treatment of uncontrolled resistant hypertension. J Hypertens. 34:1701–1703. 2016. View Article : Google Scholar : PubMed/NCBI

160 

Qi XY, Cheng B, Li YL and Wang YF: Renal denervation, adjusted drugs, or combined therapy for resistant hypertension: A meta-regression. Medicine (Baltimore). 95:e39392016. View Article : Google Scholar

161 

Esler M: Renal denervation for treatment of drug-resistant hypertension. Trends Cardiovasc Med. 25:107–115. 2015. View Article : Google Scholar

162 

Esler MD, Krum H, Schlaich M, Schmieder RE, Böhm M and Sobotka PA: Symplicity HTN-2 Investigators: Renal sympathetic denervation for treatment of drug-resistant hypertension: One-year results from the Symplicity HTN-2 randomized, controlled trial. Circulation. 126:2976–2982. 2012. View Article : Google Scholar : PubMed/NCBI

163 

Fink GD and Osborn JW: Renal nerves: Time for reassessment of their role in hypertension. Am J Hypertens. 27:1245–1247. 2014. View Article : Google Scholar : PubMed/NCBI

164 

Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M, Flack JM, Katzen BT, Lea J, Lee DP, et al: Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J. 36:219–227. 2015. View Article : Google Scholar :

165 

Schlaich MP, Esler MD, Fink GD, Osborn JW and Euler DE: Targeting the sympathetic nervous system: Critical issues in patient selection, efficacy, and safety of renal denervation. Hypertension. 63:426–432. 2014. View Article : Google Scholar

166 

Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, et al: Catheter-based renal sympathetic denervation for resistant hypertension: A multicentre safety and proof-of-principle cohort study. Lancet. 373:1275–1281. 2009. View Article : Google Scholar : PubMed/NCBI

167 

Symplicity HTN-2 Investigators; Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE and Böhm M: Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): A randomised controlled trial. Lancet. 376:1903–1909. 2010. View Article : Google Scholar : PubMed/NCBI

168 

Symplicity HTN-1 Investigators: Catheter-based renal sympathetic denervation for resistant hypertension: Durability of blood pressure reduction out to 24 months. Hypertension. 57:911–917. 2011. View Article : Google Scholar : PubMed/NCBI

169 

Worthley SG, Tsioufis CP, Worthley MI, Sinhal A, Chew DP, Meredith IT, Malaiapan Y and Papademetriou V: Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: The EnligHTN I trial. Eur Heart J. 34:2132–2140. 2013. View Article : Google Scholar : PubMed/NCBI

170 

Guo J, Feng Y, Barnes P, Huang FF, Idell S and Su DM: Shams H. Deletion of FoxN1 in the thymic medullary epithelium reduces peripheral T cell responses to infection and mimics changes of aging. PLoS One. 7:e346812012. View Article : Google Scholar : PubMed/NCBI

171 

Chidgey A, Dudakov J, Seach N and Boyd R: Impact of niche aging on thymic regeneration and immune reconstitution. Semin Immunol. 19:331–340. 2007. View Article : Google Scholar : PubMed/NCBI

172 

Taub DD and Longo DL: Insights into thymic aging and regeneration. Immunol Rev. 205:72–93. 2005. View Article : Google Scholar : PubMed/NCBI

173 

Fry TJ and Mackall CL: Current concepts of thymic aging. Springer Semin Immunopathol. 24:7–22. 2002. View Article : Google Scholar : PubMed/NCBI

174 

Zook EC, Krishack PA, Zhang S, Zeleznik-Le NJ, Firulli AB and Witte PL: Le PT. Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells. Blood. 118:5723–5731. 2011. View Article : Google Scholar : PubMed/NCBI

175 

Swain S, Clise-Dwyer K and Haynes L: Homeostasis and the age-associated defect of CD4 T cells. Semin Immunol. 17:370–377. 2005. View Article : Google Scholar : PubMed/NCBI

176 

Haynes BF, Markert ML, Sempowski GD, Patel DD and Hale LP: The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu Rev Immunol. 18:529–560. 2000. View Article : Google Scholar : PubMed/NCBI

177 

Stutman O and Good RA: Duration of thymic function. Ser Haematol. 7:505–523. 1974.PubMed/NCBI

178 

Thoman ML: The pattern of T lymphocyte differentiation is altered during thymic involution. Mech Ageing Dev. 82:155–170. 1995. View Article : Google Scholar

179 

Ortman CL, Dittmar KA, Witte PL and Le PT: Molecular characterization of the mouse involuted thymus: Aberrations in expression of transcription regulators in thymocyte and epithelial compartments. Int Immunol. 14:813–822. 2002. View Article : Google Scholar : PubMed/NCBI

180 

Bredenkamp N, Nowell CS and Blackburn CC: Regeneration of the aged thymus by a single transcription factor. Development. 141:1627–1637. 2014. View Article : Google Scholar : PubMed/NCBI

181 

Žuklys S, Handel A, Zhanybekova S, Govani F, Keller M, Maio S, Mayer CE, Teh HY, Hafen K, Gallone G, et al: Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells. Nat Immunol. 17:1206–1215. 2016. View Article : Google Scholar : PubMed/NCBI

182 

Kim J, Wang S, Hyun J, Choi SS, Cha H and Ock M: Jung Y. Hepatic stellate cells express thymosin Beta 4 in chronically damaged liver. PLoS One. 10:e01227582015. View Article : Google Scholar : PubMed/NCBI

183 

Paulussen M, Landuyt B, Schoofs L, Luyten W and Arckens L: Thymosin beta 4 mRNA and peptide expression in phagocytic cells of different mouse tissues. Peptides. 30:1822–1832. 2009. View Article : Google Scholar : PubMed/NCBI

184 

Low TL and Goldstein AL: Chemical characterization of thymosin beta 4. J Biol Chem. 257:1000–1006. 1982.PubMed/NCBI

185 

Low TL, Hu SK and Goldstein AL: Complete amino acid sequence of bovine thymosin beta 4: A thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci USA. 78:1162–1166. 1981. View Article : Google Scholar : PubMed/NCBI

186 

Dedova IV, Nikolaeva OP, Safer D, De La, Cruz EM and dos Remedios CG: Thymosin beta4 induces a conformational change in actin monomers. Biophys J. 90:985–992. 2006. View Article : Google Scholar

187 

Ballweber E, Hannappel E, Huff T, Stephan H, Haener M, Taschner N, Stoffler D, Aebi U and Mannherz HG: Polymerisation of chemically cross-linked actin: Thymosin beta(4) complex to filamentous actin: Alteration in helical parameters and visualisation of thymosin beta(4) binding on F-actin. J Mol Biol. 315:613–625. 2002. View Article : Google Scholar : PubMed/NCBI

188 

Safer D, Elzinga M and Nachmias VT: Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J Biol Chem. 266:4029–4032. 1991.PubMed/NCBI

189 

Pearse G: Normal structure, function and histology of the thymus. Toxicol Pathol. 34:504–514. 2006. View Article : Google Scholar : PubMed/NCBI

190 

Bock-Marquette I, Saxena A, White MD, Dimaio JM and Srivastava D: Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature. 432:466–472. 2004. View Article : Google Scholar : PubMed/NCBI

191 

Sosne G, Szliter EA, Barrett R, Kernacki KA, Kleinman H and Hazlett LD: Thymosin beta 4 promotes corneal wound healing and decreases inflammation in vivo following alkali injury. Exp Eye Res. 74:293–299. 2002. View Article : Google Scholar : PubMed/NCBI

192 

Malinda KM, Sidhu GS, Mani H, Banaudha K, Maheshwari RK, Goldstein AL and Kleinman HK: Thymosin beta4 accelerates wound healing. J Invest Dermatol. 113:364–368. 1999. View Article : Google Scholar : PubMed/NCBI

193 

Goldstein AL, Hannappel E and Kleinman HK: Thymosin beta4: Actin-sequestering protein moonlights to repair injured tissues. Trends Mol Med. 11:421–429. 2005. View Article : Google Scholar : PubMed/NCBI

194 

Xu BJ, Shyr Y, Liang X, Ma LJ, Donnert EM, Roberts JD, Zhang X, Kon V, Brown NJ, Caprioli RM and Fogo AB: Proteomic patterns and prediction of glomerulosclerosis and its mechanisms. J Am Soc Nephrol. 16:2967–2975. 2005. View Article : Google Scholar : PubMed/NCBI

195 

Vasilopoulou E, Winyard PJ, Riley PR and Long DA: The role of thymosin-β4 in kidney disease. Expert Opin Biol Ther. 15(Suppl 1): S187–S190. 2015. View Article : Google Scholar

196 

Zuo Y, Chun B, Potthoff SA, Kazi N, Brolin TJ, Orhan D, Yang HC, Ma LJ, Kon V, Myöhänen T, et al: Thymosin β4 and its degradation product, Ac-SDKP, are novel reparative factors in renal fibrosis. Kidney Int. 84:1166–1175. 2013. View Article : Google Scholar : PubMed/NCBI

197 

Ghosh AK, Murphy SB and Kishore R: Vaughan DE. Global gene expression profiling in PAI-1 knockout murine heart and kidney: Molecular basis of cardiac-selective fibrosis. PLoS One. 8:e638252013. View Article : Google Scholar : PubMed/NCBI

198 

Ma LJ and Fogo AB: PAI-1 and kidney fibrosis. Front Biosci (Landmark Ed). 14:2028–2041. 2009. View Article : Google Scholar

199 

Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien KR and Riley PR: Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature. 445:177–182. 2007. View Article : Google Scholar

200 

Grant DS, Rose W, Yaen C, Goldstein A, Martinez J and Kleinman H: Thymosin beta4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis. 3:125–135. 1999. View Article : Google Scholar

201 

Liao TD, Yang XP, D'Ambrosio M, Zhang Y, Rhaleb NE and Carretero OA: N-acetyl-seryl-aspartyl-lysyl-proline attenuates renal injury and dysfunction in hypertensive rats with reduced renal mass: Council for high blood pressure research. Hypertension. 55:459–467. 2010. View Article : Google Scholar

202 

Cavasin MA, Rhaleb NE, Yang XP and Carretero OA: Prolyl oligopeptidase is involved in release of the antifibrotic peptide Ac-SDKP. Hypertension. 43:1140–1145. 2004. View Article : Google Scholar : PubMed/NCBI

203 

Myöhänen TT, Tenorio-Laranga J, Jokinen B, Vázquez-Sánchez R, Moreno-Baylach MJ, García-Horsman JA and Männistö PT: Prolyl oligopeptidase induces angiogenesis both in vitro and in vivo in a novel regulatory manner. Br J Pharmacol. 163:1666–1678. 2011. View Article : Google Scholar :

204 

García-Horsman JA, Männistö PT and Venäläinen JI: On the role of prolyl oligopeptidase in health and disease. Neuropeptides. 41:1–24. 2007. View Article : Google Scholar : PubMed/NCBI

205 

Myöhänen TT, García-Horsman JA, Tenorio-Laranga J and Männistö PT: Issues about the physiological functions of prolyl oligopeptidase based on its discordant spatial association with substrates and inconsistencies among mRNA, protein levels, and enzymatic activity. J Histochem Cytochem. 57:831–848. 2009. View Article : Google Scholar : PubMed/NCBI

206 

Shibuya K, Kanasaki K, Isono M, Sato H, Omata M, Sugimoto T, Araki S, Isshiki K, Kashiwagi A, Haneda M and Koya D: N-ace tyl-seryl-aspartyl-lysyl-proline prevents renal insufficiency and mesangial matrix expansion in diabetic db/db mice. Diabetes. 54:838–845. 2005. View Article : Google Scholar : PubMed/NCBI

207 

Cingolani OH, Yang XP, Liu YH, Villanueva M, Rhaleb NE and Carretero OA: Reduction of cardiac fibrosis decreases systolic performance without affecting diastolic function in hypertensive rats. Hypertension. 43:1067–1073. 2004. View Article : Google Scholar : PubMed/NCBI

208 

Yang F, Yang XP, Liu YH, Xu J, Cingolani O, Rhaleb NE and Carretero OA: Ac-SDKP reverses inflammation and fibrosis in rats with heart failure after myocardial infarction. Hypertension. 43:229–236. 2004. View Article : Google Scholar

209 

Peng H, Carretero OA, Brigstock DR, Oja-Tebbe N and Rhaleb NE: Ac-SDKP reverses cardiac fibrosis in rats with renovascular hypertension. Hypertension. 42:1164–1170. 2003. View Article : Google Scholar : PubMed/NCBI

210 

Pradelles P, Frobert Y, Creminon C, Liozon E, Massé A and Frindel E: Negative regulator of pluripotent hematopoietic stem cell proliferation in human white blood cells and plasma as analysed by enzyme immunoassay. Biochem Biophys Res Commun. 170:986–993. 1990. View Article : Google Scholar : PubMed/NCBI

211 

Pradelles P, Frobert Y, Créminon C, Ivonine H and Frindel E: Distribution of a negative regulator of haematopoietic stem cell proliferation (AcSDKP) and thymosin beta 4 in mouse tissues. FEBS Lett. 289:171–175. 1991. View Article : Google Scholar : PubMed/NCBI

212 

Hrenak J, Paulis L and Simko F: N-acetyl-seryl-aspartyl-lysy l-proline (Ac-SDKP): Potential target molecule in research of heart, kidney and brain. Curr Pharm Des. 21:5135–5143. 2015. View Article : Google Scholar

213 

Worou ME, Liao TD, D'Ambrosio M, Nakagawa P, Janic B, Peterson EL, Rhaleb NE and Carretero OA: Renal protective effect of N-acetyl-seryl-aspartyl-lysyl-proline in dahl salt-sensitive rats. Hypertension. 66:816–822. 2015. View Article : Google Scholar : PubMed/NCBI

214 

Omata M, Taniguchi H, Koya D, Kanasaki K, Sho R, Kato Y, Kojima R, Haneda M and Inomata N: N-acetyl-seryl-aspartyl-lysyl-proline ameliorates the progression of renal dysfunction and fibrosis in WKY rats with established anti-glomerular basement membrane nephritis. J Am Soc Nephrol. 17:674–685. 2006. View Article : Google Scholar : PubMed/NCBI

215 

Lopez-Ilasaca M, Liu X, Tamura K and Dzau VJ: The angiotensin II type I receptor-associated protein, ATRAP, is a transmembrane protein and a modulator of angiotensin II signaling. Mol Biol Cell. 14:5038–5050. 2003. View Article : Google Scholar : PubMed/NCBI

216 

Daviet L, Lehtonen JY, Tamura K, Griese DP, Horiuchi M and Dzau VJ: Cloning and characterization of ATRAP, a novel protein that interacts with the angiotensin II type 1 receptor. J Biol Chem. 274:17058–17062. 1999. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Dai X, Hua L, Chen Y, Wang J, Li J, Wu F, Zhang Y, Su J, Wu Z, Liang C, Liang C, et al: Mechanisms in hypertension and target organ damage: Is the role of the thymus key? (Review). Int J Mol Med 42: 3-12, 2018.
APA
Dai, X., Hua, L., Chen, Y., Wang, J., Li, J., Wu, F. ... Liang, C. (2018). Mechanisms in hypertension and target organ damage: Is the role of the thymus key? (Review). International Journal of Molecular Medicine, 42, 3-12. https://doi.org/10.3892/ijmm.2018.3605
MLA
Dai, X., Hua, L., Chen, Y., Wang, J., Li, J., Wu, F., Zhang, Y., Su, J., Wu, Z., Liang, C."Mechanisms in hypertension and target organ damage: Is the role of the thymus key? (Review)". International Journal of Molecular Medicine 42.1 (2018): 3-12.
Chicago
Dai, X., Hua, L., Chen, Y., Wang, J., Li, J., Wu, F., Zhang, Y., Su, J., Wu, Z., Liang, C."Mechanisms in hypertension and target organ damage: Is the role of the thymus key? (Review)". International Journal of Molecular Medicine 42, no. 1 (2018): 3-12. https://doi.org/10.3892/ijmm.2018.3605
Copy and paste a formatted citation
x
Spandidos Publications style
Dai X, Hua L, Chen Y, Wang J, Li J, Wu F, Zhang Y, Su J, Wu Z, Liang C, Liang C, et al: Mechanisms in hypertension and target organ damage: Is the role of the thymus key? (Review). Int J Mol Med 42: 3-12, 2018.
APA
Dai, X., Hua, L., Chen, Y., Wang, J., Li, J., Wu, F. ... Liang, C. (2018). Mechanisms in hypertension and target organ damage: Is the role of the thymus key? (Review). International Journal of Molecular Medicine, 42, 3-12. https://doi.org/10.3892/ijmm.2018.3605
MLA
Dai, X., Hua, L., Chen, Y., Wang, J., Li, J., Wu, F., Zhang, Y., Su, J., Wu, Z., Liang, C."Mechanisms in hypertension and target organ damage: Is the role of the thymus key? (Review)". International Journal of Molecular Medicine 42.1 (2018): 3-12.
Chicago
Dai, X., Hua, L., Chen, Y., Wang, J., Li, J., Wu, F., Zhang, Y., Su, J., Wu, Z., Liang, C."Mechanisms in hypertension and target organ damage: Is the role of the thymus key? (Review)". International Journal of Molecular Medicine 42, no. 1 (2018): 3-12. https://doi.org/10.3892/ijmm.2018.3605
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team