|
1
|
Stanaway JD, Flaxman AD, Naghavi M,
Fitzmaurice C, Vos T, Abubakar I, Abu-Raddad LJ, Assadi R, Bhala N,
Cowie B, et al: The global burden of viral hepatitis from 1990 to
2013: Findings from the global burden of disease study 2013.
Lancet. 388:1081–1088. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lu FM, Li T, Liu S and Zhuang H:
Epidemiology and prevention of hepatitis B virus infection in
China. J Viral Hepat. 17(Suppl 1): S4–S9. 2010. View Article : Google Scholar
|
|
3
|
Liu J, Zhang S, Wang Q, Shen H, Zhang M,
Zhang Y, Yan D and Liu M: Seroepidemiology of hepatitis B virus
infection in 2 million men aged 21-49 years in rural China: A
population-based, cross-sectional study. Lancet Infect Dis.
16:80–86. 2016. View Article : Google Scholar
|
|
4
|
Blendis L, Lurie Y and Oren R: Occult HBV
infection-both hidden and mysterious. Gastroenterology.
125:1903–1905. 2003. View Article : Google Scholar
|
|
5
|
Park JJ, Wong DK, Wahed AS, Lee WM, Feld
JJ, Terrault N, Khalili M, Sterling RK, Kowdley KV, Bzowej N, et
al: Hepatitis B virus - specific and global T-cell dysfunction in
chronic hepatitis B. Gastroenterology. 150:684–695.e5. 2016.
View Article : Google Scholar
|
|
6
|
Ye B, Liu X, Li X, Kong H, Tian L and Chen
Y: T-cell exhaustion in chronic hepatitis B infection: Current
knowledge and clinical significance. Cell Death Dis. 6:e16942015.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ling V, Wu PW, Finnerty HF, Sharpe AH,
Gray GS and Collins M: Complete sequence determination of the mouse
and human CTLA4 gene loci: Cross-species DNA sequence similarity
beyond exon borders. Genomics. 60:341–355. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lindsten T, Lee KP, Harris ES, Petryniak
B, Craighead N, Reynolds PJ, Lombard DB, Freeman GJ, Nadler LM,
Gray GS, et al: Characterization of CTLA-4 structure and expression
on human T cells. J Immunol. 151:3489–3499. 1993.PubMed/NCBI
|
|
9
|
Adams AB, Ford ML and Larsen CP:
Costimulation blockade in autoimmunity and transplantation: The CD
28 pathway. J Immunol. 197:2045–2050. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Brunet JF, Denizot F, Luciani MF,
Roux-Dosseto M, Suzan M, Mattei MG and Golstein P: A new member of
the immunoglobulin superfamily - CTLA-4. Nature. 328:267–270. 1987.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Tang ST, Tang HQ, Zhang Q, Wang CJ, Wang
YM and Peng WJ: Association of cytotoxic T-lymphocyte associated
antigen 4 gene polymorphism with type 1 diabetes mellitus: A
meta-analysis. Gene. 508:165–187. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Li Q, Wang B, Pan F, Zhang R, Xiao L, Guo
H, Ma S and Zhou C: Association between cytotoxic T-lymphocyte
antigen 4 gene polymorphisms and primary biliary cirrhosis in
Chinese population: Data from a multicenter study. J Gastroenterol
Hepatol. 28:1397–1402. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Du L, Yang J and Huang J, Ma Y, Wang H,
Xiong T, Xiang Z, Zhang Y and Huang J: The associations between the
polymorphisms in the CTLA-4 gene and the risk of Graves' disease in
the Chinese population. BMC Med Genet. 14:462013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Huang R, Hao Y, Fan Y, Yang C, Wu K, Cao S
and Wu C: Association between cytotoxic T-lymphocyte-associated
antigen 4+49A/G polymorphism and persistent hepatitis B virus
infection in the Asian population: Evidence from the current
studies. Genet Test Mol Biomarkers. 17:601–606. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Isogawa M, Furuichi Y and Chisari FV:
Oscillating CD8+ T cell effector functions after antigen
recognition in the liver. Immunity. 23:53–63. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Benechet AP and Iannacone M: Determinants
of hepatic effector CD8+ T cell dynamics. J Hepatol.
66:228–233. 2017. View Article : Google Scholar
|
|
17
|
Bengsch B, Martin B and Thimme R:
Restoration of HBV-specific CD8+ T cell function by PD-1
blockade in inactive carrier patients is linked to T cell
differentiation. J Hepatol. 61:1212–1219. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Barber DL, Wherry EJ, Masopust D, Zhu B,
Allison JP, Sharpe AH, Freeman GJ and Ahmed R: Restoring function
in exhausted CD8 T cells during chronic viral infection. Nature.
439:682–687. 2006. View Article : Google Scholar
|
|
19
|
Legat A, Speiser DE, Pircher H, Zehn D and
Fuertes Marraco SA: Inhibitory receptor expression depends more
dominantly on differentiation and activation than 'Exhaustion' of
human CD8 T cells. Front Immunol. 4:4552013. View Article : Google Scholar
|
|
20
|
Nakamoto N, Cho H, Shaked A, Olthoff K,
Valiga ME, Kaminski M, Gostick E, Price DA, Freeman GJ, Wherry EJ
and Chang KM: Synergistic reversal of intrahepatic HCV-specific CD8
T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog. 5.
pp. e10003132009, View Article : Google Scholar
|
|
21
|
Waterhouse P, Penninger JM, Timms E,
Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H and Mak TW:
Lymphoproliferative disorders with early lethality in mice
deficient in Ctla-4. Science. 270:985–988. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cho H, Kang H, Kim CW, Kim HY, Jang JW,
Yoon SK and Lee CD: Phenotypic characteristics of PD-1 and CTLA-4
expression in symptomatic acute hepatitis A. Gut Liver. 10:288–294.
2016. View Article : Google Scholar :
|
|
23
|
Radziewicz H, Ibegbu CC, Hon H, Osborn MK,
Obideen K, Wehbi M, Freeman GJ, Lennox JL, Workowski KA, Hanson HL
and Grakoui A: Impaired hepatitis C virus (HCV)-specific effector
CD8+ T cells undergo massive apoptosis in the peripheral
blood during acute HCV infection and in the liver during the
chronic phase of infection. J Virol. 82:9808–9822. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Das A, Hoare M, Davies N, Lopes AR, Dunn
C, Kennedy PT, Alexander G, Finney H, Lawson A, Plunkett FJ, et al:
Functional skewing of the global CD8 T cell population in chronic
hepatitis B virus infection. J Exp Med. 205:2111–2124. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wongjitrat C, Sukwit S, Chuenchitra T,
Seangjaruk P, Rojanasang P, Romputtan P and Srisurapanon S: CTLA-4
and its ligands on the surface of T- and B-lymphocyte subsets in
chronic hepatitis B virus infection. J Med Assoc Thai. 96(Suppl 1):
S54–S59. 2013.PubMed/NCBI
|
|
26
|
Kennedy PTF, Sandalova E, Jo J, Gill U,
Ushiro-Lumb I, Tan AT, Naik S, Foster GR and Bertoletti A:
Preserved T-cell function in children and young adults with
immune-tolerant chronic hepatitis B. Gastroenterology. 143:637–645.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Velazquez VM and Grakoui A: Immune
quiescence and hepatitis B virus: Tolerance has its limits.
Gastroenterology. 143:529–532. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Peng G, Luo B, Li J, Zhao D, Wu W, Chen F
and Chen Z: Hepatitis B e-antigen persistency is associated with
the properties of HBV-specific CD8 T cells in CHB patients. J Clin
Immunol. 31:195–204. 2011. View Article : Google Scholar
|
|
29
|
Schuette V, Embgenbroich M, Ulas T, Welz
M, Schulte- Schrepping J, Draffehn AM, Quast T, Koch K, Nehring M,
König J, et al: Mannose receptor induces T-cell tolerance via
inhibition of CD45 and up-regulation of CTLA-4. Proc Natl Acad Sci
USA. 113:10649–10654. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Schurich A, Khanna P, Lopes AR, Han KJ,
Peppa D, Micco L, Nebbia G, Kennedy PT, Geretti AM, Dusheiko G and
Maini MK: Role of the coinhibitory receptor cytotoxic T lymphocyte
antigen-4 on apoptosis-Prone CD8 T cells in persistent hepatitis B
virus infection. Hepatology. 53:1494–1503. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wang YM, Zhang GY, Wang Y, Hu M, Zhou JJ,
Sawyer A, Cao Q, Wang Y, Zheng G, Lee VW, et al: Exacerbation of
spontaneous autoimmune nephritis following regulatory T cell
depletion in B cell lymphoma 2-interacting mediator knock-out mice.
Clin Exp Immunol. 188:195–207. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Dai K, Huang L, Sun X, Yang L and Gong Z:
Hepatic CD206-positive macrophages express amphiregulin to promote
the immunosuppressive activity of regulatory T cells in HBV
infection. J Leukoc Biol. 98:1071–1080. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Nitschke K, Luxenburger H, Kiraithe MM,
Thimme R and Neumann-Haefelin C: CD8+ T-cell responses
in hepatitis B and C: The (HLA-) A, B, and C of hepatitis B and C.
Dig Dis. 34:396–409. 2016. View Article : Google Scholar
|
|
34
|
Farhan RK, Vickers MA, Ghaemmaghami AM,
Hall AM, Barker RN and Walsh GM: Effective antigen presentation to
helper T cells by human eosinophils. Immunology. 149:413–422. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li M, Sun XH, Zhu XJ, Jin SG, Zeng ZJ,
Zhou ZH, Yu Z and Gao YQ: HBcAg induces PD-1 upregulation on
CD4+ T cells through activation of JNK, ERK and PI3K/AKT
pathways in chronic hepatitis-B-infected patients. Lab Invest.
92:295–304. 2012. View Article : Google Scholar
|
|
36
|
Wang H, Wu D, Wang X, Chen G, Zhang Y, Yan
W, Luo X, Han M and Ning Q: Hepatitis B virus surface
protein-induced hPIAS1 transcription requires TAL1, E47, MYOG, NFI,
and MAPK signal pathways. Biol Chem. 397:1173–1185. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Raziorrouh B, Heeg M, Kurktschiev P,
Schraut W, Zachoval R, Wendtner C, Wächtler M, Spannagl M, Denk G,
Ulsenheimer A, et al: Inhibitory phenotype of HBV-specific
CD4+ T-cells is characterized by high PD-1 expression
but absent coregulation of multiple inhibitory molecules. PLoS One.
9:e1057032014. View Article : Google Scholar
|
|
38
|
Walker LS and Sansom DM: The emerging role
of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev
Immunol. 11:852–863. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Halpert MM, Konduri V, Liang D, Chen Y,
Wing JB, Paust S, Levitt JM and Decker WK: Dendritic cell-secreted
cytotoxic T-lymphocyte-associated protein-4 regulates the T-cell
response by downmodulating bystander surface B7. Stem Cells Dev.
25:774–787. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Tai X, Van Laethem F, Pobezinsky L,
Guinter T, Sharrow SO, Adams A, Granger L, Kruhlak M, Lindsten T,
Thompson CB, et al: Basis of CTLA-4 function in regulatory and
conventional CD4+ T cells. Blood. 119:5155–5163. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ville S, Poirier N, Blancho G and Vanhove
B: Co-stimulatory blockade of the CD28/CD80-86/CTLA-4 balance in
transplantation: Impact on memory T cells? Front Immunol.
6:4112015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Cloutier JF and Veillette A: Cooperative
inhibition of T-cell antigen receptor signaling by a complex
between a kinase and a phosphatase. J Exp Med. 189:111–121. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhu J, Yamane H and Paul WE:
Differentiation of effector CD4 T cell populations (*). Annu Rev
Immunol. 28:445–489. 2010. View Article : Google Scholar
|
|
44
|
Tang ZS, Hao YH, Zhang EJ, Xu CL, Zhou Y,
Zheng X and Yang DL: CD28 family of receptors on T cells in chronic
HBV infection: Expression characteristics, clinical significance
and correlations with PD-1 blockade. Mol Med Rep. 14:1107–1116.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Dilek N, Poirier N, Hulin P, Coulon F,
Mary C, Ville S, Vie H, Clémenceau B, Blancho G and Vanhove B:
Targeting CD28, CTLA-4 and PD-L1 costimulation differentially
controls immune synapses and function of human regulatory and
conventional T-cells. PLoS One. 8:e831392013. View Article : Google Scholar :
|
|
46
|
Grakoui A, Bromley SK, Sumen C, Davis MM,
Shaw AS, Allen PM and Dustin ML: The immunological synapse: A
molecular machine controlling T cell activation. Science.
285:221–227. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Alegre ML, Shiels H, Thompson CB and
Gajewski TF: Expression and function of CTLA-4 in Th1 and Th2
cells. J Immunol. 161:3347–3356. 1998.PubMed/NCBI
|
|
48
|
Turner MS, Isse K, Fischer DK, Turnquist
HR and Morel PA: Low TCR signal strength induces combined expansion
of Th2 and regulatory T cell populations that protect mice from the
development of type 1 diabetes. Diabetologia. 57:1428–1436. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Smeets RL, Fleuren WW, He X, Vink PM,
Wijnands F, Gorecka M, Klop H, Bauerschmidt S, Garritsen A, Koenen
HJ, et al: Molecular pathway profiling of T lymphocyte signal
transduction pathways; Th1 and Th2 genomic fingerprints are defined
by TCR and CD28-mediated signaling. BMC Immunol. 13:122012.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yin Y, Wu C, Song J, Wang J, Zhang E, Liu
H, Yang D, Chen X, Lu M and Xu Y: DNA immunization with fusion of
CTLA-4 to hepatitis B virus (HBV) core protein enhanced Th2 type
responses and cleared HBV with an accelerated kinetic. PLoS One.
6:e225242011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhou C, Peng G, Jin X, Tang J and Chen Z:
Vaccination with a fusion DNA vaccine encoding hepatitis B surface
antigen fused to the extracellular domain of CTLA4 enhances
HBV-specific immune responses in mice: Implication of its potential
use as a therapeutic vaccine. Clin Immunol. 137:190–198. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Fazilleau N, Mark L, McHeyzer-Williams LJ
and McHeyzer- Williams MG: Follicular helper T cells: Lineage and
location. Immunity. 30:324–335. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Tivol EA, Borriello F, Schweitzer AN,
Lynch WP, Bluestone JA and Sharpe AH: Loss of CTLA-4 leads to
massive lymphoproliferation and fatal multiorgan tissue
destruction, revealing a critical negative regulatory role of
CTLA-4. Immunity. 3:541–547. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang CJ, Heuts F, Ovcinnikovs V,
Wardzinski L, Bowers C, Schmidt EM, Kogimtzis A, Kenefeck R, Sansom
DM and Walker LS: CTLA-4 controls follicular helper T-cell
differentiation by regulating the strength of CD28 engagement. Proc
Natl Acad Sci USA. 112:524–529. 2015. View Article : Google Scholar
|
|
55
|
Qureshi OS, Zheng Y, Nakamura K, Attridge
K, Manzotti C, Schmidt EM, Baker J, Jeffery LE, Kaur S, Briggs Z,
et al: Trans-endocytosis of CD80 and CD86: A molecular basis for
the cell-extrinsic function of CTLA-4. Science. 332:600–603. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Li Y, Ma S, Tang L, Li Y, Wang W, Huang X,
Lai Q, Zhang M, Sun J, Li CK, et al: Circulating chemokine (C-X-C
Motif) receptor 5(+) CD4(+) T cells benefit hepatitis B e antigen
seroconversion through IL-21 in patients with chronic hepatitis B
virus infection. Hepatology. 58:1277–1286. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Abbas AK, Benoist C, Bluestone JA,
Campbell DJ, Ghosh S, Hori S, Jiang S, Kuchroo VK, Mathis D,
Roncarolo MG, et al: Regulatory T cells: Recommendations to
simplify the nomenclature. Nat Immunol. 14:307–308. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shevach EM and Thornton AM: tTregs,
pTregs, and iTregs: Similarities and differences. Immunol Rev.
259:88–102. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kolar P, Knieke K, Hegel JK, Quandt D,
Burmester GR, Hoff H and Brunner-Weinzierl MC: CTLA-4 (CD152)
controls homeostasis and suppressive capacity of regulatory T cells
in mice. Arthritis Rheum. 60:123–132. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Guntermann C and Alexander DR: CTLA-4
suppresses proximal TCR signaling in resting human CD4+
T cells by inhibiting ZAP-70 Tyr319 phosphorylation: A
potential role for tyrosine phosphatases. J Immunol. 168:4420–4429.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hou TZ, Verma N, Wanders J, Kennedy A,
Soskic B, Janman D, Halliday N, Rowshanravan B, Worth A, Qasim W,
et al: Identifying functional defects in patients with immune
dysregulation due to LRBA and CTLA-4 mutations. Blood.
129:1458–1468. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Mellor AL and Munn DH: IDO expression by
dendritic cells: Tolerance and tryptophan catabolism. Nat Rev
Immunol. 4:762–774. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yang G, Liu A, Xie Q, Guo TB, Wan B, Zhou
B and Zhang JZ: Association of
CD4+CD25+Foxp3+ regulatory T cells
with chronic activity and viral clearance in patients with
hepatitis B. Int Immunol. 19:133–140. 2007. View Article : Google Scholar
|
|
64
|
Stoop JN, van der Molen RG, Baan CC, van
der Laan LJ, Kuipers EJ, Kusters JG and Janssen HL: Regulatory T
cells contribute to the impaired immune response in patients with
chronic hepatitis B virus infection. Hepatology. 41:771–778. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xu D, Fu J, Jin L, Zhang H, Zhou C, Zou Z,
Zhao JM, Zhang B, Shi M, Ding X, et al: Circulating and liver
resident CD4+CD25+ regulatory T cells
actively influence the antiviral immune response and disease
progression in patients with hepatitis B. J Immunol. 177:739–747.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Tavakolpour S, Alavian SM and Sali S:
Manipulation of regulatory cells' responses to treatments for
chronic hepatitis B virus infection. Hepat Mon. 16:e379272016.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Feng IC, Koay LB, Sheu MJ, Kuo HT, Sun CS,
Lee C, Chuang WL, Liao SK, Wang SL, Tang LY, et al: HBcAg-specific
CD4+CD25+ regulatory T cells modulate immune
tolerance and acute exacerbation on the natural history of chronic
hepatitis B virus infection. J Biomed Sci. 14:43–57. 2007.
View Article : Google Scholar
|
|
68
|
Chen W, Jin W and Wahl SM: Engagement of
cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces
transforming growth factor beta (TGF-beta) production by murine
CD4+ T cells. J Exp Med. 188:1849–1857. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kalathil S, Lugade AA, Miller A, Iyer R
and Thanavala Y: Higher frequencies of
GARP+CTLA-4+Foxp3+ T regulatory
cells and myeloid-derived suppressor cells in hepatocellular
carcinoma patients are associated with impaired T-cell
functionality. Cancer Res. 73:2435–2444. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Liu Y, Cheng LS, Wu SD, Wang SQ, Li L, She
WM, Li J, Wang JY and Jiang W: IL-10-producing regulatory B-cells
suppressed effector T-cells but enhanced regulatory T-cells in
chronic HBV infection. Clin Sci. 130:907–919. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jeffery HC, Jeffery LE, Lutz P, Corrigan
M, Webb GJ, Hirschfield GM, Adams DH and Oo YH: Low-dose
interleukin-2 promotes STAT-5 phosphorylation, Treg survival and
CTLA-4-dependent function in autoimmune liver diseases. Clin Exp
Immunol. 188:394–411. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Walker LS: Treg and CTLA-4: Two
intertwining pathways to immune tolerance. J Autoimmun. 45:49–57.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Fontenot JD, Gavin MA and Rudensky AY:
Foxp3 programs the development and function of CD4+CD25+ regulatory
T cells. Nat Immunol. 4:330–336. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
74
|
Bennett CL, Christie J, Ramsdell F,
Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT,
Chance PF and Ochs HD: The immune dysregulation,
polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused
by mutations of FOXP3. Nat Genet. 27:20–21. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Paterson AM, Lovitch SB, Sage PT, Juneja
VR, Lee Y, Trombley JD, Arancibia-Cárcamo CV, Sobel RA, Rudensky
AY, Kuchroo VK, et al: Deletion of CTLA-4 on regulatory T cells
during adulthood leads to resistance to autoimmunity. J Exp Med.
212:1603–1621. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Xia Y and Protzer U: Control of hepatitis
B virus by cytokines. Viruses. 9:pii: E182017. View Article : Google Scholar
|
|
77
|
Xia Y and Cheng X: Secreted
interferon-inducible factors restrict hepatitis B and C virus entry
in vitro. J Immunol Res. 2017:48289362017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Le Vee M, Gripon P, Stieger B and Fardel
O: Down-regulation of organic anion transporter expression in human
hepatocytes exposed to the proinflammatory cytokine interleukin
1beta. Drug Metab Dispos. 36:217–222. 2008. View Article : Google Scholar
|
|
79
|
Xia Y, Stadler D, Lucifora J, Reisinger F,
Webb D, Hösel M, Michler T, Wisskirchen K, Cheng X, Zhang K, et al:
Interferon-γ and tumor necrosis Factor-α produced by T cells reduce
the HBV persistence form, cccDNA, without cytolysis.
Gastroenterology. 150:194–205. 2016. View Article : Google Scholar
|
|
80
|
Bouezzedine F, Fardel O and Gripon P:
Interleukin 6 inhibits HBV entry through NTCP down regulation.
Virology. 481:34–42. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Dhirapong A, Yang GX, Nadler S, Zhang W,
Tsuneyama K, Leung P, Knechtle S, Ansari AA, Coppel RL, Liu FT, et
al: Therapeutic effect of cytotoxic T lymphocyte antigen
4/immunoglobulin on a murine model of primary biliary cirrhosis.
Hepatology. 57:708–715. 2013. View Article : Google Scholar :
|
|
82
|
Kolar P, Hoff H, Maschmeyer P, Burmester
GR and Brunner-Weinzierl MC: CTLA-4 (CD152) blockade does not cause
a pro-inflammatory cytokine profile in regulatory T cells. Clin Exp
Rheumatol. 29:254–260. 2011.PubMed/NCBI
|
|
83
|
Phillips S, Chokshi S, Riva A, Evans A,
Williams R and Naoumov NV: CD8+ T cell control of
hepatitis B virus replication: Direct comparison between cytolytic
and noncytolytic functions. J Immunol. 184:287–295. 2010.
View Article : Google Scholar
|
|
84
|
Yu Y, Wu H, Tang Z and Zang G: CTLA4
silencing with siRNA promotes deviation of Th1/Th2 in chronic
hepatitis B patients. Cell Mol Immunol. 6:123–127. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Pedicord VA, Montalvo W, Leiner IM and
Allison JP: Single dose of anti-CTLA-4 enhances CD8+
T-cell memory formation, function, and maintenance. Proc Natl Acad
Sci USA. 108:266–271. 2011. View Article : Google Scholar
|
|
86
|
Sangro B, Gomez-Martin C, de la Mata M,
Iñarrairaegui M, Garralda E, Barrera P, Riezu-Boj JI, Larrea E,
Alfaro C, Sarobe P, et al: A clinical trial of CTLA-4 blockade with
tremelimumab in patients with hepatocellular carcinoma and chronic
hepatitis C. J Hepatol. 59:81–88. 2013. View Article : Google Scholar : PubMed/NCBI
|