Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2018 Volume 42 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2018 Volume 42 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Personalized regulation of glioblastoma cancer stem cells based on biomedical technologies: From theory to experiment (Review)

  • Authors:
    • Igor Bryukhovetskiy
    • Arina Ponomarenko
    • Irina Lyakhova
    • Sergey Zaitsev
    • Yulia Zayats
    • Maria Korneyko
    • Marina Eliseikina
    • Polina Mischenko
    • Valerie Shevchenko
    • Hari Shanker Sharma
    • Aruna Sharma
    • Yuri Khotimchenko
  • View Affiliations / Copyright

    Affiliations: Far Eastern Federal University, Vladivostok 690091, Russia, National Scientific Center of Marine Biology of Far Eastern Branch of The Russian Academy of Sciences, Vladivostok 690059, Russia, International Experimental CNS Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, Uppsala SE‑75185, Sweden
    Copyright: © Bryukhovetskiy et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].
  • Pages: 691-702
    |
    Published online on: May 10, 2018
       https://doi.org/10.3892/ijmm.2018.3668
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glioblastoma multiforme (GBM) is one of the most aggressive brain tumors. GBM represents >50% of primary tumors of the nervous system and ~20% of intracranial neoplasms. Standard treatment involves surgery, radiation and chemotherapy. However, the prognosis of GBM is usually poor, with a median survival of 15 months. Resistance of GBM to treatment can be explained by the presence of cancer stem cells (CSCs) among the GBM cell population. At present, there are no effective therapeutic strategies for the elimination of CSCs. The present review examined the nature of human GBM therapeutic resistance and attempted to systematize and put forward novel approaches for a personalized therapy of GBM that not only destroys tumor tissue, but also regulates cellular signaling and the morphogenetic properties of CSCs. The CSCs are considered to be an informationally accessible living system, and the CSC proteome should be used as a target for therapy directed at suppressing clonal selection mechanisms and CSC generation, destroying CSC hierarchy, and disrupting the interaction of CSCs with their microenvironment and extracellular matrix. These objectives can be achieved through the use of biomedical cellular products.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Stupp R, Toms SA and Kesari S: Treatment for patients with newly diagnosed glioblastoma-reply. JAMA. 315:2348–2349. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Omuro A and DeAngelis LM: Glioblastoma and other malignant gliomas: A clinical review. JAMA. 310:1842–1850. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI

4 

DeWitt JC, Mock A and Louis DN: The 2016 WHO classification of central nervous system tumors: What neurologists need to know. Curr Opin Neurol. 30:643–649. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Louis DN, Perry A, Burger P, Ellison DW, Reifenberger G, von Deimling A, Aldape K, Brat D, Collins VP, Eberhart C, et al: International society of Neuropathology-haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol. 24:429–435. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Abou-Antoun TJ, Hale JS, Lathia JD and Dombrowski SM: Brain cancer stem cells in adults and children: Cell biology and therapeutic implications. Neurotherapeutics. 14:372–384. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Dirks PB: Cancer: Stem cells and brain tumours. Nature. 444:687–688. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Baba E and Akashi K: The fundamental concept of cancer stem cell and the progress in cancer stem cell research. Nihon Rinsho. 73:721–725. 2015.In Japanese. PubMed/NCBI

9 

Duesberg P, Mandrioli D, McCormack A and Nicholson JM: Is carcinogenesis a form of speciation. Cell Cycle. 10:2100–2114. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Bryukhovetskiy A, Shevchenko V, Kovalev S, Chekhonin V, Baklaushev V, Bryukhovetskiy I and Zhukova M: To the novel paradigm of proteome-based cell therapy of tumors: Through comparative proteome mapping of tumor stem cells and tissue-specific stem cells of humans. Cell Transplant. 23(Suppl 1): S151–S170. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 17:98–110. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Crespo I, Vital AL, Gonzalez-Tablas M, Patino Mdel C, Otero A, Lopes MC, de Oliveira C, Domingues P, Orfao A and Tabernero MD: Molecular and genomic alterations in glioblastoma multiforme. Am J Pathol. 185:1820–1833. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS and Villano JL: Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev. 23:1985–1996. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Rispoli R, Conti C, Celli P, Caroli E and Carletti S: Neural stem cells and glioblastoma. Neuroradiol J. 27:169–174. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Brown DV, Daniel PM, D'Abaco GM, Gogos A, Ng W, Morokoff AP and Mantamadiotis T: Coexpression analysis of CD133 and CD44 identifies proneural and mesenchymal subtypes of glioblastoma multiforme. Oncotarget. 6:6267–6280. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Bradshaw A, Wickremsekera A, Tan ST Peng L, Davis PF and Itinteang T: Cancer stem cell hierarchy in glioblastoma multiforme. Front Surg. 3:212016.PubMed/NCBI

18 

Bradshaw A, Wickremesekera A, Brasch HD, Chibnall AM, Davis PF, Tan ST and Itinteang T: Cancer stem cells in glioblastoma multiforme. Front Surg. 3:482016.PubMed/NCBI

19 

Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M, et al: Brain tumour cells interconnect to a functional and resistant network. Nature. 528:93–98. 2015.PubMed/NCBI

20 

Weil S, Osswald M, Solecki G, Grosch J, Jung E, Lemke D, Ratliff M, Hänggi D, Wick W and Winkler F: Tumor micro-tubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro Oncol. 19:1316–1326. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Sontheimer H: Brain cancer: Tumour cells on neighbourhood watch. Nature. 528:49–50. 2015.PubMed/NCBI

22 

Murphy SF, Varghese RT, Lamouille S, Guo S, Pridham KJ, Kanabur P, Osimani AM, Sharma S, Jourdan J, Rodgers CM, et al: Connexin 43 inhibition sensitizes chemoresistant glioblastoma cells to Temozolomide. Cancer Res. 76:139–149. 2016. View Article : Google Scholar :

23 

Hambardzumyan D and Bergers G: Glioblastoma: Defining tumor Niches. Trends Cancer. 1:252–265. 2015. View Article : Google Scholar

24 

Milkina EV, Mischenko PV, Zaytsev SV, et al: Features of interaction between hematopoietic stem and tumor cells of different lines in vitro. Gens and Cells. XI:63–71. 2016.In Russian.

25 

Luo M, Brooks M and Wicha MS: Epithelial-mesenchymal plasticity of breast cancer stem cells: Implications for metastasis and therapeutic resistance. Curr Pharm Des. 21:1301–1310. 2015. View Article : Google Scholar :

26 

Chow KH, Park HJ, George J, Yamamoto K, Gallup AD, Graber JH, Chen Y, Jiang W, Steindler DA, Neilson EG, et al: S100A4 is a biomarker and regulator of glioma stem cells that is critical for mesenchymal transition in glioblastoma. Cancer Res. 77:5360–5373. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Bryukhovetskiy I and Shevchenko V: Molecular mechanisms of the effect of TGF-β1 on U87 human glioblastoma cells. Oncol Lett. 12:1581–1590. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Li P, Zhou C, Xu L and Xiao H: Hypoxia enhances stemness of cancer stem cells in glioblastoma: An in vitro study. Int J Med Sci. 10:399–407. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Morel AP, Lièvre M, Thomas C, Hinkal G, Ansieau S and Puisieux A: Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 3:e28882008. View Article : Google Scholar : PubMed/NCBI

30 

Zhang N, Hong B, Zhou C, Du X, Chen S, Deng X, Duoerkun S, Li Q, Yang Y and Gong K: Cobalt chloride-induced hypoxia induces epithelial-mesenchymal transition in renal carcinoma cell lines. Ann Clin Lab Sci. 47:40–46. 2017.PubMed/NCBI

31 

Yang SW, Zhang ZG, Hao YX, Zhao YL, Qian F, Shi Y, Li PA, Liu CY and Yu PW: HIF-1α induces the epithelial-mesenchymal transition in gastric cancer stem cells through the Snail pathway. Oncotarget. 8:9535–9545. 2017.PubMed/NCBI

32 

Sun LL, Song Z, Li WZ and Tang SY: Hypoxia facilitates epithelial-mesenchymal transition-mediated rectal cancer progress. Genet Mol Res. 15:2016. View Article : Google Scholar

33 

Li D, Qu C, Ning Z, Wang H, Zang K, Zhuang L, Chen L, Wang P and Meng Z: Radiation promotes epithelial-to-mesenchymal transition and invasion of pancreatic cancer cell by activating carcinoma-associated fibroblasts. Am J Cancer Res. 6:2192–2206. 2016.PubMed/NCBI

34 

Lehmann S, Te Boekhorst V, Odenthal J, Bianchi R, van Helvert S, Ikenberg K, Ilina O, Stoma S, Xandry J, Jiang L, et al: Hypoxia induces a HIF-1-dependent transition from collective-to-amoeboid dissemination in epithelial cancer cells. Curr Biol. 27:392–400. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Libby CJ, Tran AN, Scott SE, Griguer C and Hjelmeland AB: The pro-tumorigenic effects of metabolic alterations in glioblastoma including brain tumor initiating cells. Biochim Biophys Acta. 1869:175–188. 2018.PubMed/NCBI

36 

Massagué J: TGFbeta in cancer. Cell. 134:215–230. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Toyonaga T, Yamaguchi S, Hirata K, Kobayashi K, Manabe O, Watanabe S, Terasaka S, Kobayashi H, Hattori N, Shiga T, et al: Hypoxic glucose metabolism in glioblastoma as a potential prognostic factor. Eur J Nucl Med Mol Imaging. 44:611–619. 2017. View Article : Google Scholar

38 

Bar EE, Lin A, Mahairaki V, Matsui W and Eberhart CG: Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol. 177:1491–1502. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Konovalov AN, Potapov AA, Loshakov VA, et al: Standards, options and recommendations in the treatment of CNS tumors. Assoc Neurosurg Russia. 2009.In Russian.

40 

Scott JG, Berglund A, Schell MJ, Mihaylov I, Fulp WJ, Yue B, Welsh E, Caudell JJ, Ahmed K, Strom TS, et al: A genome-based model for adjusting radiotherapy dose (GARD): A retrospective, cohort-based study. Lancet Oncol. 18:202–211. 2017. View Article : Google Scholar

41 

Dincoglan F, Beyzadeoglu M, Sager O, Demiral S, Gamsiz H, Uysal B, Ebruli C, Akin M, Oysul K, Sirin S and Dirican B: Management of patients with recurrent glioblastoma using hypofractionated stereotactic radiotherapy. Tumori. 101:179–184. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Wang P, Lan C, Xiong S, Zhao X, Shan Y, Hu R, Wan W, Yu S, Liao B, Li G, et al: HIF1α regulates single differentiated glioma cell dedifferentiation to stem-like cell phenotypes with high tumorigenic potential under hypoxia. Oncotarget. 8:28074–28092. 2017.PubMed/NCBI

43 

Colwell N, Larion M, Giles AJ, Seldomridge AN, Sizdahkhani S, Gilbert MR and Park DM: Hypoxia in the glioblastoma micro-environment: Shaping the phenotype of cancer stem-like cells. Neuro Oncol. 19:887–896. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Pecchia I, Dini V, Ricci-Vitiani L, Biffoni M, Balduzzi M, Fratini E, Belli M, Campa A, Esposito G, Cirrone G, et al: Glioblastoma stem cells: Radiobiological response to ionising radiations of different qualities. Radiat Prot Dosimetry. 166:374–378. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Jawhari S, Ratinaud MH and Vernier M: Glioblastoma, hypoxia and autophagy: A survival-prone 'ménage-à-trois'. Cell Death Dis. 7:e24342016. View Article : Google Scholar

46 

Stępień K, Ostrowski RP and Matyja E: Hyperbaric oxygen as an adjunctive therapy in treatment of malignancies, including brain tumours. Med Oncol. 33:1012016. View Article : Google Scholar :

47 

Sridaran D, Ramamoorthi G, Mahaboob Khan R and Kumpati P: Oxystressed tumor microenvironment potentiates epithelial to mesenchymal transition and alters cellular bioenergetics towards cancer progression. Tumour Biol. 37:13307–13322. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Agnihotri S and Zadeh G: Metabolic reprogramming in glioblastoma: The influence of cancer metabolism on epigenetics and unanswered questions. Neuro Oncol. 18:160–172. 2016. View Article : Google Scholar :

49 

Choi SA, Lee JY, Phi JH, Wang KC, Park CK, Park SH and Kim SK: Identification of brain tumour initiating cells using the stem cell marker aldehyde dehydrogenase. Eur J Cancer. 50:137–149. 2014. View Article : Google Scholar

50 

Clark O, Yen K and Mellinghoff IK: Molecular pathways: Isocitrate dehydrogenase mutations in cancer. Clin Cancer Res. 22:1837–1842. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Ojelabi OA, Lloyd KP, Simon AH, De Zutter JK and Carruthers A: WZB117 (2-Fluoro-6-(m- hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) inhibits GLUT1-mediated sugar transport by binding reversibly at the exofacial sugar binding site. J Biol Chem. 291:26762–26772. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Kathagen A, Schulte A, Balcke G, Phillips HS, Martens T, Matschke J, Günther HS, Soriano R, Modrusan Z, Sandmann T, et al: Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells. Acta Neuropathol. 126:763–780. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Goidts V, Bageritz J, Puccio L, Nakata S, Zapatka M, Barbus S, Toedt G, Campos B, Korshunov A, Momma S, et al: RNAi screening in glioma stem-like cells identifies PFKFB4 as a key molecule important for cancer cell survival. Oncogene. 31:3235–3243. 2012. View Article : Google Scholar

54 

Jennings RT and Knaus UG: Rho family and Rap GTPase activation assays. Methods Mol Biol. 1124:79–88. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Bejarano L, Schuhmacher AJ, Méndez M, Megías D, Blanco-Aparicio C, Martínez S, Pastor J, Squatrito M and Blasco MA: Inhibition of TRF1 telomere protein impairs tumor initiation and progression in glioblastoma mouse models and patient-derived xenografts. Cancer Cell. 32:590–607. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Huang W, Zhang C, Cui M, Niu J and Ding W: Inhibition of Bevacizumab-induced epithelial-mesenchymal transition by BATF2 overexpression involves the suppression of Wnt/β-catenin signaling in glioblastoma cells. Anticancer Res. 37:4285–4294. 2017.PubMed/NCBI

57 

Iwadate Y: Epithelial-mesenchymal transition in glioblastoma progression. Oncol Lett. 11:1615–1620. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Clevers H, Loh KM and Nusse R: Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 346:12480122014. View Article : Google Scholar : PubMed/NCBI

59 

Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX and Ivy SP: Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update. Nat Rev Clin Oncol. 12:445–464. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Mohammed MK, Shao C, Wang J, Wei Q, Wang X, Collier Z, Tang S, Liu H, Zhang F, Huang J, et al: Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis. 3:11–40. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Lee J, Kee HJ, Min S, Park KC, Park S, Hwang TH, Ryu DH, Hwang GS and Cheong JH: Integrated omics-analysis reveals Wnt-mediated NAD+ metabolic reprogramming in cancer stem-like cells. Oncotarget. 7:48562–48576. 2016.PubMed/NCBI

62 

Bae WJ, Lee SH, Rho YS, Koo BS and Lim YC: Transforming growth factor β1 enhances stemness of head and neck squamous cell carcinoma cells through activation of Wnt signaling. Oncol Lett. 12:5315–5320. 2016. View Article : Google Scholar

63 

Lee Y, Lee JK, Ahn SH, Lee J and Nam DH: WNT signaling in glioblastoma and therapeutic opportunities. Lab Invest. 96:137–150. 2016. View Article : Google Scholar

64 

Yu QC, Verheyen EM and Zeng YA: Mammary development and breast cancer: A Wnt perspective. Cancers. 8:E652016. View Article : Google Scholar : PubMed/NCBI

65 

Koval AV, Vlasov P, Shichkova P, Khunderyakova S, Markov Y, Panchenko J, Volodina A, Kondrashov FA and Katanaev VL: Anti-leprosy drug clofazimine inhibits growth of triple-negative breast cancer cells via inhibition of canonical Wnt signaling. Biochem Pharmacol. 87:571–578. 2014. View Article : Google Scholar

66 

Andersen V and Vogel U: Systematic review: Interactions between aspirin, and other nonsteroidal anti-inflammatory drugs, and polymorphisms in relation to colorectal cancer. Aliment Pharmacol Ther. 40:147–159. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Dovizio M, Tacconelli S, Sostres C, Ricciotti E and Patrignani P: Mechanistic and pharmacological issues of aspirin as an anticancer agent. Pharmaceuticals. 5:1346–1371. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Dovizio M, Bruno A, Tacconelli S and Patrignani P: Mode of action of aspirin as a chemopreventive agent. Recent Results Cancer Res. 191:39–65. 2013. View Article : Google Scholar

69 

Sareddy GR, Kesanakurti D, Kirti PB and Babu PP: Nonsteroidal anti-inflammatory drugs diclofenac and celecoxib attenuates Wnt/β-catenin/Tcf signaling pathway in human glioblastoma cells. Neurochem Res. 38:2313–2322. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Dharmapuri G, Doneti R, Philip GH and Kalle AM: Celecoxib sensitizes imatinib-resistant K562 cells to imatinib by inhibiting MRP1-5, ABCA2 and ABCG2 transporters via Wnt and Ras signaling pathways. Leuk Res. 39:696–701. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Lin XL, Xu Q, Tang L, Sun L, Han T, Wang LW and Xiao XY: Regorafenib inhibited gastric cancer cells growth and invasion via CXCR4 activated Wnt pathway. PLoS One. 12:e01773352017. View Article : Google Scholar : PubMed/NCBI

72 

Tumova L, Pombinho AR, Vojtechova M, Stancikova J, Gradl D, Krausova M, Sloncova E, Horazna M, Kriz V, Machonova O, et al: Monensin inhibits canonical Wnt signaling in human colorectal cancer cells and suppresses tumor growth in multiple intestinal neoplasia mice. Mol Cancer Ther. 13:812–822. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Olmez I, Shen W, McDonald H and Ozpolat B: Dedifferentiation of patient-derived glioblastoma multiforme cell lines results in a cancer stem cell-like state with mitogen-independent growth. J Cell Mol Med. 19:1262–1272. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Chen M, Wang J, Lu J, Bond MC, Ren XR, Lyerly HK, Barak LS and Chen W: The anti-helminthic niclosamide inhibits Wnt/Frizzled1 signaling. Biochemistry. 48:10267–10274. 2009. View Article : Google Scholar : PubMed/NCBI

75 

Wieland A, Trageser D, Gogolok S, Reinartz R, Höfer H, Keller M, Leinhaas A, Schelle R, Normann S, Klaas L, et al: Anticancer effects of niclosamide in human glioblastoma. Clin Cancer Res. 19:4124–4136. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Arend RC, Londoño-Joshi AI, Samant RS, Li Y, Conner M, Hidalgo B, Alvarez RD, Landen CN, Straughn JM and Buchsbaum DJ: Inhibition of Wnt/β catenin pathway by niclosamide: A therapeutic target for ovarian cancer. Gynecol Oncol. 134:112–120. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Liu C, Lou W, Armstrong C, Zhu Y, Evans CP and Gao AC: Niclosamide suppresses cell migration and invasion in enzalutamide resistant prostate cancer cells via Stat3-AR axis inhibition. Prostate. 75:1341–1353. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Liu C, Lou W, Zhu Y, Nadiminty N, Schwartz CT, Evans CP and Gao AC: Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin Cancer Res. 20:3198–3210. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Londoño-Joshi AI, Arend RC, Aristizabal L, Lu W, Samant RS, Metge BJ, Hidalgo B, Grizzle WE, Conner M, Forero-Torres A, et al: Effect of niclosamide on basal-like breast cancers. Mol Cancer Ther. 13:800–811. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Liao Z, Nan G, Yan Z, Zeng L, Deng Y, Ye J, Zhang Z, Qiao M, Li R, Denduluri S, et al: The anthelmintic drug niclosamide inhibits the proliferative activity of human osteosarcoma cells by targeting multiple signal pathways. Curr Cancer Drug Targets. 15:726–738. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Lu W, Lin C, King TD, Chen H, Reynolds RC and Li Y: Silibinin inhibits Wnt/β-catenin signaling by suppressing Wnt co-receptor LRP6 expression in human prostate and breast cancer cells. Cell Signal. 24:2291–2296. 2012. View Article : Google Scholar : PubMed/NCBI

82 

Zhang X, Lou Y, Zheng X, Wang H, Sun J, Dong Q and Han B: Wnt blockers inhibit the proliferation of lung cancer stem cells. Drug Des Devel Ther. 9:2399–2407. 2015.PubMed/NCBI

83 

Bryukhovetskiy IS, Mischenko PV, Tolok EV, Zaitcev SV, Khotimchenko YS and Bryukhovetskiy AS: Directional migration of adult hematopoeitic progenitors to C6 gliom in vitro. Oncol Lett. 9:1839–1844. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Bryukhovetskiy IS, Dyuizen IV, Shevchenko VE, Bryukhovetskiy AS, Mischenko PV, Milkina EV and Khotimchenko YS: Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 14:4511–4520. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, et al: Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas. Proc Natl Acad Sci USA. 97:12846–12851. 2000. View Article : Google Scholar : PubMed/NCBI

86 

Aboody KS, Najbauer J, Metz MZ, D'Apuzzo M, Gutova M, Annala AJ, Synold TW, Couture LA, Blanchard S, Moats RA, et al: Neural stem cell-mediated enzyme/prodrug therapy for glioma: Preclinical studies. Sci Transl Med. 5:184ra592013. View Article : Google Scholar : PubMed/NCBI

87 

Aboody KS, Najbauer J, Schmidt NO, Yang W, Wu JK, Zhuge Y, Przylecki W, Carroll R, Black PM and Perides G: Targeting of melanoma brain metastases using engineered neural stem/progenitor cell. Neuro Oncol. 8:119–126. 2006. View Article : Google Scholar : PubMed/NCBI

88 

Gutova M, Najbauer J, Frank RT, Kendall SE, Gevorgyan A, Metz MZ, Guevorkian M, Edmiston M, Zhao D, Glackin CA, et al: Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells. 26:1406–1413. 2008. View Article : Google Scholar : PubMed/NCBI

89 

Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A, Ratajczak J and Ratajczak MZ: Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4 axis. Stem Cells. 23:879–894. 2005. View Article : Google Scholar : PubMed/NCBI

90 

Gabashvili AN, Baklaushev VP, Grinenko NF, Levinskii AB, Mel'nikov PA, Cherepanov SA and Chekhonin VP: Functionally active gap junctions between connexin 43-positive mesenchymal stem cells and glioma cells. Bull Exp Biol Med. 159:173–179. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Mercapide J, Rappa G and Lorico A: The intrinsic fusogenicity of glioma cells as a factor of transformation and progression in the tumor microenvironment. Int J Cancer. 131:334–43. 2012. View Article : Google Scholar

92 

Rappa G, Mercapide J and Lorico A: Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity. Am J Pathol. 180:2504–2515. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Mercapide J, Anzanello F, Rappa G and Lorico A: Relationship between tumor cell invasiveness and polyploidization. PLoS One. 7:e533642012. View Article : Google Scholar

94 

Zimmerlin L, Park TS, Zambidis ET, Donnenberg VS and Donnenberg AD: Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie. 95:2235–2245. 2013. View Article : Google Scholar : PubMed/NCBI

95 

O'Donnell RK, Falcon B, Hanson J, Goldstein WE, Perruzzi C, Rafii S, Aird WC and Benjamin LE: VEGF-A/VEGFR inhibition restores hematopoietic homeostasis in the bone marrow and attenuates tumor growth. Cancer Res. 76:517–524. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Hong JP, Li XM, Li MX and Zheng FL: VEGF suppresses epithelial-mesenchymal transition by inhibiting the expression of Smad3 and miR-192, a Smad3-dependent microRNA. Int J Mol Med. 31:1436–1442. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Treps L, Perret R, Edmond S, Ricard D and Gavard J: Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. J Extracell Vesicles. 6:13594792017. View Article : Google Scholar : PubMed/NCBI

98 

Diaz RJ, Ali S, Qadir MG, De La Fuente MI, Ivan ME and Komotar RJ: The role of bevacizumab in the treatment of glioblastoma. J Neurooncol. 133:455–467. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Bryukhovetskiy I, Lyakhova I, Mischenko P, Milkina E, Zaitsev S, Khotimchenko Y, Bryukhovetskiy A, Polevshchikov A, Kudryavtsev I, Khotimchenko M, et al: Alkaloids of fascaplysin are effective conventional chemotherapeutic drugs, inhibiting the proliferation of C6 glioma cells and causing their death in vitro. Oncol Lett. 13:738–746. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Pacioni S, D'Alessandris QG, Giannetti S, Morgante L, Coccè V, Bonomi A, Buccarelli M, Pascucci L, Alessandri G, Pessina A, et al: Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts. Stem Cell Res Ther. 8:532017. View Article : Google Scholar : PubMed/NCBI

101 

Bryukhovetskiy I, Bryukhovetsky A, Khotimchenko Y, Mischenko P, Tolok E and Khotimchenko R: Combination of the multipotent mesenchymal stromal cell transplantation with administration of temozolomide increases survival of rats with experimental glioblastoma. Mol Med Rep. 12:2828–2834. 2015. View Article : Google Scholar : PubMed/NCBI

102 

English K: Mesenchymal stem cells to promote islet transplant survival. Curr Opin Organ Transplant. 21:568–573. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Vizoso FJ, Eiro N, Cid S, Schneider J and Perez-Fernandez R: Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 18:E18522017. View Article : Google Scholar : PubMed/NCBI

104 

Katakowski M and Chopp M: Exosomes as tools to suppress primary brain tumor. Cell Mol Neurobiol. 36:343–352. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Liu X, Li Q, Niu X, Hu B, Chen S, Song W, Ding J, Zhang C and Wang Y: Exosomes secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells prevent osteonecrosis of the femoral head by promoting angiogenesis. Int J Biol Sci. 13:232–244. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Klopp AH, Gupta A, Spaeth E, Andreeff M and Marini F III: Concise review: Dissecting a discrepancy in the literature: Do mesenchymal stem cells support or suppress tumor growth? Stem Cells. 29:11–19. 2011. View Article : Google Scholar : PubMed/NCBI

107 

Alcayaga-Miranda F, González PL, Lopez-Verrilli A, Varas-Godoy M, Aguila-Díaz C, Contreras L and Khoury M: Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species. Oncotarget. 7:44462–44477. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Bliss SA, Sinha G, Sandiford OA, Williams LM, Engelberth DJ, Guiro K, Isenalumhe LL, Greco SJ, Ayer S, Bryan M, et al: Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res. 76:5832–5844. 2016. View Article : Google Scholar : PubMed/NCBI

109 

Reza AM, Choi YJ, Yasuda H and Kim JH: Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells. Sci Rep. 6:384982016. View Article : Google Scholar : PubMed/NCBI

110 

Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ and Pérez Lanzón M: Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 6:1272015. View Article : Google Scholar : PubMed/NCBI

111 

Lopatina T, Gai C, Deregibus MC, Kholia S and Camussi G: Cross talk between cancer and mesenchymal stem cells through extracellular vesicles carrying nucleic acids. Front Oncol. 6:1252016. View Article : Google Scholar : PubMed/NCBI

112 

Zhang Z, Gong Q, Li M, Xu J, Zheng Y, Ge P and Chi G: MicroRNA-124 inhibits the proliferation of C6 glioma cells by targeting Smad4. Int J Mol Med. 40:1226–1234. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Mei LL, Wang WJ, Qiu YT, Xie XF, Bai J and Shi ZZ: miR-145-5p suppresses tumor cell migration, invasion and epithelial to mesenchymal transition by regulating the Sp1/NF-κB signaling pathway in esophageal squamous cell carcinoma. Int J Mol Sci. 18:E18332017. View Article : Google Scholar

114 

Gong Y, Qin Z, Zhou B, Chen H, Shi Z and Zhang J: MicroRNA-200a inhibits transforming growth factor β1-induced proximal tubular epithelial-mesenchymal transition by targeting β-Catenin. Nephron. 137:237–249. 2017. View Article : Google Scholar

115 

Yan J, Jiang JY, Meng XN, Xiu YL and Zong ZH: MiR-23b targets cyclin G1 and suppresses ovarian cancer tumorigenesis and progression. J Exp Clin Cancer Res. 35:312016. View Article : Google Scholar : PubMed/NCBI

116 

Liu G, Xu Z and Hao D: MicroRNA-451 inhibits neuroblastoma proliferation, invasion and migration by targeting macrophage migration inhibitory factor. Mol Med Rep. 13:2253–2260. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Zeng T, Peng L, Chao C, Fu B, Wang G, Wang Y and Zhu X: miR-451 inhibits invasion and proliferation of bladder cancer by regulating EMT. Int J Clin Exp Pathol. 7:7653–7662. 2014.

118 

Xu H, Mei Q, Shi L, Lu J, Zhao J and Fu Q: Tumor-suppressing effects of miR451 in human osteosarcoma. Cell Biochem Biophys. 69:163–168. 2014. View Article : Google Scholar

119 

Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, Desano JT, Bommer GT, Fan D, et al: MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 4:e68162009. View Article : Google Scholar : PubMed/NCBI

120 

Alvarado AG, Thiagarajan PS, Mulkearns-Hubert EE, Silver DJ, Hale JS, Alban TJ, Turaga SM, Jarrar A, Reizes O, Longworth MS, et al: Glioblastoma cancer stem cells evade innate immune suppression of self-renewal through reduced TLR4 expression. Cell Stem Cell. 20:450–461.e4. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Sathyanarayanan A, Chandrasekaran KS and Karunagaran D: microRNA-145 downregulates SIP1-expression but differentially regulates proliferation, migration, invasion and Wnt signalling in SW480 and SW620 cells. J Cell Biochem. 119:2022–2035. 2018. View Article : Google Scholar

122 

Sathyanarayanan A, Chandrasekaran KS and Karunagaran D: microRNA-145 modulates epithelial-mesenchymal transition and suppresses proliferation, migration and invasion by targeting SIP1 in human cervical cancer cells. Cell Oncol. 40:119–131. 2017. View Article : Google Scholar

123 

Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, Shu W, Jiang F and Chopp M: Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 335:201–204. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Gopal SK, Greening DW, Rai A, Chen M, Xu R, Shafiq A, Mathias RA, Zhu HJ and Simpson RJ: Extracellular vesicles: Their role in cancer biology and epithelial-mesenchymal transition. Biochem J. 474:21–45. 2017. View Article : Google Scholar

125 

Ti D, Hao H, Fu X and Han W: Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. Sci China Life Sci. 59:1305–1312. 2016. View Article : Google Scholar : PubMed/NCBI

126 

Hambardzumyan D, Gutmann DH and Kettenmann H: The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 19:20–27. 2016. View Article : Google Scholar :

127 

Wang Y, Liu T, Yang N, Xu S, Li X and Wang D: Hypoxia and macrophages promote glioblastoma invasion by the CCL4-CCR5 axis. Oncol Rep. 36:3522–3528. 2016. View Article : Google Scholar : PubMed/NCBI

128 

Kondo Y, Katsushima K, Ohka F, Natsume A and Shinjo K: Epigenetic dysregulation in glioma Cancer Sci. 105:363–369. 2014.

129 

Feng X, Szulzewsky F, Yerevanian A, Chen Z, Heinzmann D, Rasmussen RD, Alvarez-Garcia V, Kim Y, Wang B, Tamagno I, et al: Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget. 6:15077–15094. 2015. View Article : Google Scholar : PubMed/NCBI

130 

Nusblat LM, Carroll MJ and Roth CM: Crosstalk between M2 macrophages and glioma stem cells. Cell Oncol. 40:471–482. 2017. View Article : Google Scholar

131 

Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, Wu L, Sloan AE, McLendon RE, Li X, et al: Periostea secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 17:170–182. 2015. View Article : Google Scholar : PubMed/NCBI

132 

Alifieris C and Trafalis DT: Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther. 152:63–82. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Bryukhovetskiy I, Ponomarenko A, Lyakhova I, Zaitsev S, Zayats Y, Korneyko M, Eliseikina M, Mischenko P, Shevchenko V, Shanker Sharma H, Shanker Sharma H, et al: Personalized regulation of glioblastoma cancer stem cells based on biomedical technologies: From theory to experiment (Review). Int J Mol Med 42: 691-702, 2018.
APA
Bryukhovetskiy, I., Ponomarenko, A., Lyakhova, I., Zaitsev, S., Zayats, Y., Korneyko, M. ... Khotimchenko, Y. (2018). Personalized regulation of glioblastoma cancer stem cells based on biomedical technologies: From theory to experiment (Review). International Journal of Molecular Medicine, 42, 691-702. https://doi.org/10.3892/ijmm.2018.3668
MLA
Bryukhovetskiy, I., Ponomarenko, A., Lyakhova, I., Zaitsev, S., Zayats, Y., Korneyko, M., Eliseikina, M., Mischenko, P., Shevchenko, V., Shanker Sharma, H., Sharma, A., Khotimchenko, Y."Personalized regulation of glioblastoma cancer stem cells based on biomedical technologies: From theory to experiment (Review)". International Journal of Molecular Medicine 42.2 (2018): 691-702.
Chicago
Bryukhovetskiy, I., Ponomarenko, A., Lyakhova, I., Zaitsev, S., Zayats, Y., Korneyko, M., Eliseikina, M., Mischenko, P., Shevchenko, V., Shanker Sharma, H., Sharma, A., Khotimchenko, Y."Personalized regulation of glioblastoma cancer stem cells based on biomedical technologies: From theory to experiment (Review)". International Journal of Molecular Medicine 42, no. 2 (2018): 691-702. https://doi.org/10.3892/ijmm.2018.3668
Copy and paste a formatted citation
x
Spandidos Publications style
Bryukhovetskiy I, Ponomarenko A, Lyakhova I, Zaitsev S, Zayats Y, Korneyko M, Eliseikina M, Mischenko P, Shevchenko V, Shanker Sharma H, Shanker Sharma H, et al: Personalized regulation of glioblastoma cancer stem cells based on biomedical technologies: From theory to experiment (Review). Int J Mol Med 42: 691-702, 2018.
APA
Bryukhovetskiy, I., Ponomarenko, A., Lyakhova, I., Zaitsev, S., Zayats, Y., Korneyko, M. ... Khotimchenko, Y. (2018). Personalized regulation of glioblastoma cancer stem cells based on biomedical technologies: From theory to experiment (Review). International Journal of Molecular Medicine, 42, 691-702. https://doi.org/10.3892/ijmm.2018.3668
MLA
Bryukhovetskiy, I., Ponomarenko, A., Lyakhova, I., Zaitsev, S., Zayats, Y., Korneyko, M., Eliseikina, M., Mischenko, P., Shevchenko, V., Shanker Sharma, H., Sharma, A., Khotimchenko, Y."Personalized regulation of glioblastoma cancer stem cells based on biomedical technologies: From theory to experiment (Review)". International Journal of Molecular Medicine 42.2 (2018): 691-702.
Chicago
Bryukhovetskiy, I., Ponomarenko, A., Lyakhova, I., Zaitsev, S., Zayats, Y., Korneyko, M., Eliseikina, M., Mischenko, P., Shevchenko, V., Shanker Sharma, H., Sharma, A., Khotimchenko, Y."Personalized regulation of glioblastoma cancer stem cells based on biomedical technologies: From theory to experiment (Review)". International Journal of Molecular Medicine 42, no. 2 (2018): 691-702. https://doi.org/10.3892/ijmm.2018.3668
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team