Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
November-2018 Volume 42 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2018 Volume 42 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Potential anti-vitiligo properties of cynarine extracted from Vernonia anthelmintica (L.) Willd

  • Authors:
    • Nuramina Mamat
    • Xue Ying Lu
    • Maidina Kabas
    • Haji Akber Aisa
  • View Affiliations / Copyright

    Affiliations: Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, Xinjiang 830011, P.R. China, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, Xinjiang 830011, P.R. China
    Copyright: © Mamat et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2665-2675
    |
    Published online on: September 6, 2018
       https://doi.org/10.3892/ijmm.2018.3861
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Vitiligo is a depigmentation disorder of the skin. It is primarily caused by the destruction of melanocytes or obstruction of the melanin synthesis pathway. Melanin is a type of skin pigment that determines skin color. The seeds of Vernonia anthelmintica (L.) Willd (Kaliziri) are used for treating skin diseases including vitiligo in traditional Uyghur medicine. 1,5‑Dicaffeoylquinic acid (1,5‑diCQA) is a natural polyphenolic compound widely distributed in plants and extracted from Kaliziri seeds. Therefore, in the present study, the effect of 1,5‑diCQA on melanin synthesis in B16 cell was evaluated, and its molecular mechanism was explored. The results indicated that 1,5‑diCQA treatment of B16 cells stimulated an increase of intracellular melanin level and tyrosinase (TYR) activity without cytotoxicity. Reverse transcription quantitative polymerase chain reaction results also indicated that 1,5‑diCQA may markedly improve the protein expression and RNA transcription of microphthalmia‑associated transcription factor (MITF), melanogenic enzyme Tyr, tyrosinase‑related protein 1 (TRP 1) and tyrosinase‑related protein 2 (TRP 2). Additional results identified that 1,5‑diCQA may promote the phosphorylation of p38 mitogen‑activated protein kinase (p38 MAPK) and extracellular signal‑regulated kinase (ERK) MAPK. Notably, the increased levels of intracellular melanin synthesis and tyrosinase expression induced by 1,5‑diCQA treatment were significantly attenuated by the protein kinase A (PKA) inhibitor H‑89. Intracellular cyclic adenosine monophosphate (cAMP) concentration and phosphorylation of cAMP‑response element binding protein was increased following 1,5‑diCQA treatment. These results indicated that 1,5‑diCQA stimulated melanogenesis via the MAPK and cAMP/PKA signaling pathways in B16 cells, which has potential therapeutic implications for vitiligo.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

View References

1 

Boniface K, Seneschal J, Picardo M and Taïeb A: Vitiligo: Focus on clinical aspects, immunopathogenesis, and therapy. Clin Rev Allergy Immunol. 54:52–67. 2018. View Article : Google Scholar

2 

Schallreuter KU, Bahadoran P, Picardo M, Slominski A, Elassiuty YE, Kemp EH, Giachino C, Liu JB, Luiten RM, Lambe T, et al: Vitiligo pathogenesis: Autoimmune disease, genetic defect, excessive reactive oxygen species, calcium imbalance, or what else? Exp Dermatol. 17:139–140. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Gupta AK, Gover MD, Nouri K and Taylor S: The treatment of melasma: A review of clinical trials. J Am Acad Dermatol. 55:1048–1065. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Yamaguchi Y and Hearing VJ: Melanocytes and their diseases. Cold Spring Harb Perspect Med. 4:a0170462014. View Article : Google Scholar : PubMed/NCBI

5 

Pillaiyar T, Manickam M and Jung SH: Recent development of signaling pathways inhibitors of melanogenesis. Cell Signal. 40:99–115. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Rad HH, Yamashita T, Jin HY, Hirosaki K, Wakamatsu K, Ito S and Jimbow K: Tyrosinase-related proteins suppress tyrosinase-mediated cell death of melanocytes and melanoma cells. Exp Cell Res. 298:317–328. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Kim YJ and Uyama H: Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci. 62:1707–1723. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Levy C, Khaled M and Fisher DE: MITF: Master regulator of melanocyte development and melanoma oncogene. Trends Mol Med. 12:406–414. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Niu C and Aisa HA: Upregulation of melanogenesis and tyrosinase activity: Potential agents for vitiligo. Molecules. 22:E13032017. View Article : Google Scholar : PubMed/NCBI

10 

Yamaguchi Y, Brenner M and Hearing VJ: The regulation of skin pigmentation. J Biol Chem. 282:27557–27561. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Gu WJ, Ma HJ, Zhao G, Yuan XY, Zhang P, Liu W, Ma LJ and Lei XB: Additive effect of heat on the UVB-induced tyrosinase activation and melanogenesis via ERK/p38/MITF pathway in human epidermal melanocytes. Arch Dermatol Res. 306:583–590. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Buscà R and Ballotti R: Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 13:60–69. 2000. View Article : Google Scholar : PubMed/NCBI

13 

Schepsky A, Bruser K, Gunnarsson GJ, Goodall J, Hallsson JH, Goding CR, Steingrimsson E and Hecht A: The microph-thalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression. Mol Cell Biol. 26:8914–8927. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Lin R and Chen YL: Compositae. Flora of China. 4. Science Press; Beijing: pp. 5–8. 1985

15 

Jamil S, Khan RA, Ahmed S and Fatima S: Evaluation of anti-inflammatory and anti-oxidant potential of seed extracts o Vernonia anthelmintica. Pak J Pharm Sci. 30:755–760. 2017.PubMed/NCBI

16 

Tuerxuntayi A, Liu YQ, Tulake A, Kabas M, Eblimit A and Aisa HA: Kaliziri extract upregulates tyrosinase, TRP-1, TRP-2 and MITF expression in murine B16 melanoma cells. BMC Complement Altern Med. 14:1662014. View Article : Google Scholar : PubMed/NCBI

17 

Yang B, Meng Z, Dong J, Yan L, Zou L, Tang Z and Dou G: Metabolic profile of 1,5-dicaffeoylquinic acid in rats, an in vivo and in vitro study. Drug Metab Dispos. 33:930–936. 2005. View Article : Google Scholar : PubMed/NCBI

18 

McDougall B, King PJ, Wu BW, Hostomsky Z, Reinecke MG and Robinson WE Jr: Dicaffeoylquinic and dicaffeoyltartaric acids are selective inhibitors of human immunodeficiency virus type 1 integrase. Antimicrob Agents Chemother. 42:140–146. 1998. View Article : Google Scholar : PubMed/NCBI

19 

Cao X, Xiao H, Zhang Y, Zou L, Chu Y and Chu X: 1-5-Dicaffeoylquinic acid-mediated glutathione synthesis through activation of Nrf2 protects against OGD/reper-fusion-induced oxidative stress in astrocytes. Brain Res. 1347:142–148. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Xiao HB, Cao X, Wang L, Run XQ, Su Y, Tian C, Sun SG and Liang ZH: 1-5-dicaffeoylquinic acid protects primary neurons from amyloid β 1-42-induced apoptosis via PI3K/Akt signaling pathway. Chin Med J (Engl). 124:2628–2635. 2011.

21 

Zheng Z, Wang X, Liu P, Li M, Dong H and Qiao X: Semi-preparative separation of 10 caffeoylquinic acid derivatives using high speed counter-current chromatogaphy combined with semi-preparative HPLC from the roots of burdock (Arctium lappa L.). Molecules. 23:E4292018. View Article : Google Scholar : PubMed/NCBI

22 

Park SY, Jin ML, Kim YH, Kim Y and Lee SJ: Aromatic-turmerone inhibits α-MSH and IBMX-induced melanogenesis by inactivating CREB and MITF signaling pathways. Arch Dermatol Res. 303:737–744. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Zhou J, Ren T1, Li Y, Cheng A, Xie W, Xu L, Peng L, Lin J, Lian L, Diao Y, et al: Oleoylethanolamide inhibits α-melanocyte stimulating hormone-stimulated melanogenesis via ERK, Akt and CREB signaling pathways in B16 melanoma cells. Oncotarget. 8:56868–56879. 2017.PubMed/NCBI

24 

Hout DR, Schweitzer BL, Lawrence K, Morris SW, Tucker T, Mazzola R, Skelton R, McMahon F, Handshoe J, Lesperance M, et al: Performance of a RT-PCR assay in comparison to fish and immunohistochemistry for the detection of ALK in non-small cell lung cancer. Cancers (Basel). 9:E992017. View Article : Google Scholar

25 

Zhu PY, Yin WH, Wang MR, Dang YY and Ye XY: Andrographolide suppresses melanin synthesis through Akt/GSK3β/β-catenin signal pathway. J Dermatol Sci. 79:74–83. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Zheng MF, Shen SY and Huang WD: DCA increases the antitumor effects of capecitabine in a mouse B16 melanoma allograft and a human non-small cell lung cancer A549 xenograft. Cancer Chemother Pharmacol. 72:1031–1041. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–428. 2001. View Article : Google Scholar

28 

Lu XY, Li JQ, Liu XN, Li XB and Ma J: Characterization and expression analysis of six chitinase genes from the desert beetle microdera punctipennis in response to low temperature. Cryo Letters. 35:438–448. 2014.PubMed/NCBI

29 

Smit NP, Kolb RM, Lentjes EG, Noz KC, van der Meulen H, Koerten HK, Vermeer BJ and Pavel S: Variations in melanin formation by cultured melanocytes from different skin types. Arch Dermatol Res. 290:342–349. 1998. View Article : Google Scholar : PubMed/NCBI

30 

Ramsden CA and Riley PA: Tyrosinase: The four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg Med Chem. 22:2388–2395. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Shen T, Heo SI and Wang MH: Involvement of the p38 MAPK and ERK signaling pathway in the anti-melanogenic effect of methyl 3,5-dicaffeoyl quinate in B16F10 mouse melanoma cells. Chem Biol Interact. 199:106–111. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Hart MJ, de los Santos R, Albert IN, Rubinfeld B and Polakis P: Downregulation of beta-catenin by human axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol. 8:573–581. 1998. View Article : Google Scholar : PubMed/NCBI

33 

Kim DS, Cha SB, Park MC, Park SA, Kim HS, Woo WH and Mun YJ: Scopoletin stimulates melanogenesis via cAMP/PKA pathway and partially p38 activation. Biol Pharm Bull. 14:2068–2074. 2017. View Article : Google Scholar

34 

Kaidbey KH, Agin PP, Sayre RM and Kligman AM: Kligman, hotoprotection by melanin-a comparison of black and caucasian skin. J Am Acad Dermatol. 1:249–260. 1979. View Article : Google Scholar : PubMed/NCBI

35 

Sato K, Ando R, Kobayashi H and Nishio T: 2-Ethoxybenzamide stimulates melanin synthesis in B16F1 melanoma cells via the CREB signaling pathway. Mol Cell Biochem. 423:39–52. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Lee KM, Lee KY, Choi HW, Cho MY, Kwon TH, Kawabata S and Lee BL: Activated phenoloxidase from Tenebrio molitor larvae enhances the synthesis of melanin by using a vitellogenin-like protein in the presence of dopamine. Eur J Biochem. 267:3695–3703. 2000. View Article : Google Scholar : PubMed/NCBI

37 

Kumar R, Parsad D, Rani S, Bhardwaj S and Srivastav N: Glabrous lesional stem cells differentiated into functional mela-nocytes: New hope for repigmentation. J Eur Acad Dermatol Venereol. 30:1555–1560. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Maimaiti Z, Turak A and Aisa HA: Two new compounds from the seeds o Vernonia anthelmintica. J Asian Nat Prod Res. 19:862–868. 2017. View Article : Google Scholar

39 

Turak A and Aisa HA: Three new elemanolides from the seeds o Vernonia anthelmintica. J Asian Nat Prod Res. 20:313–320. 2018. View Article : Google Scholar

40 

Kim HJ, Kim JS, Woo JT, Lee IS and Cha BY: Hyperpigmentation mechanism of methyl 3,5-dicaffeoylquinate through activation of p38 andMITF induction of tyrosinase. Acta Biochim Biophys Sin (Shanghai). 47:548–556. 2015. View Article : Google Scholar

41 

Mamat N, Dou J, Lu X, Eblimit A and Haji Akber A: Isochlorogenic acid A promotes melanin synthesis in B16 cell through the β-catenin signal pathway. Acta Biochim Biophys Sin (Shanghai). 49:800–807. 2017. View Article : Google Scholar

42 

Pei T, Zheng C, Huang C, Chen X, Guo Z, Fu Y, Liu J and Wang Y: Systematic understanding the mechanisms of vitiligo pathogenesis and its treatment by Qubaibabuqi formula. J Ethnopharmacol. 190:272–287. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Ahn JH, Jin SH and Kang HY: LPS induces melanogenesis through p38 MAPK activation in human melanocytes. Arch Dermatol Res. 300:325–329. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Yanase H, Ando H, Horikawa M, Watanabe M, Mori T and Matsuda N: Possible involvement of ERK 1/2 in UVA-induced melanogenesis in cultured normal human epidermal melanocytes. Pigment Cell Res. 14:103–109. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Buscà R, Abbe P, Mantoux F, Aberdam E, Peyssonnaux C, Eychène A, Ortonne JP and Ballotti R: Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J. 19:2900–2910. 2000. View Article : Google Scholar : PubMed/NCBI

46 

Jung HG, Kim HH, Paul S, Jang JY, Cho YH, Kim HJ, Yu JM, Lee ES, An BJ, Kang SC and Bang BH: Quercetin -3-O-β-D-g lucopyranosyl-(1→6)-β-D-glucopyranoside suppresses melanin synthesis by augmenting p38 MAPK and CREB signaling pathways and subsequent cAMP down-regulation in murine melanoma cells. Saudi J Biol Sci. 22:706–713. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Mamat N, Lu XY, Kabas M and Aisa HA: Potential anti-vitiligo properties of cynarine extracted from Vernonia anthelmintica (L.) Willd. Int J Mol Med 42: 2665-2675, 2018.
APA
Mamat, N., Lu, X.Y., Kabas, M., & Aisa, H.A. (2018). Potential anti-vitiligo properties of cynarine extracted from Vernonia anthelmintica (L.) Willd. International Journal of Molecular Medicine, 42, 2665-2675. https://doi.org/10.3892/ijmm.2018.3861
MLA
Mamat, N., Lu, X. Y., Kabas, M., Aisa, H. A."Potential anti-vitiligo properties of cynarine extracted from Vernonia anthelmintica (L.) Willd". International Journal of Molecular Medicine 42.5 (2018): 2665-2675.
Chicago
Mamat, N., Lu, X. Y., Kabas, M., Aisa, H. A."Potential anti-vitiligo properties of cynarine extracted from Vernonia anthelmintica (L.) Willd". International Journal of Molecular Medicine 42, no. 5 (2018): 2665-2675. https://doi.org/10.3892/ijmm.2018.3861
Copy and paste a formatted citation
x
Spandidos Publications style
Mamat N, Lu XY, Kabas M and Aisa HA: Potential anti-vitiligo properties of cynarine extracted from Vernonia anthelmintica (L.) Willd. Int J Mol Med 42: 2665-2675, 2018.
APA
Mamat, N., Lu, X.Y., Kabas, M., & Aisa, H.A. (2018). Potential anti-vitiligo properties of cynarine extracted from Vernonia anthelmintica (L.) Willd. International Journal of Molecular Medicine, 42, 2665-2675. https://doi.org/10.3892/ijmm.2018.3861
MLA
Mamat, N., Lu, X. Y., Kabas, M., Aisa, H. A."Potential anti-vitiligo properties of cynarine extracted from Vernonia anthelmintica (L.) Willd". International Journal of Molecular Medicine 42.5 (2018): 2665-2675.
Chicago
Mamat, N., Lu, X. Y., Kabas, M., Aisa, H. A."Potential anti-vitiligo properties of cynarine extracted from Vernonia anthelmintica (L.) Willd". International Journal of Molecular Medicine 42, no. 5 (2018): 2665-2675. https://doi.org/10.3892/ijmm.2018.3861
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team