Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
September-2018 Volume 42 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2018 Volume 42 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

MicroRNA‑26a protects vascular smooth muscle cells against H2O2‑induced injury through activation of the PTEN/AKT/mTOR pathway

  • Authors:
    • Junlu Peng
    • Xinqi He
    • Lei Zhang
    • Peng Liu
  • View Affiliations / Copyright

    Affiliations: Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
    Copyright: © Peng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1367-1378
    |
    Published online on: June 27, 2018
       https://doi.org/10.3892/ijmm.2018.3746
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Abdominal aortic aneurysm (AAA) is a common disease, which is characterized by the apoptosis of vascular smooth muscle cells (VSMCs). In previous years, microRNAs (miRNAs) have been associated with AAA and functionally implicated in the pathogenesis of this disease. However, the role of miRNAs in the apoptosis of VSMCs remains to be fully elucidated. The present study aimed to elucidate the role and mechanism of miRNAs in protecting against hydrogen peroxide (H2O2)‑induced apoptosis in VSMCs. The expression of miRNAs in peripheral blood from patients diagnosed with AAA was analyzed using a microarray and reverse transcription polymerase chain reaction. A VSMC injury model induced by H2O2 was used to determine the potential role of miR‑26a against cell injury. Cell viability, cell apoptosis and reactive oxygen species (ROS) generation were determined by a CCK8 assay, flow cytometry and a 2',7'‑DCF diacetate assay, respectively. It was observed that miRNA (miR)‑26a (miR‑26a‑1‑5p) was significantly downregulated in peripheral blood samples from patients with AAA. It was revealed that H2O2 treatment dose‑dependently inhibited cell viability, enhanced apoptosis and induced the production of ROS, which indicated the success of the model establishment. It was also observed that miR‑26a was downregulated in the VSMCs following H2O2 stimulation. The upregulation of miR‑26a attenuated H2O2‑induced cell injury, as evidenced by the enhancement of cell viability, and inhibition of the activity of caspase‑3, apoptosis and ROS production. In addition, phosphatase and tensin homolog (PTEN), a well‑known regulator of the AKT/mammalian target of rapamycin (mTOR) pathway, was found to be a direct target of miR‑26a in the VSMCs and this was validated using a luciferase reporter assay. Overexpression of PTEN by pcDNA‑PTEN plasmids markedly eliminated the protective effects of the overexpression of miR‑26a on H2O2‑induced cell injury. Finally, it was found that miR‑26a mediated its anti‑apoptotic action by reactivation of the AKT/mTOR pathway, as demonstrated by the upregulation of phosphorylated (p‑)AKT and p‑mTOR, and the Akt inhibitor API‑2 reversing the protective effects on VSMCs mediated by miR‑26a. These results indicated that miR‑26a protected VSMCs against H2O2‑induced injury through activation of the PTEN/AKT/mTOR pathway, and miR‑26a may be considered as a potential prognostic biomarker and therapeutic target in the treatment of AAA.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Davis FM, Rateri DL and Daugherty A: Mechanisms of aortic aneurysm formation: Translating preclinical studies into clinical therapies. Heart. 100:1498–1505. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Nordon IM, Hinchliffe RJ, Loftus IM and Thompson MM: Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat Rev Cardiol. 8:92–102. 2011. View Article : Google Scholar

3 

Golledge J and Norman PE: Current status of medical management for abdominal aortic aneurysm. Atherosclerosis. 217:57–63. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, et al: Heart disease and stroke statistics-2014 update: A report from the American Heart Association. Circulation. 129:e28–e292. 2014. View Article : Google Scholar

5 

Moxon JV, Parr A, Emeto TI, Walker P, Norman PE and Golledge J: Diagnosis and monitoring of abdominal aortic aneurysm: Current status and future prospects. Curr Probl Cardiol. 35:512–548. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Lin YC, Huang YC, Chen SC, Liaw CC, Kuo SC, Huang LJ and Gean PW: Neuroprotective effects of ugonin K on hydrogen peroxide-induced cell death in human neuroblastoma SH-SY5Y cells. Neurochem Res. 34:923–930. 2009. View Article : Google Scholar

7 

Schramm A, Matusik P, Osmenda G and Guzik TJ: Targeting NADPH oxidases in vascular pharmacology. Vascul Pharmacol. 56:216–231. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Morimoto K, Hasegawa T, Tanaka A, Wulan B, Yu J, Morimoto N, Okita Y and Okada K: Free-radical scavenger edaravone inhibits both formation and development of abdominal aortic aneurysm in rats. J Vasc Surg. 55:1749–1758. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Yajima N, Masuda M, Miyazaki M, Nakajima N, Chien S and Shyy JY: Oxidative stress is involved in the development of experimental abdominal aortic aneurysm: A study of the transcription profile with complementary DNA microarray. J Vasc Surg. 36:379–385. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Shang T, Liu Z, Zhou M, Zarins CK, Xu C and Liu CJ: Inhibition of experimental abdominal aortic aneurysm in a rat model by way of tanshinone IIA. J Surg Res. 178:1029–1037. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Song Q, Gou WL and Zhang R: FAM3A protects HT22 cells against hydrogen peroxide-induced oxidative stress through activation of PI3K/AKT but not MEK/ERK pathway. Cell Physiol Biochem. 37:1431–1441. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Jin N, Hatton ND, Harrington MA, Xia X, Larsen SH and Rhoades RA: H(2)O(2)-induced egr-1, fra-1, and c-jun gene expression is mediated by tyrosine kinase in aortic smooth muscle cells. Free Radic Biol Med. 29:736–746. 2000. View Article : Google Scholar : PubMed/NCBI

13 

Li PF, Dietz R and von Harsdorf R: Differential effect of hydrogen peroxide and superoxide anion on apoptosis and proliferation of vascular smooth muscle cells. Circulation. 96:3602–3609. 1997. View Article : Google Scholar : PubMed/NCBI

14 

Liu XR, Cao L, Li T, Chen LL, Yu YY, Huang WJ, Liu L and Tan XQ: Propofol attenuates H2O2-induced oxidative stress and apoptosis via the mitochondria- and ER-medicated pathways in neonatal rat cardiomyocytes. Apoptosis. 22:639–646. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Li T and Cho WC: MicroRNAs: Mechanisms, functions and progress. Genomics Proteomics Bioinformatics. 10:237–238. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Wu J, Wang J, Li X, Liu X, Yu X and Tian Y: MicroRNA-145 mediates the formation of angiotensin II-induced murine abdominal aortic aneurysm. Heart Lung Circ. 26:619–626. 2017. View Article : Google Scholar

17 

Maegdefessel L, Azuma J, Toh R, Merk DR, Deng A, Chin JT, Raaz U, Schoelmerich AM, Raiesdana A, Leeper NJ, et al: Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J Clin Invest. 122:497–506. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Iaconetti C, De Rosa S, Polimeni A, Sorrentino S, Gareri C, Carino A, Sabatino J, Colangelo M, Curcio A and Indolfi C: Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo. Cardiovasc Res. 107:522–533. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Lai Z, Lin P, Weng X, Su J, Chen Y, He Y, Wu G, Wang J, Yu Y and Zhang L: MicroRNA-574-5p promotes cell growth of vascular smooth muscle cells in the progression of coronary artery disease. Biomed Pharmacother. 97:162–167. 2018. View Article : Google Scholar

20 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

21 

Yang C, Zhao L, Yuan W and Wen J: Cordycepin induces apoptotic cell death and inhibits cell migration in renal cell carcinoma via regulation of microRNA-21 and PTEN phosphatase. Biomed Res. 38:313–320. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Tang Y, Vater C, Jacobi A, Liebers C, Zou X and Stiehler M: Salidroside exerts angiogenic and cytoprotective effects on human bone marrow-derived endothelial progenitor cells via Akt/mTOR/p70S6K and MAPK signalling pathways. Br J Pharmacol. 171:2440–2456. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, Kundu RK, Quertermous T, Tsao PS and Spin JM: MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol. 226:1035–1043. 2011. View Article : Google Scholar :

24 

Adam M, Raaz U, Spin JM and Tsao PS: MicroRNAs in abdominal aortic aneurysm. Curr Vasc Pharmacol. 13:280–290. 2015. View Article : Google Scholar

25 

Zhang Y, Qin W, Zhang L, Wu X, Du N, Hu Y, Li X, Shen N, Xiao D, Zhang H, et al: MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis. Sci Rep. 5:94012015. View Article : Google Scholar : PubMed/NCBI

26 

Chen C, Cheng G, Yang X, Li C, Shi R and Zhao N: Tanshinol suppresses endothelial cells apoptosis in mice with atherosclerosis via lncRNA TUG1 up-regulating the expression of miR-26a. Am J Transl Res. 8:2981–2991. 2016.PubMed/NCBI

27 

Yang P, Peairs JJ, Tano R and Jaffe GJ: Oxidant-mediated Akt activation in human RPE cells. Invest Ophthalmol Vis Sci. 47:4598–4606. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Byeon SH, Lee SC, Choi SH, Lee HK, Lee JH, Chu YK and Kwon OW: Vascular endothelial growth factor as an autocrine survival factor for retinal pigment epithelial cells under oxidative stress via the VEGF-R2/PI3K/Akt. Invest Ophthalmol Vis Sci. 51:1190–1197. 2010. View Article : Google Scholar

29 

Saura C, Roda D, Roselló S, Oliveira M, Macarulla T, Pérez-Fidalgo JA, Morales-Barrera R, Sanchis-García JM, Musib L, Budha N, et al: A first-in-human phase I study of the ATP-competitive AKT inhibitor ipatasertib demonstrates robust and safe targeting of AKT in patients with solid tumors. Cancer Discov. 7:102–113. 2017. View Article : Google Scholar :

30 

Lin J, Sampath D, Nannini MA, Lee BB, Degtyarev M, Oeh J, Savage H, Guan Z, Hong R, Kassees R, et al: Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models. Clin Cancer Res. 19:1760–1772. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Liu G, Huang Y, Lu X, Lu M, Huang X, Li W and Jiang M: Identification and characteristics of microRNAs with altered expression patterns in a rat model of abdominal aortic aneurysms. Tohoku J Exp Med. 222:187–193. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Pahl MC, Derr K, Gabel G, Gäbel G, Hinterseher I, Elmore JR, Schworer CM, Peeler TC, Franklin DP, Gray JL, Carey DJ, et al: MicroRNA expression signature in human abdominal aortic aneurysms. BMC Med Genomics. 5:252012. View Article : Google Scholar : PubMed/NCBI

33 

Maegdefessel L, Azuma J, Toh R, Deng A, Merk DR, Raiesdana A, Leeper NJ, Raaz U, Schoelmerich AM, McConnell MV, et al: MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med. 4:122ra1222012. View Article : Google Scholar

34 

Nakao T, Horie T, Baba O, Nishiga M, Nishino T, Izuhara M, Kuwabara Y, Nishi H, Usami S, Nakazeki F, et al: Genetic ablation of MicroRNA-33 attenuates inflammation and abdominal aortic aneurysm formation via several anti-inflammatory pathways. Arterioscler Thromb Vasc Biol. 37:2161–2170. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Kim CW, Kumar S, Son DJ, Jang IH, Griendling KK and Jo H: Prevention of abdominal aortic aneurysm by anti-microRNA-712 or anti-microRNA-205 in angiotensin II-infused mice. Arterioscler Thromb Vasc Biol. 34:1412–1421. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Yang X, Dong M, Wen H, Liu X, Zhang M, Ma L, Zhang C, Luan X, Lu H and Zhang Y: MiR-26a contributes to the PDGF-BB-induced phenotypic switch of vascular smooth muscle cells by suppressing Smad1. Oncotarget. 8:75844–75853. 2017.PubMed/NCBI

37 

Suh JH, Choi E, Cha MJ, Song BW, Ham O, Lee SY, Yoon C, Lee CY, Park JH, Lee SH and Hwang KC: Up-regulation of miR-26a promotes apoptosis of hypoxic rat neonatal cardiomyocytes by repressing GSK-3β protein expression. Biochem Biophys Res Commun. 423:404–410. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Moon SK, Kim HM and Kim CH: PTEN induces G1 cell cycle arrest and inhibits MMP-9 expression via the regulation of NF-kappaB and AP-1 in vascular smooth muscle cells. Arch Biochem Biophys. 421:267–276. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Huang J and Kontos CD: Inhibition of vascular smooth muscle cell proliferation, migration, and survival by the tumor suppressor protein PTEN. Arterioscler Thromb Vasc Biol. 22:745–751. 2002. View Article : Google Scholar : PubMed/NCBI

40 

Ding K, Wu Z, Wang N, Wang X, Wang Y, Qian P, Meng G and Tan S: MiR-26a performs converse roles in proliferation and metastasis of different gastric cancer cells via regulating of PTEN expression. Pathol Res Pract. 213:467–475. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Yu N, Yang Y, Li X, Zhang M, Huang J, Wang X and Long X: MiR-26a inhibits proliferation and migration of HaCaT keratinocytes through regulating PTEN expression. Gene. 594:117–124. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Lee GL, Wu JY, Yeh CC and Kuo CC: TLR4 induces CREB-mediated IL-6 production via upregulation of F-spondin to promote vascular smooth muscle cell migration. Biochem Biophys Res Commun. 473:1205–1210. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Hu WJ, Zhang Z and Dai M: Paeonol affects proliferation activity of rat vasular endothelial cells induced by lipopolysaccharide and co-cultured with smooth muscle cells via inhibiting pathway of PI3K/AKT-NF-κB signaling. Zhongguo Zhong Yao Za Zhi. 41:2298–2302. 2016.In Chinese. PubMed/NCBI

44 

Chang X, Zhang B, Lihua L and Feng Z: T3 inhibits the calcification of vascular smooth muscle cells and the potential mechanism. Am J Transl Res. 8:4694–4704. 2016.PubMed/NCBI

45 

Cui L, Bai Y, Zhang J, Zhang S and Xu J: Effects of extracellular acid stimulation on rat vascular smooth muscle cell in Gas6/Axl or PI3K/Akt signaling pathway. Clin Exp Hypertens. 38:451–456. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Zhang S, Kan X, Li Y, Li P, Zhang C, Li G, Du J and You B: Deficiency of γδT cells protects against abdominal aortic aneurysms by regulating phosphoinositide 3-kinase/AKT signaling. J Vasc Surg. 67:899–908. 2018. View Article : Google Scholar

47 

Jiang Q, Han Y, Gao H, Tian R, Li P and Wang C: Ursolic acid induced anti-proliferation effects in rat primary vascular smooth muscle cells is associated with inhibition of microRNA-21 and subsequent PTEN/PI3K. Eur J Pharmacol. 781:69–75. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Jiang DS, Wang YW, Jiang J, Li SM, Liang SZ and Fang HY: MicroRNA-26a involved in Toll-like receptor 9mediated lung cancer growth and migration. Int J Mol Med. 34:307–312. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Peng J, He X, Zhang L and Liu P: MicroRNA‑26a protects vascular smooth muscle cells against H2O2‑induced injury through activation of the PTEN/AKT/mTOR pathway. Int J Mol Med 42: 1367-1378, 2018.
APA
Peng, J., He, X., Zhang, L., & Liu, P. (2018). MicroRNA‑26a protects vascular smooth muscle cells against H2O2‑induced injury through activation of the PTEN/AKT/mTOR pathway. International Journal of Molecular Medicine, 42, 1367-1378. https://doi.org/10.3892/ijmm.2018.3746
MLA
Peng, J., He, X., Zhang, L., Liu, P."MicroRNA‑26a protects vascular smooth muscle cells against H2O2‑induced injury through activation of the PTEN/AKT/mTOR pathway". International Journal of Molecular Medicine 42.3 (2018): 1367-1378.
Chicago
Peng, J., He, X., Zhang, L., Liu, P."MicroRNA‑26a protects vascular smooth muscle cells against H2O2‑induced injury through activation of the PTEN/AKT/mTOR pathway". International Journal of Molecular Medicine 42, no. 3 (2018): 1367-1378. https://doi.org/10.3892/ijmm.2018.3746
Copy and paste a formatted citation
x
Spandidos Publications style
Peng J, He X, Zhang L and Liu P: MicroRNA‑26a protects vascular smooth muscle cells against H2O2‑induced injury through activation of the PTEN/AKT/mTOR pathway. Int J Mol Med 42: 1367-1378, 2018.
APA
Peng, J., He, X., Zhang, L., & Liu, P. (2018). MicroRNA‑26a protects vascular smooth muscle cells against H2O2‑induced injury through activation of the PTEN/AKT/mTOR pathway. International Journal of Molecular Medicine, 42, 1367-1378. https://doi.org/10.3892/ijmm.2018.3746
MLA
Peng, J., He, X., Zhang, L., Liu, P."MicroRNA‑26a protects vascular smooth muscle cells against H2O2‑induced injury through activation of the PTEN/AKT/mTOR pathway". International Journal of Molecular Medicine 42.3 (2018): 1367-1378.
Chicago
Peng, J., He, X., Zhang, L., Liu, P."MicroRNA‑26a protects vascular smooth muscle cells against H2O2‑induced injury through activation of the PTEN/AKT/mTOR pathway". International Journal of Molecular Medicine 42, no. 3 (2018): 1367-1378. https://doi.org/10.3892/ijmm.2018.3746
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team