Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
September-2018 Volume 42 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2018 Volume 42 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Farnesoid X receptor agonist decreases lipid accumulation by promoting hepatic fatty acid oxidation in db/db mice

  • Authors:
    • Yujie Liu
    • An Song
    • Xi Yang
    • Yunfeng Zhen
    • Weiwei Chen
    • Linquan Yang
    • Chao Wang
    • Huijuan Ma
  • View Affiliations / Copyright

    Affiliations: Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China, Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100191, P.R. China
  • Pages: 1723-1731
    |
    Published online on: June 5, 2018
       https://doi.org/10.3892/ijmm.2018.3715
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The development of type‑2 diabetes and its complications is associated with lipid metabolism disorder. Farnesoid X receptor (FXR) has an important role in regulating lipid and glucose metabolism. However, the underlying mechanism of this remains unclear. The present study investigated the role of fexaramine (Fex), an FXR agonist, on lipid metabolism. For this purpose, 6‑week‑old db/db mice were treated with Fex for 8 weeks via oral gavage and db/db mice treated with corn oil were used as controls. Body weight and food intake were monitored daily and bi‑weekly, respectively. A glucose tolerance test was performed during the final week of feeding. Blood samples were obtained for the analysis of lipids and enzymes related to hepatic function, and liver tissues were analyzed by histology and molecular examination. The results indicated that serum and liver triglyceride levels were decreased in db/db mice administered with Fex. Fewer small lipid droplets were observed in the liver. Small heterodimer partner (SHP), a downstream gene of FXR, was upregulated following Fex treatment. The mRNA and protein expression of genes associated with fatty acid oxidation [acetyl coenzyme A carboxylase (ACC), carnitine palmitoyl transferase 1α (CPT1‑α) and peroxisome proliferator‑activated receptor‑coactivator‑1α] was also increased. Additionally, the expression of AMP‑activated protein kinase (AMPK) was also increased. However, the expression of sterol‑regulatory element binding protein‑1c and fatty acid synthase, which are associated with fatty acid synthesis, was not significantly different. Taken together, the results of the present study suggested that activation of FXR and its downstream gene SHP may induce the AMPK‑ACC‑CPT1‑α signaling pathway, which promotes fatty acids oxidation, ultimately achieving its lipid‑lowering effect.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U and Shaw JE: Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 103:137–149. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Samuel VT, Petersen KF and Shulman GI: Lipid-induced insulin resistance: Unravelling the mechanism. Lancet. 375:2267–2277. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Fabbrini E and Magkos F: Hepatic steatosis as a marker of metabolic dysfunction. Nutrients. 7:4995–5019. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Monsénégo J, Mansouri A, Akkaoui M, Lenoir V, Esnous C, Fauveau V, Tavernier V, Girard J and Prip-Buus C: Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis. J Hepatol. 56:632–639. 2012. View Article : Google Scholar

5 

Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, McMorris T, Lamph WW, et al: Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 81:687–693. 1995. View Article : Google Scholar : PubMed/NCBI

6 

Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, Wilson-Pérez HE, Sandoval DA, Kohli R, Bäckhed F and Seeley RJ: FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 509:183–188. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Duran-Sandoval D, Cariou B, Percevault F, Hennuyer N, Grefhorst A, van Dijk TH, Gonzalez FJ, Fruchart JC, Kuipers F and Staels B: The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition. J Biol Chem. 280:29971–29979. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, Willson TM and Edwards PA: Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA. 103:1006–1011. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Cariou B, van Harmelen K, Duran-Sandoval D, van Dijk TH, Grefhorst A, Abdelkarim M, Caron S, Torpier G, Fruchart JC, Gonzalez FJ, et al: The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem. 281:11039–11049. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Downes M, Verdecia MA, Roecker AJ, Hughes R, Hogenesch JB, Kast-Woelbern HR, Bowman ME, Ferrer JL, Anisfeld AM, Edwards PA, et al: A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell. 11:1079–1092. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, Yoshihara E, Perino A, Jacinto S, Lukasheva Y, et al: Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 21:159–165. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Kong B, Luyendyk JP, Tawfik O and Guo GL: Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J Pharmacol Exp Ther. 328:116–122. 2009. View Article : Google Scholar :

13 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

14 

Das M, Das S, Lekli I and Das DK: Caveolin induces cardio-protection through epigenetic regulation. J Cell Mol Med. 16:888–895. 2012. View Article : Google Scholar

15 

Kong Q, Zhang H, Zhao T, Zhang W, Yan M, Dong X and Li P: Tangshen formula attenuates hepatic steatosis by inhibiting hepatic lipogenesis and augmenting fatty acid oxidation in db/db mice. Int J Mol Med. 38:1715–1726. 2016. View Article : Google Scholar : PubMed/NCBI

16 

de Oliveira PR, da Costa CA, de Bem GF, de Cavalho LC, de Souza MA, de Lemos Neto M, da Cunha Sousa PJ, de Moura RS and Resende AC: Effects of an extract obtained from fruits of Euterpe oleracea Mart. in the components of metabolic syndrome induced in C57BL/6J mice fed a high-fat diet. J Cardiovasc Pharmacol. 56:619–626. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Bogdanov P, Corraliza L, Villena JA, Carvalho AR, Garcia-Arumí J, Ramos D, Ruberte J, Simó R and Hernández C: The db/db mouse: A useful model for the study of diabetic retinal neurodegeneration. PLoS One. 9:e973022014. View Article : Google Scholar : PubMed/NCBI

18 

Duran-Sandoval D, Mautino G, Martin G, Percevault F, Barbier O, Fruchart JC, Kuipers F and Staels B: Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes. 53:890–898. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Han CY, Kim TH, Koo JH and Kim SG: Farnesoid X receptor as a regulator of fuel consumption and mitochondrial function. Arch Pharm Res. 39:1062–1074. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Lambert G, Amar MJ, Guo G, Brewer HB Jr, Gonzalez FJ and Sinal CJ: The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem. 278:2563–2570. 2003. View Article : Google Scholar

21 

Schonewille M, de Boer JF and Groen AK: Bile salts in control of lipid metabolism. Curr Opin Lipidol. 27:295–301. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Ronnett GV, Kleman AM, Kim EK, Landree LE and Tu Y: Fatty acid metabolism, the central nervous system, and feeding. Obesity (Silver Spring). 14(Suppl 5): S201–S207. 2006. View Article : Google Scholar

23 

Hardie DG and Pan DA: Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans. 30:1064–1070. 2002. View Article : Google Scholar : PubMed/NCBI

24 

Carling D, Zammit VA and Hardie DG: A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 223:217–222. 1987. View Article : Google Scholar : PubMed/NCBI

25 

Ruderman NB, Saha AK and Kraegen EW: Minireview: Malonyl CoA, AMP-activated protein kinase, and adiposity. Endocrinology. 144:5166–5171. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Sierra AY, Gratacós E, Carrasco P, Clotet J, Ureña J, Serra D, Asins G, Hegardt FG and Casals N: CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyl-transferase activity. J Biol Chem. 283:6878–6885. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Noh K, Kim YM, Kim YW and Kim SG: Farnesoid X receptor activation by chenodeoxycholic acid induces detoxifying enzymes through AMP-activated protein kinase and extracellular signal-regulated kinase 1/2-mediated phosphorylation of CCAAT/enhancer binding protein β. Drug Metab Dispos. 39:1451–1459. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D and Hardie DG: Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 271:27879–27887. 1996. View Article : Google Scholar : PubMed/NCBI

29 

Gardès C, Chaput E, Staempfli A, Blum D, Richter H and Benson GM: Differential regulation of bile acid and cholesterol metabolism by the farnesoid X receptor in Ldlr −/− mice versus hamsters. J Lipid Res. 54:1283–1299. 2013. View Article : Google Scholar

30 

Holloszy JO: Regulation by exercise of skeletal muscle content of mitochondria and GLUT4. J Physiol Pharmacol. 59(Suppl 7): S5–S18. 2008.

31 

Aharoni-Simon M, Hann-Obercyger M, Pen S, Madar Z and Tirosh O: Fatty liver is associated with impaired activity of PPARγ-coactivator 1α (PGC1α) and mitochondrial biogenesis in mice. Lab Invest. 91:1018–1028. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Morris EM, Meers GM, Booth FW, Fritsche KL, Hardin CD, Thyfault JP and Ibdah JA: PGC-1α overexpression results in increased hepatic fatty acid oxidation with reduced triacylglycerol accumulation and secretion. Am J Physiol Gastrointest Liver Physiol. 303:G979–G992. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore DD and Auwerx J: Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 113:1408–1418. 2004. View Article : Google Scholar : PubMed/NCBI

34 

Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ and Edwards PA: Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev. 18:157–169. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Matsukuma KE, Bennett MK, Huang J, Wang L, Gil G and Osborne TF: Coordinated control of bile acids and lipogenesis through FXR-dependent regulation of fatty acid synthase. J Lipid Res. 47:2754–2761. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu Y, Song A, Yang X, Zhen Y, Chen W, Yang L, Wang C and Ma H: Farnesoid X receptor agonist decreases lipid accumulation by promoting hepatic fatty acid oxidation in db/db mice. Int J Mol Med 42: 1723-1731, 2018.
APA
Liu, Y., Song, A., Yang, X., Zhen, Y., Chen, W., Yang, L. ... Ma, H. (2018). Farnesoid X receptor agonist decreases lipid accumulation by promoting hepatic fatty acid oxidation in db/db mice. International Journal of Molecular Medicine, 42, 1723-1731. https://doi.org/10.3892/ijmm.2018.3715
MLA
Liu, Y., Song, A., Yang, X., Zhen, Y., Chen, W., Yang, L., Wang, C., Ma, H."Farnesoid X receptor agonist decreases lipid accumulation by promoting hepatic fatty acid oxidation in db/db mice". International Journal of Molecular Medicine 42.3 (2018): 1723-1731.
Chicago
Liu, Y., Song, A., Yang, X., Zhen, Y., Chen, W., Yang, L., Wang, C., Ma, H."Farnesoid X receptor agonist decreases lipid accumulation by promoting hepatic fatty acid oxidation in db/db mice". International Journal of Molecular Medicine 42, no. 3 (2018): 1723-1731. https://doi.org/10.3892/ijmm.2018.3715
Copy and paste a formatted citation
x
Spandidos Publications style
Liu Y, Song A, Yang X, Zhen Y, Chen W, Yang L, Wang C and Ma H: Farnesoid X receptor agonist decreases lipid accumulation by promoting hepatic fatty acid oxidation in db/db mice. Int J Mol Med 42: 1723-1731, 2018.
APA
Liu, Y., Song, A., Yang, X., Zhen, Y., Chen, W., Yang, L. ... Ma, H. (2018). Farnesoid X receptor agonist decreases lipid accumulation by promoting hepatic fatty acid oxidation in db/db mice. International Journal of Molecular Medicine, 42, 1723-1731. https://doi.org/10.3892/ijmm.2018.3715
MLA
Liu, Y., Song, A., Yang, X., Zhen, Y., Chen, W., Yang, L., Wang, C., Ma, H."Farnesoid X receptor agonist decreases lipid accumulation by promoting hepatic fatty acid oxidation in db/db mice". International Journal of Molecular Medicine 42.3 (2018): 1723-1731.
Chicago
Liu, Y., Song, A., Yang, X., Zhen, Y., Chen, W., Yang, L., Wang, C., Ma, H."Farnesoid X receptor agonist decreases lipid accumulation by promoting hepatic fatty acid oxidation in db/db mice". International Journal of Molecular Medicine 42, no. 3 (2018): 1723-1731. https://doi.org/10.3892/ijmm.2018.3715
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team