|
1
|
Stupp R, Toms SA and Kesari S: Treatment
for patients with newly diagnosed glioblastoma-reply. JAMA.
315:2348–2349. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Omuro A and DeAngelis LM: Glioblastoma and
other malignant gliomas: A clinical review. JAMA. 310:1842–1850.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Louis DN, Perry A, Reifenberger G, von
Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD,
Kleihues P and Ellison DW: The 2016 World Health Organization
classification of tumors of the central nervous system: A summary.
Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
DeWitt JC, Mock A and Louis DN: The 2016
WHO classification of central nervous system tumors: What
neurologists need to know. Curr Opin Neurol. 30:643–649. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Louis DN, Perry A, Burger P, Ellison DW,
Reifenberger G, von Deimling A, Aldape K, Brat D, Collins VP,
Eberhart C, et al: International society of Neuropathology-haarlem
consensus guidelines for nervous system tumor classification and
grading. Brain Pathol. 24:429–435. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Abou-Antoun TJ, Hale JS, Lathia JD and
Dombrowski SM: Brain cancer stem cells in adults and children: Cell
biology and therapeutic implications. Neurotherapeutics.
14:372–384. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Dirks PB: Cancer: Stem cells and brain
tumours. Nature. 444:687–688. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Baba E and Akashi K: The fundamental
concept of cancer stem cell and the progress in cancer stem cell
research. Nihon Rinsho. 73:721–725. 2015.In Japanese. PubMed/NCBI
|
|
9
|
Duesberg P, Mandrioli D, McCormack A and
Nicholson JM: Is carcinogenesis a form of speciation. Cell Cycle.
10:2100–2114. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bryukhovetskiy A, Shevchenko V, Kovalev S,
Chekhonin V, Baklaushev V, Bryukhovetskiy I and Zhukova M: To the
novel paradigm of proteome-based cell therapy of tumors: Through
comparative proteome mapping of tumor stem cells and
tissue-specific stem cells of humans. Cell Transplant. 23(Suppl 1):
S151–S170. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Louis DN, Ohgaki H, Wiestler OD, Cavenee
WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007
WHO classification of tumours of the central nervous system. Acta
Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Verhaak RG, Hoadley KA, Purdom E, Wang V,
Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al:
Integrated genomic analysis identifies clinically relevant subtypes
of glioblastoma characterized by abnormalities in PDGFRA, IDH1,
EGFR, and NF1. Cancer Cell. 17:98–110. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Crespo I, Vital AL, Gonzalez-Tablas M,
Patino Mdel C, Otero A, Lopes MC, de Oliveira C, Domingues P, Orfao
A and Tabernero MD: Molecular and genomic alterations in
glioblastoma multiforme. Am J Pathol. 185:1820–1833. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Thakkar JP, Dolecek TA, Horbinski C,
Ostrom QT, Lightner DD, Barnholtz-Sloan JS and Villano JL:
Epidemiologic and molecular prognostic review of glioblastoma.
Cancer Epidemiol Biomarkers Prev. 23:1985–1996. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Rispoli R, Conti C, Celli P, Caroli E and
Carletti S: Neural stem cells and glioblastoma. Neuroradiol J.
27:169–174. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Brown DV, Daniel PM, D'Abaco GM, Gogos A,
Ng W, Morokoff AP and Mantamadiotis T: Coexpression analysis of
CD133 and CD44 identifies proneural and mesenchymal subtypes of
glioblastoma multiforme. Oncotarget. 6:6267–6280. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Bradshaw A, Wickremsekera A, Tan ST Peng
L, Davis PF and Itinteang T: Cancer stem cell hierarchy in
glioblastoma multiforme. Front Surg. 3:212016.PubMed/NCBI
|
|
18
|
Bradshaw A, Wickremesekera A, Brasch HD,
Chibnall AM, Davis PF, Tan ST and Itinteang T: Cancer stem cells in
glioblastoma multiforme. Front Surg. 3:482016.PubMed/NCBI
|
|
19
|
Osswald M, Jung E, Sahm F, Solecki G,
Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M,
et al: Brain tumour cells interconnect to a functional and
resistant network. Nature. 528:93–98. 2015.PubMed/NCBI
|
|
20
|
Weil S, Osswald M, Solecki G, Grosch J,
Jung E, Lemke D, Ratliff M, Hänggi D, Wick W and Winkler F: Tumor
micro-tubes convey resistance to surgical lesions and chemotherapy
in gliomas. Neuro Oncol. 19:1316–1326. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sontheimer H: Brain cancer: Tumour cells
on neighbourhood watch. Nature. 528:49–50. 2015.PubMed/NCBI
|
|
22
|
Murphy SF, Varghese RT, Lamouille S, Guo
S, Pridham KJ, Kanabur P, Osimani AM, Sharma S, Jourdan J, Rodgers
CM, et al: Connexin 43 inhibition sensitizes chemoresistant
glioblastoma cells to Temozolomide. Cancer Res. 76:139–149. 2016.
View Article : Google Scholar :
|
|
23
|
Hambardzumyan D and Bergers G:
Glioblastoma: Defining tumor Niches. Trends Cancer. 1:252–265.
2015. View Article : Google Scholar
|
|
24
|
Milkina EV, Mischenko PV, Zaytsev SV, et
al: Features of interaction between hematopoietic stem and tumor
cells of different lines in vitro. Gens and Cells. XI:63–71.
2016.In Russian.
|
|
25
|
Luo M, Brooks M and Wicha MS:
Epithelial-mesenchymal plasticity of breast cancer stem cells:
Implications for metastasis and therapeutic resistance. Curr Pharm
Des. 21:1301–1310. 2015. View Article : Google Scholar :
|
|
26
|
Chow KH, Park HJ, George J, Yamamoto K,
Gallup AD, Graber JH, Chen Y, Jiang W, Steindler DA, Neilson EG, et
al: S100A4 is a biomarker and regulator of glioma stem cells that
is critical for mesenchymal transition in glioblastoma. Cancer Res.
77:5360–5373. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bryukhovetskiy I and Shevchenko V:
Molecular mechanisms of the effect of TGF-β1 on U87 human
glioblastoma cells. Oncol Lett. 12:1581–1590. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Li P, Zhou C, Xu L and Xiao H: Hypoxia
enhances stemness of cancer stem cells in glioblastoma: An in vitro
study. Int J Med Sci. 10:399–407. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Morel AP, Lièvre M, Thomas C, Hinkal G,
Ansieau S and Puisieux A: Generation of breast cancer stem cells
through epithelial-mesenchymal transition. PLoS One. 3:e28882008.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhang N, Hong B, Zhou C, Du X, Chen S,
Deng X, Duoerkun S, Li Q, Yang Y and Gong K: Cobalt
chloride-induced hypoxia induces epithelial-mesenchymal transition
in renal carcinoma cell lines. Ann Clin Lab Sci. 47:40–46.
2017.PubMed/NCBI
|
|
31
|
Yang SW, Zhang ZG, Hao YX, Zhao YL, Qian
F, Shi Y, Li PA, Liu CY and Yu PW: HIF-1α induces the
epithelial-mesenchymal transition in gastric cancer stem cells
through the Snail pathway. Oncotarget. 8:9535–9545. 2017.PubMed/NCBI
|
|
32
|
Sun LL, Song Z, Li WZ and Tang SY: Hypoxia
facilitates epithelial-mesenchymal transition-mediated rectal
cancer progress. Genet Mol Res. 15:2016. View Article : Google Scholar
|
|
33
|
Li D, Qu C, Ning Z, Wang H, Zang K, Zhuang
L, Chen L, Wang P and Meng Z: Radiation promotes
epithelial-to-mesenchymal transition and invasion of pancreatic
cancer cell by activating carcinoma-associated fibroblasts. Am J
Cancer Res. 6:2192–2206. 2016.PubMed/NCBI
|
|
34
|
Lehmann S, Te Boekhorst V, Odenthal J,
Bianchi R, van Helvert S, Ikenberg K, Ilina O, Stoma S, Xandry J,
Jiang L, et al: Hypoxia induces a HIF-1-dependent transition from
collective-to-amoeboid dissemination in epithelial cancer cells.
Curr Biol. 27:392–400. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Libby CJ, Tran AN, Scott SE, Griguer C and
Hjelmeland AB: The pro-tumorigenic effects of metabolic alterations
in glioblastoma including brain tumor initiating cells. Biochim
Biophys Acta. 1869:175–188. 2018.PubMed/NCBI
|
|
36
|
Massagué J: TGFbeta in cancer. Cell.
134:215–230. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Toyonaga T, Yamaguchi S, Hirata K,
Kobayashi K, Manabe O, Watanabe S, Terasaka S, Kobayashi H, Hattori
N, Shiga T, et al: Hypoxic glucose metabolism in glioblastoma as a
potential prognostic factor. Eur J Nucl Med Mol Imaging.
44:611–619. 2017. View Article : Google Scholar
|
|
38
|
Bar EE, Lin A, Mahairaki V, Matsui W and
Eberhart CG: Hypoxia increases the expression of stem-cell markers
and promotes clonogenicity in glioblastoma neurospheres. Am J
Pathol. 177:1491–1502. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Konovalov AN, Potapov AA, Loshakov VA, et
al: Standards, options and recommendations in the treatment of CNS
tumors. Assoc Neurosurg Russia. 2009.In Russian.
|
|
40
|
Scott JG, Berglund A, Schell MJ, Mihaylov
I, Fulp WJ, Yue B, Welsh E, Caudell JJ, Ahmed K, Strom TS, et al: A
genome-based model for adjusting radiotherapy dose (GARD): A
retrospective, cohort-based study. Lancet Oncol. 18:202–211. 2017.
View Article : Google Scholar
|
|
41
|
Dincoglan F, Beyzadeoglu M, Sager O,
Demiral S, Gamsiz H, Uysal B, Ebruli C, Akin M, Oysul K, Sirin S
and Dirican B: Management of patients with recurrent glioblastoma
using hypofractionated stereotactic radiotherapy. Tumori.
101:179–184. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang P, Lan C, Xiong S, Zhao X, Shan Y, Hu
R, Wan W, Yu S, Liao B, Li G, et al: HIF1α regulates single
differentiated glioma cell dedifferentiation to stem-like cell
phenotypes with high tumorigenic potential under hypoxia.
Oncotarget. 8:28074–28092. 2017.PubMed/NCBI
|
|
43
|
Colwell N, Larion M, Giles AJ, Seldomridge
AN, Sizdahkhani S, Gilbert MR and Park DM: Hypoxia in the
glioblastoma micro-environment: Shaping the phenotype of cancer
stem-like cells. Neuro Oncol. 19:887–896. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Pecchia I, Dini V, Ricci-Vitiani L,
Biffoni M, Balduzzi M, Fratini E, Belli M, Campa A, Esposito G,
Cirrone G, et al: Glioblastoma stem cells: Radiobiological response
to ionising radiations of different qualities. Radiat Prot
Dosimetry. 166:374–378. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jawhari S, Ratinaud MH and Vernier M:
Glioblastoma, hypoxia and autophagy: A survival-prone
'ménage-à-trois'. Cell Death Dis. 7:e24342016. View Article : Google Scholar
|
|
46
|
Stępień K, Ostrowski RP and Matyja E:
Hyperbaric oxygen as an adjunctive therapy in treatment of
malignancies, including brain tumours. Med Oncol. 33:1012016.
View Article : Google Scholar :
|
|
47
|
Sridaran D, Ramamoorthi G, Mahaboob Khan R
and Kumpati P: Oxystressed tumor microenvironment potentiates
epithelial to mesenchymal transition and alters cellular
bioenergetics towards cancer progression. Tumour Biol.
37:13307–13322. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Agnihotri S and Zadeh G: Metabolic
reprogramming in glioblastoma: The influence of cancer metabolism
on epigenetics and unanswered questions. Neuro Oncol. 18:160–172.
2016. View Article : Google Scholar :
|
|
49
|
Choi SA, Lee JY, Phi JH, Wang KC, Park CK,
Park SH and Kim SK: Identification of brain tumour initiating cells
using the stem cell marker aldehyde dehydrogenase. Eur J Cancer.
50:137–149. 2014. View Article : Google Scholar
|
|
50
|
Clark O, Yen K and Mellinghoff IK:
Molecular pathways: Isocitrate dehydrogenase mutations in cancer.
Clin Cancer Res. 22:1837–1842. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ojelabi OA, Lloyd KP, Simon AH, De Zutter
JK and Carruthers A: WZB117 (2-Fluoro-6-(m- hydroxybenzoyloxy)
Phenyl m-Hydroxybenzoate) inhibits GLUT1-mediated sugar transport
by binding reversibly at the exofacial sugar binding site. J Biol
Chem. 291:26762–26772. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kathagen A, Schulte A, Balcke G, Phillips
HS, Martens T, Matschke J, Günther HS, Soriano R, Modrusan Z,
Sandmann T, et al: Hypoxia and oxygenation induce a metabolic
switch between pentose phosphate pathway and glycolysis in glioma
stem-like cells. Acta Neuropathol. 126:763–780. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Goidts V, Bageritz J, Puccio L, Nakata S,
Zapatka M, Barbus S, Toedt G, Campos B, Korshunov A, Momma S, et
al: RNAi screening in glioma stem-like cells identifies PFKFB4 as a
key molecule important for cancer cell survival. Oncogene.
31:3235–3243. 2012. View Article : Google Scholar
|
|
54
|
Jennings RT and Knaus UG: Rho family and
Rap GTPase activation assays. Methods Mol Biol. 1124:79–88. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bejarano L, Schuhmacher AJ, Méndez M,
Megías D, Blanco-Aparicio C, Martínez S, Pastor J, Squatrito M and
Blasco MA: Inhibition of TRF1 telomere protein impairs tumor
initiation and progression in glioblastoma mouse models and
patient-derived xenografts. Cancer Cell. 32:590–607. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Huang W, Zhang C, Cui M, Niu J and Ding W:
Inhibition of Bevacizumab-induced epithelial-mesenchymal transition
by BATF2 overexpression involves the suppression of Wnt/β-catenin
signaling in glioblastoma cells. Anticancer Res. 37:4285–4294.
2017.PubMed/NCBI
|
|
57
|
Iwadate Y: Epithelial-mesenchymal
transition in glioblastoma progression. Oncol Lett. 11:1615–1620.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Clevers H, Loh KM and Nusse R: Stem cell
signaling. An integral program for tissue renewal and regeneration:
Wnt signaling and stem cell control. Science. 346:12480122014.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Takebe N, Miele L, Harris PJ, Jeong W,
Bando H, Kahn M, Yang SX and Ivy SP: Targeting Notch, Hedgehog, and
Wnt pathways in cancer stem cells: Clinical update. Nat Rev Clin
Oncol. 12:445–464. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mohammed MK, Shao C, Wang J, Wei Q, Wang
X, Collier Z, Tang S, Liu H, Zhang F, Huang J, et al: Wnt/β-catenin
signaling plays an ever-expanding role in stem cell self-renewal,
tumorigenesis and cancer chemoresistance. Genes Dis. 3:11–40. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Lee J, Kee HJ, Min S, Park KC, Park S,
Hwang TH, Ryu DH, Hwang GS and Cheong JH: Integrated omics-analysis
reveals Wnt-mediated NAD+ metabolic reprogramming in
cancer stem-like cells. Oncotarget. 7:48562–48576. 2016.PubMed/NCBI
|
|
62
|
Bae WJ, Lee SH, Rho YS, Koo BS and Lim YC:
Transforming growth factor β1 enhances stemness of head and neck
squamous cell carcinoma cells through activation of Wnt signaling.
Oncol Lett. 12:5315–5320. 2016. View Article : Google Scholar
|
|
63
|
Lee Y, Lee JK, Ahn SH, Lee J and Nam DH:
WNT signaling in glioblastoma and therapeutic opportunities. Lab
Invest. 96:137–150. 2016. View Article : Google Scholar
|
|
64
|
Yu QC, Verheyen EM and Zeng YA: Mammary
development and breast cancer: A Wnt perspective. Cancers.
8:E652016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Koval AV, Vlasov P, Shichkova P,
Khunderyakova S, Markov Y, Panchenko J, Volodina A, Kondrashov FA
and Katanaev VL: Anti-leprosy drug clofazimine inhibits growth of
triple-negative breast cancer cells via inhibition of canonical Wnt
signaling. Biochem Pharmacol. 87:571–578. 2014. View Article : Google Scholar
|
|
66
|
Andersen V and Vogel U: Systematic review:
Interactions between aspirin, and other nonsteroidal
anti-inflammatory drugs, and polymorphisms in relation to
colorectal cancer. Aliment Pharmacol Ther. 40:147–159. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Dovizio M, Tacconelli S, Sostres C,
Ricciotti E and Patrignani P: Mechanistic and pharmacological
issues of aspirin as an anticancer agent. Pharmaceuticals.
5:1346–1371. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Dovizio M, Bruno A, Tacconelli S and
Patrignani P: Mode of action of aspirin as a chemopreventive agent.
Recent Results Cancer Res. 191:39–65. 2013. View Article : Google Scholar
|
|
69
|
Sareddy GR, Kesanakurti D, Kirti PB and
Babu PP: Nonsteroidal anti-inflammatory drugs diclofenac and
celecoxib attenuates Wnt/β-catenin/Tcf signaling pathway in human
glioblastoma cells. Neurochem Res. 38:2313–2322. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Dharmapuri G, Doneti R, Philip GH and
Kalle AM: Celecoxib sensitizes imatinib-resistant K562 cells to
imatinib by inhibiting MRP1-5, ABCA2 and ABCG2 transporters via Wnt
and Ras signaling pathways. Leuk Res. 39:696–701. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lin XL, Xu Q, Tang L, Sun L, Han T, Wang
LW and Xiao XY: Regorafenib inhibited gastric cancer cells growth
and invasion via CXCR4 activated Wnt pathway. PLoS One.
12:e01773352017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Tumova L, Pombinho AR, Vojtechova M,
Stancikova J, Gradl D, Krausova M, Sloncova E, Horazna M, Kriz V,
Machonova O, et al: Monensin inhibits canonical Wnt signaling in
human colorectal cancer cells and suppresses tumor growth in
multiple intestinal neoplasia mice. Mol Cancer Ther. 13:812–822.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Olmez I, Shen W, McDonald H and Ozpolat B:
Dedifferentiation of patient-derived glioblastoma multiforme cell
lines results in a cancer stem cell-like state with
mitogen-independent growth. J Cell Mol Med. 19:1262–1272. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chen M, Wang J, Lu J, Bond MC, Ren XR,
Lyerly HK, Barak LS and Chen W: The anti-helminthic niclosamide
inhibits Wnt/Frizzled1 signaling. Biochemistry. 48:10267–10274.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wieland A, Trageser D, Gogolok S, Reinartz
R, Höfer H, Keller M, Leinhaas A, Schelle R, Normann S, Klaas L, et
al: Anticancer effects of niclosamide in human glioblastoma. Clin
Cancer Res. 19:4124–4136. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Arend RC, Londoño-Joshi AI, Samant RS, Li
Y, Conner M, Hidalgo B, Alvarez RD, Landen CN, Straughn JM and
Buchsbaum DJ: Inhibition of Wnt/β catenin pathway by niclosamide: A
therapeutic target for ovarian cancer. Gynecol Oncol. 134:112–120.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Liu C, Lou W, Armstrong C, Zhu Y, Evans CP
and Gao AC: Niclosamide suppresses cell migration and invasion in
enzalutamide resistant prostate cancer cells via Stat3-AR axis
inhibition. Prostate. 75:1341–1353. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Liu C, Lou W, Zhu Y, Nadiminty N, Schwartz
CT, Evans CP and Gao AC: Niclosamide inhibits androgen receptor
variants expression and overcomes enzalutamide resistance in
castration-resistant prostate cancer. Clin Cancer Res.
20:3198–3210. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Londoño-Joshi AI, Arend RC, Aristizabal L,
Lu W, Samant RS, Metge BJ, Hidalgo B, Grizzle WE, Conner M,
Forero-Torres A, et al: Effect of niclosamide on basal-like breast
cancers. Mol Cancer Ther. 13:800–811. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Liao Z, Nan G, Yan Z, Zeng L, Deng Y, Ye
J, Zhang Z, Qiao M, Li R, Denduluri S, et al: The anthelmintic drug
niclosamide inhibits the proliferative activity of human
osteosarcoma cells by targeting multiple signal pathways. Curr
Cancer Drug Targets. 15:726–738. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lu W, Lin C, King TD, Chen H, Reynolds RC
and Li Y: Silibinin inhibits Wnt/β-catenin signaling by suppressing
Wnt co-receptor LRP6 expression in human prostate and breast cancer
cells. Cell Signal. 24:2291–2296. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang X, Lou Y, Zheng X, Wang H, Sun J,
Dong Q and Han B: Wnt blockers inhibit the proliferation of lung
cancer stem cells. Drug Des Devel Ther. 9:2399–2407.
2015.PubMed/NCBI
|
|
83
|
Bryukhovetskiy IS, Mischenko PV, Tolok EV,
Zaitcev SV, Khotimchenko YS and Bryukhovetskiy AS: Directional
migration of adult hematopoeitic progenitors to C6 gliom in vitro.
Oncol Lett. 9:1839–1844. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Bryukhovetskiy IS, Dyuizen IV, Shevchenko
VE, Bryukhovetskiy AS, Mischenko PV, Milkina EV and Khotimchenko
YS: Hematopoietic stem cells as a tool for the treatment of
glioblastoma multiforme. Mol Med Rep. 14:4511–4520. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Aboody KS, Brown A, Rainov NG, Bower KA,
Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, et al:
Neural stem cells display extensive tropism for pathology in adult
brain: Evidence from intracranial gliomas. Proc Natl Acad Sci USA.
97:12846–12851. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Aboody KS, Najbauer J, Metz MZ, D'Apuzzo
M, Gutova M, Annala AJ, Synold TW, Couture LA, Blanchard S, Moats
RA, et al: Neural stem cell-mediated enzyme/prodrug therapy for
glioma: Preclinical studies. Sci Transl Med. 5:184ra592013.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Aboody KS, Najbauer J, Schmidt NO, Yang W,
Wu JK, Zhuge Y, Przylecki W, Carroll R, Black PM and Perides G:
Targeting of melanoma brain metastases using engineered neural
stem/progenitor cell. Neuro Oncol. 8:119–126. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Gutova M, Najbauer J, Frank RT, Kendall
SE, Gevorgyan A, Metz MZ, Guevorkian M, Edmiston M, Zhao D, Glackin
CA, et al: Urokinase plasminogen activator and urokinase
plasminogen activator receptor mediate human stem cell tropism to
malignant solid tumors. Stem Cells. 26:1406–1413. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kucia M, Reca R, Miekus K, Wanzeck J,
Wojakowski W, Janowska-Wieczorek A, Ratajczak J and Ratajczak MZ:
Trafficking of normal stem cells and metastasis of cancer stem
cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4
axis. Stem Cells. 23:879–894. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Gabashvili AN, Baklaushev VP, Grinenko NF,
Levinskii AB, Mel'nikov PA, Cherepanov SA and Chekhonin VP:
Functionally active gap junctions between connexin 43-positive
mesenchymal stem cells and glioma cells. Bull Exp Biol Med.
159:173–179. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Mercapide J, Rappa G and Lorico A: The
intrinsic fusogenicity of glioma cells as a factor of
transformation and progression in the tumor microenvironment. Int J
Cancer. 131:334–43. 2012. View Article : Google Scholar
|
|
92
|
Rappa G, Mercapide J and Lorico A:
Spontaneous formation of tumorigenic hybrids between breast cancer
and multipotent stromal cells is a source of tumor heterogeneity.
Am J Pathol. 180:2504–2515. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Mercapide J, Anzanello F, Rappa G and
Lorico A: Relationship between tumor cell invasiveness and
polyploidization. PLoS One. 7:e533642012. View Article : Google Scholar
|
|
94
|
Zimmerlin L, Park TS, Zambidis ET,
Donnenberg VS and Donnenberg AD: Mesenchymal stem cell secretome
and regenerative therapy after cancer. Biochimie. 95:2235–2245.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
O'Donnell RK, Falcon B, Hanson J,
Goldstein WE, Perruzzi C, Rafii S, Aird WC and Benjamin LE:
VEGF-A/VEGFR inhibition restores hematopoietic homeostasis in the
bone marrow and attenuates tumor growth. Cancer Res. 76:517–524.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hong JP, Li XM, Li MX and Zheng FL: VEGF
suppresses epithelial-mesenchymal transition by inhibiting the
expression of Smad3 and miR-192, a Smad3-dependent microRNA. Int J
Mol Med. 31:1436–1442. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Treps L, Perret R, Edmond S, Ricard D and
Gavard J: Glioblastoma stem-like cells secrete the pro-angiogenic
VEGF-A factor in extracellular vesicles. J Extracell Vesicles.
6:13594792017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Diaz RJ, Ali S, Qadir MG, De La Fuente MI,
Ivan ME and Komotar RJ: The role of bevacizumab in the treatment of
glioblastoma. J Neurooncol. 133:455–467. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Bryukhovetskiy I, Lyakhova I, Mischenko P,
Milkina E, Zaitsev S, Khotimchenko Y, Bryukhovetskiy A,
Polevshchikov A, Kudryavtsev I, Khotimchenko M, et al: Alkaloids of
fascaplysin are effective conventional chemotherapeutic drugs,
inhibiting the proliferation of C6 glioma cells and causing their
death in vitro. Oncol Lett. 13:738–746. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Pacioni S, D'Alessandris QG, Giannetti S,
Morgante L, Coccè V, Bonomi A, Buccarelli M, Pascucci L, Alessandri
G, Pessina A, et al: Human mesenchymal stromal cells inhibit tumor
growth in orthotopic glioblastoma xenografts. Stem Cell Res Ther.
8:532017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Bryukhovetskiy I, Bryukhovetsky A,
Khotimchenko Y, Mischenko P, Tolok E and Khotimchenko R:
Combination of the multipotent mesenchymal stromal cell
transplantation with administration of temozolomide increases
survival of rats with experimental glioblastoma. Mol Med Rep.
12:2828–2834. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
English K: Mesenchymal stem cells to
promote islet transplant survival. Curr Opin Organ Transplant.
21:568–573. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Vizoso FJ, Eiro N, Cid S, Schneider J and
Perez-Fernandez R: Mesenchymal stem cell secretome: Toward
cell-free therapeutic strategies in regenerative medicine. Int J
Mol Sci. 18:E18522017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Katakowski M and Chopp M: Exosomes as
tools to suppress primary brain tumor. Cell Mol Neurobiol.
36:343–352. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Liu X, Li Q, Niu X, Hu B, Chen S, Song W,
Ding J, Zhang C and Wang Y: Exosomes secreted from human-induced
pluripotent stem cell-derived mesenchymal stem cells prevent
osteonecrosis of the femoral head by promoting angiogenesis. Int J
Biol Sci. 13:232–244. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Klopp AH, Gupta A, Spaeth E, Andreeff M
and Marini F III: Concise review: Dissecting a discrepancy in the
literature: Do mesenchymal stem cells support or suppress tumor
growth? Stem Cells. 29:11–19. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Alcayaga-Miranda F, González PL,
Lopez-Verrilli A, Varas-Godoy M, Aguila-Díaz C, Contreras L and
Khoury M: Prostate tumor-induced angiogenesis is blocked by
exosomes derived from menstrual stem cells through the inhibition
of reactive oxygen species. Oncotarget. 7:44462–44477. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Bliss SA, Sinha G, Sandiford OA, Williams
LM, Engelberth DJ, Guiro K, Isenalumhe LL, Greco SJ, Ayer S, Bryan
M, et al: Mesenchymal stem cell-derived exosomes stimulate cycling
quiescence and early breast cancer dormancy in bone marrow. Cancer
Res. 76:5832–5844. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Reza AM, Choi YJ, Yasuda H and Kim JH:
Human adipose mesenchymal stem cell-derived exosomal-miRNAs are
critical factors for inducing anti-proliferation signalling to
A2780 and SKOV-3 ovarian cancer cells. Sci Rep. 6:384982016.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Baglio SR, Rooijers K, Koppers-Lalic D,
Verweij FJ and Pérez Lanzón M: Human bone marrow- and
adipose-mesenchymal stem cells secrete exosomes enriched in
distinctive miRNA and tRNA species. Stem Cell Res Ther. 6:1272015.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Lopatina T, Gai C, Deregibus MC, Kholia S
and Camussi G: Cross talk between cancer and mesenchymal stem cells
through extracellular vesicles carrying nucleic acids. Front Oncol.
6:1252016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Zhang Z, Gong Q, Li M, Xu J, Zheng Y, Ge P
and Chi G: MicroRNA-124 inhibits the proliferation of C6 glioma
cells by targeting Smad4. Int J Mol Med. 40:1226–1234. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Mei LL, Wang WJ, Qiu YT, Xie XF, Bai J and
Shi ZZ: miR-145-5p suppresses tumor cell migration, invasion and
epithelial to mesenchymal transition by regulating the Sp1/NF-κB
signaling pathway in esophageal squamous cell carcinoma. Int J Mol
Sci. 18:E18332017. View Article : Google Scholar
|
|
114
|
Gong Y, Qin Z, Zhou B, Chen H, Shi Z and
Zhang J: MicroRNA-200a inhibits transforming growth factor
β1-induced proximal tubular epithelial-mesenchymal transition by
targeting β-Catenin. Nephron. 137:237–249. 2017. View Article : Google Scholar
|
|
115
|
Yan J, Jiang JY, Meng XN, Xiu YL and Zong
ZH: MiR-23b targets cyclin G1 and suppresses ovarian cancer
tumorigenesis and progression. J Exp Clin Cancer Res. 35:312016.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Liu G, Xu Z and Hao D: MicroRNA-451
inhibits neuroblastoma proliferation, invasion and migration by
targeting macrophage migration inhibitory factor. Mol Med Rep.
13:2253–2260. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zeng T, Peng L, Chao C, Fu B, Wang G, Wang
Y and Zhu X: miR-451 inhibits invasion and proliferation of bladder
cancer by regulating EMT. Int J Clin Exp Pathol. 7:7653–7662.
2014.
|
|
118
|
Xu H, Mei Q, Shi L, Lu J, Zhao J and Fu Q:
Tumor-suppressing effects of miR451 in human osteosarcoma. Cell
Biochem Biophys. 69:163–168. 2014. View Article : Google Scholar
|
|
119
|
Ji Q, Hao X, Zhang M, Tang W, Yang M, Li
L, Xiang D, Desano JT, Bommer GT, Fan D, et al: MicroRNA miR-34
inhibits human pancreatic cancer tumor-initiating cells. PLoS One.
4:e68162009. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Alvarado AG, Thiagarajan PS,
Mulkearns-Hubert EE, Silver DJ, Hale JS, Alban TJ, Turaga SM,
Jarrar A, Reizes O, Longworth MS, et al: Glioblastoma cancer stem
cells evade innate immune suppression of self-renewal through
reduced TLR4 expression. Cell Stem Cell. 20:450–461.e4. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Sathyanarayanan A, Chandrasekaran KS and
Karunagaran D: microRNA-145 downregulates SIP1-expression but
differentially regulates proliferation, migration, invasion and Wnt
signalling in SW480 and SW620 cells. J Cell Biochem. 119:2022–2035.
2018. View Article : Google Scholar
|
|
122
|
Sathyanarayanan A, Chandrasekaran KS and
Karunagaran D: microRNA-145 modulates epithelial-mesenchymal
transition and suppresses proliferation, migration and invasion by
targeting SIP1 in human cervical cancer cells. Cell Oncol.
40:119–131. 2017. View Article : Google Scholar
|
|
123
|
Katakowski M, Buller B, Zheng X, Lu Y,
Rogers T, Osobamiro O, Shu W, Jiang F and Chopp M: Exosomes from
marrow stromal cells expressing miR-146b inhibit glioma growth.
Cancer Lett. 335:201–204. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Gopal SK, Greening DW, Rai A, Chen M, Xu
R, Shafiq A, Mathias RA, Zhu HJ and Simpson RJ: Extracellular
vesicles: Their role in cancer biology and epithelial-mesenchymal
transition. Biochem J. 474:21–45. 2017. View Article : Google Scholar
|
|
125
|
Ti D, Hao H, Fu X and Han W: Mesenchymal
stem cells-derived exosomal microRNAs contribute to wound
inflammation. Sci China Life Sci. 59:1305–1312. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Hambardzumyan D, Gutmann DH and Kettenmann
H: The role of microglia and macrophages in glioma maintenance and
progression. Nat Neurosci. 19:20–27. 2016. View Article : Google Scholar :
|
|
127
|
Wang Y, Liu T, Yang N, Xu S, Li X and Wang
D: Hypoxia and macrophages promote glioblastoma invasion by the
CCL4-CCR5 axis. Oncol Rep. 36:3522–3528. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Kondo Y, Katsushima K, Ohka F, Natsume A
and Shinjo K: Epigenetic dysregulation in glioma Cancer Sci.
105:363–369. 2014.
|
|
129
|
Feng X, Szulzewsky F, Yerevanian A, Chen
Z, Heinzmann D, Rasmussen RD, Alvarez-Garcia V, Kim Y, Wang B,
Tamagno I, et al: Loss of CX3CR1 increases accumulation of
inflammatory monocytes and promotes gliomagenesis. Oncotarget.
6:15077–15094. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Nusblat LM, Carroll MJ and Roth CM:
Crosstalk between M2 macrophages and glioma stem cells. Cell Oncol.
40:471–482. 2017. View Article : Google Scholar
|
|
131
|
Zhou W, Ke SQ, Huang Z, Flavahan W, Fang
X, Paul J, Wu L, Sloan AE, McLendon RE, Li X, et al: Periostea
secreted by glioblastoma stem cells recruits M2 tumour-associated
macrophages and promotes malignant growth. Nat Cell Biol.
17:170–182. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Alifieris C and Trafalis DT: Glioblastoma
multiforme: Pathogenesis and treatment. Pharmacol Ther. 152:63–82.
2015. View Article : Google Scholar : PubMed/NCBI
|