|
1
|
Herlyn M, Steplewski Z, Herlyn D and
Koprowski H: Colorectal carcinoma-specific antigen: Detection by
means of monoclonal antibodies. Proc Natl Acad Sci USA.
76:1438–1442. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Schnell U, Cirulli V and Giepmans BN:
EpCAM: Structure and function in health and disease. Biochim
Biophys Acta. 1828:1989–2001. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Balzar M, Winter MJ, De Boer CJ and
Litvinov SV: The biology of the 17-1A antigen (Ep-C AM). J Mol Med
(Berl). 77:699–712. 1999. View Article : Google Scholar
|
|
4
|
Schmelzer E, Zhang L, Bruce A, Wauthier E,
Ludlow J, Yao HL, Moss N, Melhem A, McClelland R, Turner W, et al:
Human hepatic stem cells from fetal and postnatal donors. J Exp
Med. 204:1973–1987. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kamimoto K, Kaneko K, Kok CY, Okada H,
Miyajima A and Itoh T: Heterogeneity and stochastic growth
regulation of biliary epithelial cells dictate dynamic epithelial
tissue remodeling. Elife. 5:e150342016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sivagnanam M, Mueller JL, Lee H, Chen Z,
Nelson SF, Turner D, Zlotkin SH, Pencharz PB, Ngan BY, Libiger O,
et al: Identification of EpCAM as the gene for congenital tufting
enteropathy. Gastroenterology. 135:429–437. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lei Z, Maeda T, Tamura A, Nakamura T,
Yamazaki Y, Shiratori H, Yashiro K, Tsukita S and Hamada H: EpCAM
contributes to formation of functional tight junction in the
intestinal epithelium by recruiting claudin proteins. Dev Biol.
371:136–145. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Guerra E, Lattanzio R, La Sorda R, Dini F,
Tiboni GM, Piantelli M and Alberti S: mTrop1/Epcam knockout mice
develop congenital tufting enteropathy through dysregulation of
intestinal E-cadherin/β-catenin. PLos One. 7:e493022012. View Article : Google Scholar
|
|
9
|
Mueller JL, McGeough MD, Peña CA and
Sivagnanam M: Functional consequences of EpCam mutation in mice and
men. Am J Physiol Gastrointest Liver Physiol. 306:G278–G288. 2014.
View Article : Google Scholar :
|
|
10
|
Nagao K, Zhu J, Heneghan MB, Hanson JC,
Morasso MI, Tessarollo L, Mackem S and Udey MC: Abnormal placental
development and early embryonic lethality in EpCAM-null mice. PLos
One. 4:e85432009. View Article : Google Scholar :
|
|
11
|
Gaiser MR, Lämmermann T, Feng X, Igyarto
BZ, Kaplan DH, Tessarollo L, Germain RN and Udey MC:
Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326)
enables epidermal Langerhans cell motility and migration in vivo.
Proc Natl Acad Sci USA. 109:E889–E897. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Slanchev K, Carney TJ, Stemmler MP,
Koschorz B, Amsterdam A, Schwarz H and Hammerschmidt M: The
epithelial cell adhesion molecule EpCAM is required for epithelial
morphogenesis and integrity during zebrafish epiboly and skin
development. PLos Genet. 5:e10005632009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Maghzal N, Vogt E, Reintsch W, Fraser JS
and Fagotto F: The tumor-associated EpCAM regulates morphogenetic
movements through intracellular signaling. J Cell Biol.
191:645–659. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Maghzal N, Kayali HA, Rohani N, Kajava AV
and Fagotto F: EpCAM controls actomyosin contractility and cell
adhesion by direct inhibition of PKC. Dev Cell. 27:263–277. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lu H, Ma J, Yang Y, Shi W and Luo L: EpCAM
is an endoderm-specific Wnt derepressor that licenses hepatic
development. Dev Cell. 24:543–553. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Trzpis M, McLaughlin PM, De Leij LM and
Harmsen MC: Epithelial cell adhesion molecule: More than a
carcinoma marker and adhesion molecule. Am J Pathol. 171:386–395.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Cirulli V, Crisa L, Beattie GM, Mally MI,
Lopez AD, Fannon A, Ptasznik A, Inverardi L, Ricordi C, Deerinck T,
et al: KSA antigen Ep-CAM mediates cell-cell adhesion of pancreatic
epithelial cells: Morphoregulatory roles in pancreatic islet
development. J Cell Biol. 140:1519–1534. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lipinski M, Parks DR, Rouse RV and
Herzenberg LA: Human trophoblast cell-surface antigens defined by
monoclonal antibodies. Proc Natl Acad Sci USA. 78:5147–5150. 1981.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sherwood RI, Jitianu C, Cleaver O,
Shaywitz DA, Lamenzo JO, Chen AE, Golub TR and Melton DA:
Prospective isolation and global gene expression analysis of
definitive and visceral endoderm. Dev Biol. 304:541–555. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Poon CE, Madawala RJ, Day ML and Murphy
CR: EpCAM is decreased but is still present in uterine epithelial
cells during early pregnancy in the rat: Potential mechanism for
maintenance of mucosal integrity during implantation. Cell Tissue
Res. 359:655–664. 2015. View Article : Google Scholar
|
|
21
|
Dalerba P, Dylla SJ, Park IK, Liu R, Wang
X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, et al:
Phenotypic characterization of human colorectal cancer stem cells.
Proc Natl Acad Sci USA. 104:10158–10163. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yamashita T, Ji J, Budhu A, Forgues M,
Yang W, Wang HY, Jia H, Ye Q, Qin LX, Wauthier E, et al:
EpCAM-positive hepatocellular carcinoma cells are tumor-initiating
cells with stem/progenitor cell features. Gastroenterology.
136:1012–1024. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Baeuerle PA and Gires O: EpCAM (CD326)
finding its role in cancer. Br J Cancer. 96:417–423. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ladwein M, Pape UF, Schmidt DS, Schnölzer
M, Fiedler S, Langbein L, Franke WW, Moldenhauer G and Zöller M:
The cell-cell adhesion molecule EpCAM interacts directly with the
tight junction protein claudin-7. Exp Cell Res. 309:345–357. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Maetzel D, Denzel S, Mack B, Canis M, Went
P, Benk M, Kieu C, Papior P, Baeuerle PA, Munz M and Gires O:
Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell
Biol. 11:162–171. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Dollé L, Theise ND, Schmelzer E, Boulter
L, Gires O and van Grunsven LA: EpCAM and the biology of hepatic
stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol.
308:G233–G250. 2015. View Article : Google Scholar :
|
|
27
|
Litvinov SV, Velders MP, Bakker HA,
Fleuren GJ and Warnaar SO: Ep-CAM: A human epithelial antigen is a
homophilic cell-cell adhesion molecule. J Cell Biol. 125:437–446.
1994. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhang C, Liu LW, Sun WJ, Qin SH, Qin LZ
and Wang X: Expressions of E-cadherin, p120ctn, β-catenin and NF-κB
in ulcerative colitis. J Huazhong Univ Sci Technolog Med Sci.
35:368–373. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Frixen UH, Behrens J, Sachs M, Eberle G,
Voss B, Warda A, Löchner D and Birchmeier W: E-cadherin-mediated
cell-cell adhesion prevents invasiveness of human carcinoma cells.
J Cell Biol. 113:173–185. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Berx G, Nollet F and van Roy F:
Dysregulation of the E-cadherin/catenin complex by irreversible
mutations in human carcinomas. Cell Adhes Commun. 6:171–184. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Handschuh G, Candidus S, Luber B, Reich U,
Schott C, Oswald S, Becke H, Hutzler P, Birchmeier W, Höfler H and
Becker KF: Tumour-associated E-cadherin mutations alter cellular
morphology, decrease cellular adhesion and increase cellular
motility. Oncogene. 18:4301–4312. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Guilford P, Hopkins J, Harraway J, McLeod
M, McLeod N, Harawira P, Taite H, Scoular R, Miller A and Reeve AE:
E-cadherin germline mutations in familial gastric cancer. Nature.
392:402–405. 1998. View
Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gayther SA, Gorringe KL, Ramus SJ,
Huntsman D, Roviello F, Grehan N, Machado JC, Pinto E, Seruca R,
Halling K, et al: Identification of germ-line E-cadherin mutations
in gastric cancer families of European origin. Cancer Res.
58:4086–4089. 1998.PubMed/NCBI
|
|
34
|
Corso G, Marrelli D and Roviello F:
Familial gastric cancer and germline mutations of E-cadherin. Ann
Ital Chir. 83:177–182. 2012.PubMed/NCBI
|
|
35
|
Litvinov SV, Balzar M, Winter MJ, Bakker
HA, Briaire-De Bruijn IH, Prins F, Fleuren GJ and Warnaar SO:
Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell
interactions mediated by classic cadherins. J Cell Biol.
139:1337–1348. 1997. View Article : Google Scholar
|
|
36
|
Winter MJ, Nagelkerken B, Mertens AE,
Rees-Bakker HA, Briaire-De Bruijn IH and Litvinov SV: Expression of
Ep-CAM shifts the state of cadherin-mediated adhesions from strong
to weak. Exp Cell Res. 285:50–58. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kozan PA, McGeough MD, Peña CA, Mueller
JL, Barrett KE, Marchelletta RR and Sivagnanam M: Mutation of EpCAM
leads to intestinal barrier and ion transport dysfunction. J Mol
Med (Berl). 93:535–545. 2015. View Article : Google Scholar
|
|
38
|
Bondow BJ, Faber ML, Wojta KJ, Walker EM
and Battle MA: E-cadherin is required for intestinal morphogenesis
in the mouse. Dev Biol. 371:1–12. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Tunggal JA, Helfrich I, Schmitz A, Schwarz
H, Günzel D, Fromm M, Kemler R, Krieg T and Niessen CM: E-cadherin
is essential for in vivo epidermal barrier function by regulating
tight junctions. EMBO J. 24:1146–1156. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Patey N, Scoazec JY, Cuenod-Jabri B,
Canioni D, Kedinger M, Goulet O and Brousse N: Distribution of cell
adhesion molecules in infants with intestinal epithelial dysplasia
(tufting enteropathy). Gastroenterology. 113:833–843. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wu CJ, Mannan P, Lu M and Udey MC:
Epithelial cell adhesion molecule (EpCAM) regulates claudin
dynamics and tight junctions. J Biol Chem. 288:12253–12268. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Salomon J, Gaston C, Magescas J,
Duvauchelle B, Canioni D, Sengmanivong L, Mayeux A, Michaux G,
Campeotto F, Lemale J, et al: Contractile forces at tricellular
contacts modulate epithelial organization and monolayer integrity.
Nat Commun. 8:139982017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kuhn S, Koch M, Nübel T, Ladwein M,
Antolovic D, Klingbeil P, Hildebrand D, Moldenhauer G, Langbein L,
Franke WW, et al: A complex of EpCAM, claudin-7, CD44 variant
isoforms, and tetraspanins promotes colorectal cancer progression.
Mol Cancer Res. 5:553–567. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Nübel T, Preobraschenski J, Tuncay H,
Weiss T, Kuhn S, Ladwein M, Langbein L and Zöller M: Claudin-7
regulates EpCAM-mediated functions in tumor progression. Mol Cancer
Res. 7:285–299. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fujita H, Chiba H, Yokozaki H, Sakai N,
Sugimoto K, Wada T, Kojima T, Yamashita T and Sawada N:
Differential expression and subcellular localization of claudin-7,
-8, -12, -13, and -15 along the mouse intestine. J Histochem
Cytochem. 54:933–944. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hewitt KJ, Agarwal R and Morin PJ: The
claudin gene family: Expression in normal and neoplastic tissues.
BMC Cancer. 6:1862006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ding L, Lu Z, Foreman O, Tatum R, Lu Q,
Renegar R, Cao J and Chen YH: Inflammation and disruption of the
mucosal architecture in claudin-7-deficient mice. Gastroenterology.
142:305–315. 2012. View Article : Google Scholar :
|
|
48
|
Nakatsukasa M, Kawasaki S, Yamasaki K,
Fukuoka H, Matsuda A, Tsujikawa M, Tanioka H, Nagata-Takaoka M,
Hamuro J and Kinoshita S: Tumor-associated calcium signal
transducer 2 is required for the proper subcellular localization of
claudin 1 and 7: Implications in the pathogenesis of gelatinous
drop-like corneal dystrophy. Am J Pathol. 177:1344–1355. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Daugherty BL, Ward C, Smith T,
Ritzenthaler JD and Koval M: Regulation of heterotypic claudin
compatibility. J Biol Chem. 282:30005–30013. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Furuse M, Sasaki H and Tsukita S: Manner
of interaction of heterogeneous claudin species within and between
tight junction strands. J Cell Biol. 147:891–903. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Piontek J, Winkler L, Wolburg H, Müller
SL, Zuleger N, Piehl C, Wiesner B, Krause G and Blasig IE:
Formation of tight junction: Determinants of homophilic interaction
between classic claudins. FASEB J. 22:146–158. 2008. View Article : Google Scholar
|
|
52
|
Tatum R, Zhang Y, Salleng K, Lu Z, Lin JJ,
Lu Q, Jeansonne BG, Ding L and Chen YH: Renal salt wasting and
chronic dehydration in claudin-7-deficient mice. Am J Physiol Renal
Physiol. 298:F24–F34. 2010. View Article : Google Scholar :
|
|
53
|
Gladden AB, Hebert AM, Schneeberger EE and
McClatchey AI: The NF2 tumor suppressor, Merlin, regulates
epidermal development through the establishment of a junctional
polarity complex. Dev Cell. 19:727–739. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Tinkle CL, Pasolli HA, Stokes N and Fuchs
E: New insights into cadherin function in epidermal sheet formation
and maintenance of tissue integrity. Proc Natl Acad Sci USA.
105:15405–15410. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Vasioukhin V, Bauer C, Degenstein L, Wise
B and Fuchs E: Hyperproliferation and defects in epithelial
polarity upon conditional ablation of alpha-catenin in skin. Cell.
104:605–617. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Shin K, Fogg VC and Margolis B: Tight
junctions and cell polarity. Annu Rev Cell Dev Biol. 22:207–235.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tepass U: Claudin complexities at the
apical junctional complex. Nat Cell Biol. 5:595–597. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Van Campenhout CA, Eitelhuber A, Gloeckner
CJ, Giallonardo P, Gegg M, Oller H, Grant SG, Krappmann D, Ueffing
M and Lickert H: Dlg3 trafficking and apical tight junction
formation is regulated by nedd4 and nedd4-2 e3 ubiquitin ligases.
Dev Cell. 21:479–491. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Goulet O, Kedinger M, Brousse N, Cuenod B,
Colomb V, Patey N, De Potter S, Mougenot JF, Canioni D,
Cerf-Bensussan N, et al: Intractable diarrhea of infancy with
epithelial and basement membrane abnormalities. J Pediatr.
127:212–219. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Goulet O, Salomon J, Ruemmele F, De Serres
NP and Brousse N: Intestinal epithelial dysplasia (tufting
enteropathy). Orphanet J Rare Dis. 2:202007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Beaulieu JF: Differential expression of
the VLA family of integrins along the crypt-villus axis in the
human small intestine. J Cell Sci. 102:427–436. 1992.PubMed/NCBI
|
|
62
|
Simon-Assmann P, Bouziges F, Vigny M and
Kedinger M: Origin and deposition of basement membrane heparan
sulfate proteoglycan in the developing intestine. J Cell Biol.
109:1837–1848. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Simon-Assmann P, Duclos B, Orian-Rousseau
V, Arnold C, Mathelin C, Engvall E and Kedinger M: Differential
expression of laminin isoforms and alpha 6-beta 4 integrin subunits
in the developing human and mouse intestine. Dev Dyn. 201:71–85.
1994. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Simon-Assmann P and Kedinger M:
Heterotypic cellular cooperation in gut morphogenesis and
differentiation. Semin Cell Biol. 4:221–230. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Simo P, Simon-Assmann P, Bouziges F,
Leberquier C, Kedinger M, Ekblom P and Sorokin L: Changes in the
expression of laminin during intestinal development. Development.
112:477–487. 1991.PubMed/NCBI
|
|
66
|
Simo P, Bouziges F, Lissitzky JC, Sorokin
L, Kedinger M and Simon-Assmann P: Dual and asynchronous deposition
of laminin chains at the epithelial-mesenchymal interface in the
gut. Gastroenterology. 102:1835–1845. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tamura A, Hayashi H, Imasato M, Yamazaki
Y, Hagiwara A, Wada M, Noda T, Watanabe M, Suzuki Y and Tsukita S:
Loss of claudin-15, but not claudin-2, causes Na+
deficiency and glucose malabsorption in mouse small intestine.
Gastroenterology. 140:913–923. 2011. View Article : Google Scholar
|
|
68
|
Yáñez-Mó M, Siljander PR, Andreu Z, Zavec
AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J,
et al: Biological properties of extracellular vesicles and their
physiological functions. J Extracell Vesicles. 4:270662015.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Colombo M, Raposo G and Théry C:
Biogenesis, secretion, and intercellular interactions of exosomes
and other extracellular vesicles. Annu Rev Cell Dev Biol.
30:255–289. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tkach M and Théry C: Communication by
extracellular vesicles: Where we are and where we need to go. Cell.
164:1226–1232. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Iwai S, Kurosu S, Sasaki H, Kato K and
Maekawa T: Trapping and proliferation of target cells on C60
fullerene nano fibres. Heliyon. 3:e003862017. View Article : Google Scholar :
|
|
72
|
Jiang L, Shen Y, Guo D, Yang D, Liu J, Fei
X, Yang Y, Zhang B, Lin Z, Yang F, et al: Corrigendum:
EpCAM-dependent extracellular vesicles from intestinal epithelial
cells maintain intestinal tract immune balance. Nat Commun.
8:160062017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Cai Z, Zhang W, Yang F, Yu L, Yu Z, Pan J,
Wang L, Cao X and Wang J: Immunosuppressive exosomes from TGF-β1
gene-modified dendritic cells attenuate Th17-mediated inflammatory
autoimmune disease by inducing regulatory T cells. Cell Res.
22:607–610. 2012. View Article : Google Scholar
|
|
74
|
Yu L, Yang F, Jiang L, Chen Y, Wang K, Xu
F, Wei Y, Cao X, Wang J and Cai Z: Exosomes with
membrane-associated TGF-β1 from gene-modified dendritic cells
inhibit murine EAE independently of MHC restriction. Eur J Immunol.
43:2461–2472. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Villablanca EJ, Renucci A, Sapède D, Lec
V, Soubiran F, Sandoval PC, Dambly-Chaudière C, Ghysen A and
Allende ML: Control of cell migration in the zebrafish lateral
line: Implication of the gene 'tumour-associated calcium signal
transducer,' tacstd. Dev Dyn. 235:1578–1588. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Aman A and Piotrowski T: Wnt/beta-catenin
and Fgf signaling control collective cell migration by restricting
chemokine receptor expression. Dev Cell. 15:749–761. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Sarrach S, Huang Y, Niedermeyer S,
Hachmeister M, Fischer L, Gille S, Pan M, Mack B, Kranz G, Libl D,
et al: Spatiotemporal patterning of EpCAM is important for murine
embryonic endo- and mesodermal differentiation. Sci Rep.
8:18012018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
De Boer CJ, Van Krieken JH, Janssen-Van
Rhijn CM and Litvinov SV: Expression of Ep-CAM in normal,
regenerating, metaplastic, and neoplastic liver. J Pathol.
188:201–206. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Münz M, Kieu C, Mack B, Schmitt B, Zeidler
R and Gires O: The carcinoma-associated antigen EpCAM upregulates
c-myc and induces cell proliferation. Oncogene. 23:5748–5758. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Osta WA, Chen Y, Mikhitarian K, Mitas M,
Salem M, Hannun YA, Cole DJ and Gillanders WE: EpCAM is over
expressed in breast cancer and is a potential target for breast
cancer gene therapy. Cancer Res. 64:5818–5824. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Schmelzer E, Wauthier E and Reid LM: The
phenotypes of pluripotent human hepatic progenitors. Stem Cells.
24:1852–1858. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang L, Theise N, Chua M and Reid LM: The
stem cell niche of human livers: Symmetry between development and
regeneration. Hepatology. 48:1598–1607. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Shimazaki T, Okazawa H, Fujii H, Ikeda M,
Tamai K, McKay RD, Muramatsu M and Hamada H: Hybrid cell extinction
and re-expression of Oct-3 function correlates with differentiation
potential. EMBO J. 12:4489–4498. 1993.PubMed/NCBI
|
|
84
|
González B, Denzel S, Mack B, Conrad M and
Gires O: EpCAM is involved in maintenance of the murine embryonic
stem cell phenotype. Stem Cells. 27:1782–1791. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lu TY, Lu RM, Liao MY, Yu J, Chung CH, Kao
CF and Wu HC: Epithelial cell adhesion molecule regulation is
associated with the maintenance of the undifferentiated phenotype
of human embryonic stem cells. J Biol Chem. 285:8719–8732. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Okabe M, Tsukahara Y, Tanaka M, Suzuki K,
Saito S, Kamiya Y, Tsujimura T, Nakamura K and Miyajima A:
Potential hepatic stem cells reside in EpCAM+ cells of
normal and injured mouse liver. Development. 136:1951–1960. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Tanaka M, Okabe M, Suzuki K, Kamiya Y,
Tsukahara Y, Saito S and Miyajima A: Mouse hepatoblasts at distinct
developmental stages are characterized by expression of EpCAM and
DLK1: Drastic change of EpCAM expression during liver development.
Mech Dev. 126:665–676. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Hachmeister M, Bobowski KD, Hogl S,
Dislich B, Fukumori A, Eggert C, Mack B, Kremling H, Sarrach S,
Coscia F, et al: Regulated intramembrane proteolysis and
degradation of murine epithelial cell adhesion molecule mEpCAM.
PLos One. 8:e718362013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Huang HP, Chen PH, Yu CY, Chuang CY, Stone
L, Hsiao WC, Li CL, Tsai SC, Chen KY, Chen HF, et al: Epithelial
cell adhesion molecule (EpCAM) complex proteins promote
transcription factor-mediated pluripotency reprogramming. J Biol
Chem. 286:33520–33532. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yu T, Ma Y and Wang H: EpCAM intracellular
domain promotes porcine cell reprogramming by upregulation of
pluripotent gene expression via beta-catenin signaling. Sci Rep.
7:463152017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kuan II, Liang KH, Wang YP, Kuo TW, Meir
YJ, Wu SC, Yang SC, Lu J and Wu HC: EpEX/EpCAM and Oct4 or Klf4
alone are sufficient to generate induced pluripotent stem cells
through STAT3 and HIF2α. Sci Rep. 7:418522017. View Article : Google Scholar
|
|
92
|
Salomon J, Goulet O, Canioni D, Brousse N,
Lemale J, Tounian P, Coulomb A, Marinier E, Hugot JP, Ruemmele F,
et al: Genetic characterization of congenital tufting enteropathy:
Epcam associated phenotype and involvement of SPINT2 in the
syndromic form. Hum Genet. 133:299–310. 2014. View Article : Google Scholar
|
|
93
|
Slae MA, Saginur M, Persad R, Yap J,
Lacson A, Salomon J, Canioni D and Huynh HQ: Syndromic congenital
diarrhea because of the SPINT2 mutation showing enterocyte tufting
and unique electron microscopy findings. Clin Dysmorphol.
22:118–120. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Furuse M, Furuse K, Sasaki H and Tsukita
S: Conversion of zonulae occludentes from tight to leaky strand
type by introducing claudin-2 into Madin-Darby canine kidney I
cells. J Cell Biol. 153:263–272. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Van Itallie CM, Fanning AS and Anderson
JM: Reversal of charge selectivity in cation or anion-selective
epithelial lines by expression of different claudins. Am J Physiol
Renal Physiol. 285:F1078–F1084. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hou J, Gomes AS, Paul DL and Goodenough
DA: Study of claudin function by RNA interference. J Biol Chem.
281:36117–36123. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Amasheh S, Meiri N, Gitter AH, Schöneberg
T, Mankertz J, Schulzke JD and Fromm M: Claudin-2 expression
induces cation-selective channels in tight junctions of epithelial
cells. J Cell Sci. 115:4969–4976. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yu AS, Cheng MH, Angelow S, Günzel D,
Kanzawa SA, Schneeberger EE, Fromm M and Coalson RD: Molecular
basis for cation selectivity in claudin-2-based paracellular pores:
Identification of an electrostatic interaction site. J Gen Physiol.
133:111–127. 2009. View Article : Google Scholar :
|
|
99
|
Schultz SG and Curran PF: Coupled
transport of sodium and organic solutes. Physiol Rev. 50:637–718.
1970. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kapus A and Szászi K: Coupling between
apical and paracellular transport processes. Biochem Cell Biol.
84:870–880. 2006. View Article : Google Scholar
|
|
101
|
Tsukaguchi H, Tokui T, Mackenzie B, Berger
UV, Chen XZ, Wang Y, Brubaker RF and Hediger MA: A family of
mammalian Na+-dependent L-ascorbic acid transporters.
Nature. 399:70–75. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
102
|
Holmes JL, Van Itallie CM, Rasmussen JE
and Anderson JM: Claudin profiling in the mouse during postnatal
intestinal development and along the gastrointestinal tract reveals
complex expression patterns. Gene Expr Patterns. 6:581–588. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wada M, Tamura A, Takahashi N and Tsukita
S: Loss of claudins 2 and 15 from mice causes defects in
paracellular Na+ flow and nutrient transport in gut and
leads to death from malnutrition. Gastroenterology. 144:369–380.
2013. View Article : Google Scholar
|
|
104
|
Zhou N, Wang H, Liu H, Xue H, Lin F, Meng
X, Liang A, Zhao Z, Liu Y and Qian H: MTA1-upregulated EpCAM is
associated with metastatic behaviors and poor prognosis in lung
cancer. J Exp Clin Cancer Res. 34:1572015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zheng X, Fan X, Fu B, Zheng M, Zhang A,
Zhong K, Yan J, Sun R, Tian Z and Wei H: EpCAM inhibition
sensitizes chemo-resistant leukemia to immune surveillance. Cancer
Res. 77:482–493. 2017. View Article : Google Scholar
|
|
106
|
Patriarca C, Macchi RM, Marschner AK and
Mellstedt H: Epithelial cell adhesion molecule expression (CD326)
in cancer: A short review. Cancer Treat Rev. 38:68–75. 2012.
View Article : Google Scholar
|
|
107
|
Wang MH, Sun R, Zhou XM, Zhang MY, Lu JB,
Yang Y, Zeng LS, Yang XZ, Shi L, Xiao RW, et al: Epithelial cell
adhesion molecule overexpression regulates epithelial-mesenchymal
transition, stemness and metastasis of nasopharyngeal carcinoma
cells via the PTEN/AKT/mTOR pathway. Cell Death Dis. 9:22018.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Denzel S, Maetzel D, Mack B, Eggert C,
Bärr G and Gires O: Initial activation of EpCAM cleavage via
cell-to-cell contact. BMC Cancer. 9:4022009. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Xiang D, Shigdar S, Bean AG, Bruce M, Yang
W, Mathesh M, Wang T, Yin W, Tran PH, Al Shamaileh H, et al:
Transforming doxorubicin into a cancer stem cell killer via EpCAM
aptamer-mediated delivery. Theranostics. 7:4071–4086. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Hoe SLL, Tan LP, Abdul Aziz N, Liew K,
Teow SY, Abdul Razak FR, Chin YM, Mohamed Shahrehan NA, Chu TL,
Mohd Kornain NK, et al: CD24, CD44 and EpCAM enrich for
tumour-initiating cells in a newly established patient-derived
xenograft of nasopharyngeal carcinoma. Sci Rep. 7:123722017.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Choi YJ, Park SJ, Park YS, Park HS, Yang
KM and Heo K: EpCAM peptide-primed dendritic cell vaccination
confers significant anti-tumor immunity in hepatocellular carcinoma
cells. PLos One. 13:e01906382018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hwang EY, Yu CH, Cheng SJ, Chang JY, Chen
HM and Chiang CP: Decreased expression of Ep-CAM protein is
significantly associated with the progression and prognosis of oral
squamous cell carcinomas in Taiwan. J Oral Pathol Med. 38:87–93.
2009. View Article : Google Scholar
|
|
113
|
Gosens MJ, Van Kempen LC, Van de Velde CJ,
Van Krieken JH and Nagtegaal ID: Loss of membranous Ep-CAM in
budding colorectal carcinoma cells. Mod Pathol. 20:221–232. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Wen KC, Sung PL, Chou YT, Pan CM, Wang PH,
Lee OK and Wu CW: The role of EpCAM in tumor progression and the
clinical prognosis of endometrial carcinoma. Gynecol Oncol.
148:383–392. 2018. View Article : Google Scholar
|
|
115
|
Maloy KJ and Powrie F: Intestinal
homeostasis and its breakdown in inflammatory bowel disease.
Nature. 474:298–306. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Kaser A, Zeissig S and Blumberg RS:
Inflammatory bowel disease. Annu Rev Immunol. 28:573–621. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Mankertz J and Schulzke JD: Altered
permeability in inflammatory bowel disease: Pathophysiology and
clinical implications. Curr Opin Gastroenterol. 23:379–383. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Welcker K, Martin A, Kölle P, Siebeck M
and Gross M: Increased intestinal permeability in patients with
inflammatory bowel disease. Eur J Med Res. 9:456–460.
2004.PubMed/NCBI
|
|
119
|
Doğan A, Wang ZD and Spencer J: E-cadherin
expression in intestinal epithelium. J Clin Pathol. 48:143–146.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Gassler N, Rohr C, Schneider A, Kartenbeck
J, Bach A, Obermüller N, Otto HF and Autschbach F: Inflammatory
bowel disease is associated with changes of enterocytic junctions.
Am J Physiol Gastrointest Liver Physiol. 281:G216–G228. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Jankowski JA, Bedford FK, Boulton RA,
Cruickshank N, Hall C, Elder J, Allan R, Forbes A, Kim YS, Wright
NA and Sanders DS: Alterations in classical cadherins associated
with progression in ulcerative and Crohn's colitis. Lab Invest.
78:1155–1167. 1998.PubMed/NCBI
|
|
122
|
Karayiannakis AJ, Syrigos KN, Efstathiou
J, Valizadeh A, Noda M, Playford RJ, Kmiot W and Pignatelli M:
Expression of catenins and E-cadherin during epithelial restitution
in inflammatory bowel disease. J Pathol. 185:413–418. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Kucharzik T, Walsh SV, Chen J, Parkos CA
and Nusrat A: Neutrophil transmigration in inflammatory bowel
disease is associated with differential expression of epithelial
intercellular junction proteins. Am J Pathol. 159:2001–2009. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Jiang L, Shen Y, Guo D, Yang D, Liu J, Fei
X, Yang Y, Zhang B, Lin Z, Yang F, et al: EpCAM-dependent
extracellular vesicles from intestinal epithelial cells maintain
intestinal tract immune balance. Nat Commun. 7:130452016.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Tanaka H, Takechi M, Kiyonari H, Shioi G,
Tamura A and Tsukita S: Intestinal deletion of Claudin-7 enhances
paracellular organic solute flux and initiates colonic inflammation
in mice. Gut. 64:1529–1538. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Sherman PM, Mitchell DJ and Cutz E:
Neonatal enteropathies: Defining the causes of protracted diarrhea
of infancy. J Pediatr Gastroenterol Nutr. 38:16–26. 2004.
View Article : Google Scholar
|
|
127
|
Ranganathan S, Schmitt LA and Sindhi R:
Tufting enteropathy revisited: The utility of MOC31 (EpCAM)
immunohisto-chemistry in diagnosis. Am J Surg Pathol. 38:265–272.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Khounlotham M, Kim W, Peatman E, Nava P,
Medina-Contreras O, Addis C, Koch S, Fournier B, Nusrat A, Denning
TL and Parkos CA: Compromised intestinal epithelial barrier induces
adaptive immune compensation that protects from colitis. Immunity.
37:563–573. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Song Y, Liu C, Liu X, Trottier J, Beaudoin
M, Zhang L, Pope C, Peng G, Barbier O, Zhong X, et al: H19 promotes
cholestatic liver fibrosis by preventing ZEB1-mediated inhibition
of epithelial cell adhesion molecule. Hepatology. 66:1183–1196.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Zen Y, Vara R, Portmann B and Hadzic N:
Childhood hepatocellular carcinoma: A clinicopathological study of
12 cases with special reference to EpCAM. Histopathology.
64:671–682. 2014. View Article : Google Scholar
|
|
131
|
Ueno M, Lee LK, Chhabra A, Kim YJ,
Sasidharan R, Van Handel B, Wang Y, Kamata M, Kamran P, Sereti KI,
et al: c-Met-dependent multipotent labyrinth trophoblast
progenitors establish placental exchange interface. Dev Cell.
27:373–386. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Nakaya Y and Sheng G: EMT in developmental
morphogenesis. Cancer Lett. 341:9–15. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Han Y, Mu Y, Li X, Xu P, Tong J, Liu Z, Ma
T, Zeng G, Yang S, Du J and Meng A: Grhl2 deficiency impairs otic
development and hearing ability in a zebrafish model of the
progressive dominant hearing loss DFNA28. Hum Mol Genet.
20:3213–3226. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Al-Mayouf SM, Alswaied N, Alkuraya FS,
Almehaidib A and Faqih M: Tufting enteropathy and chronic
arthritis: A newly recognized association with a novel EpCAM gene
mutation. J Pediatr Gastroenterol Nutr. 49:642–644. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Bird LM, Sivagnanam M, Taylor S and
Newbury RO: A new syndrome of tufting enteropathy and choanal
atresia, with ophthalmologic, hematologic and hair abnormalities.
Clin Dysmorphol. 16:211–221. 2007. View Article : Google Scholar : PubMed/NCBI
|