|
1
|
Feigin VL, Krishnamurthi RV, Parmar P,
Norrving B, Mensah GA, Bennett DA, Barker‑Collo S, Moran AE, Sacco
RL, Truelsen T, et al: Update on the global burden of ischemic and
hemorrhagic stroke in 1990‑2013: The GBD 2013 study.
Neuroepidemiology. 45:161–176. 2015. View Article : Google Scholar :
|
|
2
|
Wang W, Jiang B, Sun H, Ru X, Sun D, Wang
L, Jiang Y, Li Y, Wang Y, Chen Z, et al: Prevalence, incidence, and
mortality of stroke in chinaclinical perspective: Results from a
nationwide population-based survey of 480687 adults. Circulation.
135:759–771. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Liu L, Wang D, Wong KL and Wang Y: Stroke
and stroke care in china: Huge burden, significant workload, and a
national priority. Stroke. 42:3651–3654. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Benjamin EJ, Blaha MJ, Chiuve SE, Cushman
M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C,
et al: Heart disease and stroke statistics-2017 update: A report
from the american heart association. Circulation. 135:e146–e603.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Goldstein LB, Adams R, Alberts MJ, Appel
LJ, Brass LM, Bushnell CD, Culebras A, Degraba TJ, Gorelick PB,
Guyton JR, et al: Primary prevention of ischemic stroke: A
guideline from the american heart association/american stroke
association stroke council: Cosponsored by the atherosclerotic
peripheral vascular disease interdisciplinary working group;
cardiovascular nursing council; clinical cardiology council;
nutrition, physical activity, and metabolism council; and the
quality of care and outcomes research interdisciplinary working
group: The amer-ican academy of neurology affirms the value of this
guideline. Stroke. 37:1583–1633. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Furie KL and Jayaraman MV: 2018 guidelines
for the early management of patients with acute ischemic stroke.
Stroke. 49:509–510. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Astrup J, Siesjö BK and Symon L:
Thresholds in cerebral ischemia-the ischemic penumbra. Stroke.
12:723–725. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hu X, De Silva TM, Chen J and Faraci FM:
Cerebral vascular disease and neurovascular injury in ischemic
stroke. Circ Res. 120:449–471. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Famakin BM: The immune response to acute
focal cerebral isch-emia and associated post-stroke
immunodepression: A focused review. Aging Dis.
5:3073262014.PubMed/NCBI
|
|
10
|
Cai W, Zhang K, Li P, Zhu L, Xu J, Yang B,
Hu X, Lu Z and Chen J: Dysfunction of the neurovascular unit in
ischemic stroke and neurodegenerative diseases: An aging effect.
Ageing Res Rev. 34:77–87. 2017. View Article : Google Scholar :
|
|
11
|
Cuartero MI, Ballesteros I, Lizasoain I
and Moro MA: Complexity of the cell-cell interactions in the innate
immune response after cerebral ischemia. Brain Res. 1623:53–62.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hoseini Z, Sepahvand F, Rashidi B,
Sahebkar A, Masoudifar A and Mirzaei H: NLRP3 inflammasome: Its
regulation and involvement in atherosclerosis. J Cell Physiol.
233:2116–2132. 2018. View Article : Google Scholar
|
|
13
|
Elliott EI and Sutterwala FS: Initiation
and perpetuation of NLRP3 inflammasome activation and assembly.
Immunol Rev. 265:35–52. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Martinon F, Burns K and Tschopp J: The
inflammasome: A molecular platform triggering activation of
inflammatory caspases and processing of proIL-beta. Mol Cell.
10:417–426. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Medzhitov R: Origin and physiological
roles of inflammation. Nature. 454:428–435. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Cassel SL and Sutterwala FS: Sterile
inflammatory responses mediated by the NLRP3 inflammasome. Eur J
Immunol. 40:607–611. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liu SB, Mi WL and Wang YQ: Research
progress on the NLRP3 inflammasome and its role in the central
nervous system. Neurosci Bull. 29:7797872013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Liao KC and Mogridge J: Expression of
Nlrp1b inflammasome components in human fibroblasts confers
susceptibility to anthrax lethal toxin. Infect Immun. 77:4455–4462.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Fann DY, Lee SY, Manzanero S, Chunduri P,
Sobey CG and Arumugam TV: Pathogenesis of acute stroke and the role
of inflammasomes. Ageing Res Rev. 12:941–966. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Levinsohn JL, Newman ZL, Hellmich KA,
Fattah R, Getz MA, Liu S, Sastalla I, Leppla SH and Moayeri M:
Anthrax lethal factor cleavage of Nlrp1 is required for activation
of the inflam-masome. PLoS Pathog. 8:e10026382012. View Article : Google Scholar
|
|
21
|
Gambin Y, Giles N, O'Carroll A,
Polinkovsky ME, Hunter DJ and Sierecki E: Single‑molecule
fluorescence reveals the oligomerisation and folding steps driving
the prion-like behaviour of ASC. J Mol Biol. 430:12632018.
View Article : Google Scholar
|
|
22
|
Srinivasula SM, Poyet JL, Razmara M, Datta
P, Zhang Z and Alnemri ES: The PYRIN-CARD protein ASC is an
activating adaptor for caspase‑1. J Biol Chem. 277:21119–21122.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Shi J, Gao W and Shao F: Pyroptosis:
Gasdermin-mediated programmed necrotic cell death. Trends Biochem
Sci. 42:245–254. 2017. View Article : Google Scholar
|
|
24
|
Inohara N and Nuñez G: Cell death and
immunity: NODs: Intracellular proteins involved in inflammation and
apoptosis. Nat Rev Immunol. 3:371–382. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Agostini L, Martinon F, Burns K, McDermott
MF, Hawkins PN and Tschopp J: NALP3 forms an IL-1beta‑processing
inflamma-some with increased activity in Muckle‑Wells
autoinflammatory disorder. Immunity. 20:319–325. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Schroder K and Tschopp J: The
inflammasomes. Cell. 140:821–832. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kanneganti TD: Inflammatory bowel disease
and the NLRP3 inflammasome. N Engl J Med. 377:694–696. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ozaki E, Campbell M and Doyle SL:
Targeting the NLRP3 inflammasome in chronic inflammatory diseases:
Current perspectives. J Inflamm Res. 8:15–27. 2015.PubMed/NCBI
|
|
29
|
Alcocer‑Gómez E, Castejón‑Vega B and
Cordero MD: Stress‑induced NLRP3 inflammasome in human diseases.
Adv Protein Chem Struct Biol. 108:127–162. 2017. View Article : Google Scholar
|
|
30
|
Song L, Pei L, Yao S, Wu Y and Shang Y:
NLRP3 inflammasome in neurological diseases, from functions to
therapies. Front Cell Neurosci. 11:632017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Toldo S and Abbate A: The NLRP3
inflammasome in acute myocardial infarction. Nat Rev Cardiol.
15:203–214. 2018. View Article : Google Scholar
|
|
32
|
Pradillo JM, Denes A, Greenhalgh AD,
Boutin H, Drake C, McColl BW, Barton E, Proctor SD, Russell JC,
Rothwell NJ, et al: Delayed administration of interleukin-1
receptor antagonist reduces ischemic brain damage and inflammation
in comorbid rats. J Cereb Blood Flow Metab. 32:1810–1819. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Iyer SS, Pulskens WP, Sadler JJ, Butter
LM, Teske GJ, Ulland TK, Eisenbarth SC, Florquin S, Flavell RA,
Leemans JC and Sutterwala FS: Necrotic cells trigger a sterile
inflammatory response through the Nlrp3 inflammasome. Proc Natl
Acad Sci USA. 106:20388–20393. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Shigeoka AA, Mueller JL, Kambo A, Mathison
JC, King AJ, Hall WF, Correia Jda S, Ulevitch RJ, Hoffman HM and
McKay DB: An inflammasome-independent role for epithelial-expressed
Nlrp3 in renal ischemia-reperfusion injury. J Immunol.
185:6277–6285. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Leemans JC, Cassel SL and Sutterwala FS:
Sensing damage by the NLRP3 inflammasome. Immunol Rev.
243:1521622011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Fann DY, Lee SY, Manzanero S, Tang SC,
Gelderblom M, Chunduri P, Bernreuther C, Glatzel M, Cheng YL,
Thundyil J, et al: Intravenous immunoglobulin suppresses NLRP1 and
NLRP3 inflammasome‑mediated neuronal death in ischemic stroke. Cell
Death Dis. 4:e7902013. View Article : Google Scholar
|
|
37
|
Dong Y, Fan C, Hu W, Jiang S, Ma Z, Yan X,
Deng C, Di S, Xin Z, Wu G, et al: Melatonin attenuated early brain
injury induced by subarachnoid hemorrhage via regulating NLRP3
inflammasome and apoptosis signaling. J Pineal Res. 60:253–262.
2016. View Article : Google Scholar
|
|
38
|
Yang F, Wang Z, Wei X, Han H, Meng X,
Zhang Y, Shi W, Li F, Xin T, Pang Q, et al: NLRP3 deficiency
ameliorates neurovascular damage in experimental ischemic stroke. J
Cereb Blood Flow Metab. 34:660–667. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Koizumi J: Experimental studies of
ischemic brain edema 1 A new experimental model of cerebral
embolism in rats in which recirculation can be introduced in the
ischemic area. Jpn J Stroke. 8:1–8. 1986. View Article : Google Scholar
|
|
40
|
Denes A, Coutts G, Lénárt N, Cruickshank
SM, Pelegrin P, Skinner J, Rothwell N, Allan SM and Brough D: AIM2
and NLRC4 inflammasomes contribute with ASC to acute brain injury
independently of NLRP3. Proc Natl Acad Sci USA. 112:4050–4055.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Benchoua A, Guégan C, Couriaud C, Hosseini
H, Sampaïo N, Morin D and Onténiente B: Specific caspase pathways
are activated in the two stages of cerebral infarction. J Neurosci.
21:7127–7134. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Abulafia DP, de Rivero Vaccari JP, Lozano
JD, Lotocki G, Keane RW and Dietrich WD: Inhibition of the
inflammasome complex reduces the inflammatory response after
thromboembolic stroke in mice. J Cereb Blood Flow Metab.
29:534–544. 2009. View Article : Google Scholar
|
|
43
|
Friedlander RM, Gagliardini V, Hara H,
Fink KB, Li W, MacDonald G, Fishman MC, Greenberg AH, Moskowitz MA
and Yuan J: Expression of a dominant negative mutant of
interleukin-1beta converting enzyme in transgenic mice prevents
neuronal cell death induced by trophic factor withdrawal and
ischemic brain injury. J Exp Med. 185:933–940. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Schielke GP, Yang GY, Shivers BD and Betz
AL: Reduced ischemic brain injury in interleukin-1beta converting
enzyme-deficient mice. J Cereb Blood Flow Metab. 18:180–185. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ray AM, Owen DE, Evans ML, Davis JB and
Benham CD: Caspase inhibitors are functionally neuroprotective
against oxygen glucose deprivation induced CA1 death in rat
organotypic hippocampal slices. Brain Res. 867:62–69. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mathiesen T, Edner G, Ulfarsson E and
Andersson B: Cerebrospinal fluid interleukin-1 receptor antagonist
and tumor necrosis factor-α following subarachnoid hemorrhage. J
Neurosurg. 87:215–220. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Iadecola C and Anrather J: The immunology
of stroke: From mechanisms to translation. Nat Med. 17:796–808.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Mathiesen T, Andersson B, Loftenius A and
von Holst H: Increased interleukin‑6 levels in cerebrospinal fluid
following subarachnoid hemorrhage. J Neurosurg. 78:562–567. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Mizuma A and Yenari MA: Anti‑inflammatory
targets for the treatment of reperfusion injury in stroke. Front
Neurol. 8:4672017. View Article : Google Scholar
|
|
50
|
Creagh EM: Caspase crosstalk: Integration
of apoptotic and innate immune signalling pathways. Trends Immunol.
35:631–640. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Galea J and Brough D: The role of
inflammation and interleukin‑1 in acute cerebrovascular disease. J
Inflamm Res. 6:121–128. 2013.PubMed/NCBI
|
|
52
|
Yin Y, Yan Y, Jiang X, Mai J, Chen NC,
Wang H and Yang XF: Inflammasomes are differentially expressed in
cardiovascular and other tissues. Int J Immunopathol Pharmacol.
22:311–322. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gao L, Dong Q, Song Z, Shen F, Shi J and
Li Y: NLRP3 inflammasome: A promising target in ischemic stroke.
Inflamm Res. 66:17–24. 2017. View Article : Google Scholar
|
|
54
|
Gustin A, Kirchmeyer M, Koncina E, Felten
P, Losciuto S, Heurtaux T, Tardivel A, Heuschling P and Dostert C:
NLRP3 inflammasome is expressed and functional in mouse brain
microglia but not in astrocytes. PLoS One. 10:e01306242015.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Abais JM, Xia M, Zhang Y, Boini KM and Li
PL: Redox regulation of NLRP3 inflammasomes: ROS as trigger or
effector? Antioxid Redox Signal. 22:1111–1129. 2015. View Article : Google Scholar :
|
|
56
|
Sun HS and Feng ZP: Neuroprotective role
of ATP-sensitive potassium channels in cerebral ischemia. Acta
Pharmacol Sin. 34:24–32. 2013. View Article : Google Scholar
|
|
57
|
He J, Gao Y, Wu G, Lei X, Zhang Y, Pan W
and Yu H: Bioinformatics analysis of microarray data to reveal the
pathogenesis of brain ischemia. Mol Med Rep. 18:333–341.
2018.PubMed/NCBI
|
|
58
|
Li P, Stetler RA, Leak RK, Shi Y, Li Y, Yu
W, Bennett MVL and Chen J: Oxidative stress and DNA damage after
cerebral ischemia: Potential therapeutic targets to preserve the
genome and improve stroke recovery. Neuropharmacology. 134:208–217.
2018. View Article : Google Scholar
|
|
59
|
Buendia I, Tenti G, Michalska P,
Méndez‑López I, Luengo E, Satriani M, Padín-Nogueira F, López MG,
Ramos MT, García AG, et al: ITH14001, a CGP37157-nimodipine hybrid
designed to regulate calcium homeostasis and oxidative stress,
exerts neuroprotection in cerebral ischemia. ACS Chem Neurosci.
8:67–81. 2017. View Article : Google Scholar
|
|
60
|
Burm SM, Zuiderwijk‑Sick EA, 't Jong AE,
van der Putten C, Veth J, Kondova I and Bajramovic JJ:
Inflammasome‑induced IL-1β secretion in microglia is characterized
by delayed kinetics and is only partially dependent on inflammatory
caspases. J Neurosci. 35:678–687. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Frank MG, Weber MD, Watkins LR and Maier
SF: Stress sounds the alarmin: The role of the danger-associated
molecular pattern HMGB1 in stress‑induced neuroinflammatory
priming. Brain Behav Immun. 48:1–7. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lee HM, Kang J, Lee SJ and Jo EK:
Microglial activation of the NLRP3 inflammasome by the priming
signals derived from macrophages infected with mycobacteria. Glia.
61:441–452. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Nagyőszi P, Nyúl‑Tóth Á, Fazakas C,
Wilhelm I, Kozma M, Molnár J, Haskó J and Krizbai IA: Regulation of
NOD-like receptors and inflammasome activation in cerebral
endothelial cells. J Neurochem. 135:551–564. 2015. View Article : Google Scholar
|
|
64
|
Bauernfeind F, Bartok E, Rieger A, Franchi
L, Núñez G and Hornung V: Cutting edge: Reactive oxygen species
inhibitors block priming, but not activation, of the NLRP3
inflammasome. J Immunol. 187:613–617. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
He Q, You H, Li XM, Liu TH, Wang P and
Wang BE: HMGB1 promotes the synthesis of pro-IL-1β and pro-IL-18 by
activation of p38 MAPK and NF-κB through receptors for advanced
glycation end-products in macrophages. Asian Pac J Cancer Prev.
13:1365–1370. 2012. View Article : Google Scholar
|
|
66
|
Liu HD, Li W, Chen ZR, Hu YC, Zhang DD,
Shen W, Zhou ML, Zhu L and Hang CH: Expression of the NLRP3
inflammasome in cerebral cortex after traumatic brain injury in a
rat model. Neurochem Res. 38:2072–2083. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Muñoz‑Planillo R, Kuffa P, Martínez‑Colón
G, Smith BL, Rajendiran TM and Núñez G: K+ efflux is the
common trigger of NLRP3 inflammasome activation by bacterial toxins
and particulate matter. Immunity. 38:1142–1153. 2013. View Article : Google Scholar
|
|
68
|
Adinolfi E, Giuliani AL, De Marchi E,
Pegoraro A, Orioli E and Di Virgilio F: The P2X7 receptor: A main
player in inflammation. Biochem Pharmacol. 151:234–244. 2018.
View Article : Google Scholar
|
|
69
|
Pétrilli V, Papin S, Dostert C, Mayor A,
Martinon F and Tschopp J: Activation of the NALP3 inflammasome is
triggered by low intracellular potassium concentration. Cell Death
Differ. 14:1583–1589. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Peng TI and Jou MJ: Oxidative stress
caused by mitochondrial calcium overload. Ann NY Acad Sci.
1201:183–188. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Heid ME, Keyel PA, Kamga C, Shiva S,
Watkins SC and Salter RD: Mitochondrial reactive oxygen species
induces NLRP3‑dependent lysosomal damage and inflammasome
activation. J Immunol. 191:5230–5238. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sorbara MT and Girardin SE: Mitochondrial
ROS fuel the inflammasome. Cell Res. 21:558–560. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhou R, Yazdi AS, Menu P and Tschopp J: A
role for mitochondria in NLRP3 inflammasome activation. Nature.
469:221–225. 2011. View Article : Google Scholar
|
|
74
|
Nakahira K, Haspel JA, Rathinam VA, Lee
SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim
HP, et al: Autophagy proteins regulate innate immune responses by
inhibiting the release of mitochondrial DNA mediated by the NALP3
inflammasome. Nat Immunol. 12:222–230. 2011. View Article : Google Scholar
|
|
75
|
Yin Y, Zhou Z, Liu W, Chang Q, Sun G and
Dai Y: Vascular endothelial cells senescence is associated with
NOD‑like receptor family pyrin domain-containing 3 (NLRP3)
inflammasome activation via reactive oxygen species
(ROS)/thioredoxin-interacting protein (TXNIP) pathway. Int J
Biochem Cell Biol. 84:22–34. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ye X, Zuo D, Yu L, Zhang L, Tang J, Cui C,
Bao L, Zan K, Zhang Z, Yang X, et al: ROS/TXNIP pathway contributes
to thrombin induced NLRP3 inflammasome activation and cell
apoptosis in microglia. Biochem Biophys Res Commun. 485:499–505.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yang SJ, Shao GF, Chen JL and Gong J: The
NLRP3 inflammasome: An important driver of neuroinflammation in
hemorrhagic stroke. Cell Mol Neurobiol. 38:595–603. 2018.
View Article : Google Scholar
|
|
78
|
Wang W, Wang C, Ding XQ, Pan Y, Gu TT,
Wang MX, Liu YL, Wang FM, Wang SJ and Kong LD: Quercetin and
allopurinol reduce liver thioredoxininteracting protein to
alleviate inflammation and lipid accumulation in diabetic rats. Br
J Pharmacol. 169:1352–1371. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
El-Azab MF, Baldowski BR, Mysona BA,
Shanab AY, Mohamed IN, Abdelsaid MA, Matragoon S, Bollinger KE,
Saul A and El‑Remessy AB: Deletion of thioredoxininteracting
protein preserves retinal neuronal function by preventing
inflammation and vascular injury. Br J Pharmacol. 171:1299–1313.
2014. View Article : Google Scholar :
|
|
80
|
Mohamed IN, Hafez SS, Fairaq A, Ergul A,
Imig JD and El‑Remessy AB: Thioredoxin‑interacting protein is
required for endothelial NLRP3 inflammasome activation and cell
death in a rat model of high-fat diet. Diabetologia. 57:413–423.
2014. View Article : Google Scholar
|
|
81
|
Ip WE and Medzhitov R: Macrophages monitor
tissue osmolarity and induce inflammatory response through NLRP3
and NLRC4 inflammasome activation. Nat Commun. 6:69312015.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
West AP and Shadel GS: Mitochondrial DNA
in innate immune responses and inflammatory pathology. Nat Rev
Immunol. 17:363–375. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Gurung P, Lukens JR and Kanneganti TD:
Mitochondria: Diversity in the regulation of the NLRP3
inflammasome. Trends Mol Med. 21:193–201. 2015. View Article : Google Scholar
|
|
84
|
Bogdan C: Nitric oxide synthase in innate
and adaptive immunity: An update. Trends Immunol. 36:161–178. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Man SM and Kanneganti TD: Regulation of
inflammasome activation. Immunol Rev. 265:6–21. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Brough D, Le Feuvre RA, Wheeler RD,
Solovyova N, Hilfiker S, Rothwell NJ and Verkhratsky A:
Ca2+ stores and Ca2+ entry differentially
contribute to the release of IL-1β and IL-1α from murine
macrophages. J Immunol. 170:3029–3036. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Murakami T, Ockinger J, Yu J, Byles V,
McColl A, Hofer AM and Horng T: Critical role for calcium
mobilization in activation of the NLRP3 inflammasome. Proc Natl
Acad Sci USA. 109:11282–11287. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Horng T: Calcium signaling and
mitochondrial destabilization in the triggering of the NLRP3
inflammasome. Trends Immunol. 35:253–261. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Clapham DE: Calcium signaling. Cell.
131:1047–1058. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Humeau J, Bravo‑San Pedro JM, Vitale I,
Nuñez L, Villalobos C, Kroemer G and Senovilla L: Calcium signaling
and cell cycle: Progression or death. Cell Calcium. 70:3152018.
View Article : Google Scholar
|
|
91
|
Lee GS, Subramanian N, Kim AI,
Aksentijevich I, Goldbach-Mansky R, Sacks DB, Germain RN, Kastner
DL and Chae JJ: The calcium‑sensing receptor regulates the NLRP3
inflammasome through Ca2+ and cAMP. Nature. 492:123–127.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Szabadkai G, Bianchi K, Várnai P, De
Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T and Rizzuto
R: Chaperone-mediated coupling of endoplasmic reticulum and
mitochondrial Ca2+ channels. J Cell Biol. 175:901–911.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Rizzuto R, Brini M, Murgia M and Pozzan T:
Microdomains with high Ca2+ close to IP3-sensitive
channels that are sensed by neighboring mitochondria. Science.
262:744–747. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Duchen MR: Mitochondria and calcium: From
cell signalling to cell death. J Physiol. 529:57–68. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Eisenbarth SC, Colegio OR, O'Connor W,
Sutterwala FS and Flavell RA: Crucial role for the Nalp3
inflammasome in the immunostimulatory properties of aluminium
adjuvants. Nature. 453:1122–1126. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Deng D, Jiang N, Hao SJ, Sun H and Zhang
GJ: Loss of membrane cholesterol influences lysosomal permeability
to potassium ions and protons. Biochim Biophys Acta. 1788:470–476.
2009. View Article : Google Scholar
|
|
97
|
Compan V, Baroja‑Mazo A, López‑Castejón G,
Gomez AI, Martínez CM, Angosto D, Montero MT, Herranz AS, Bazán E,
Reimers D, et al: Cell volume regulation modulates NLRP3
inflammasome activation. Immunity. 37:487–500. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Okada M, Matsuzawa A, Yoshimura A and
Ichijo H: The lysosome rupture‑activated TAK1‑JNK pathway regulates
NLRP3 inflammasome activation. J Biol Chem. 289:32926–32936. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Yaron JR, Gangaraju S, Rao MY, Kong X,
Zhang L, Su F, Tian Y, Glenn HL and Meldrum DR: K+
regulates Ca2+ to drive inflammasome signaling: Dynamic
visualization of ion flux in live cells. Cell Death Dis.
6:e19542015. View Article : Google Scholar
|
|
100
|
Fann DY, Lim YA, Cheng YL, Lok KZ,
Chunduri P, Baik SH, Drummond GR, Dheen ST, Sobey CG, Jo DG, et al:
Evidence that NF-κB and MAPK signaling promotes NLRP inflammasome
activation in neurons following ischemic stroke. Mol Neurobiol.
55:1082–1096. 2018. View Article : Google Scholar
|
|
101
|
Jian Z, Ding S, Deng H, Wang J, Yi W, Wang
L, Zhu S, Gu L and Xiong X: Probenecid protects against
oxygen-glucose deprivation injury in primary astrocytes by
regulating inflammasome activity. Brain Res. 1643:123–129. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Ye X, Shen T, Hu J, Zhang L, Zhang Y, Bao
L, Cui C, Jin G, Zan K, Zhang Z, et al: Purinergic 2X7
receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic
stroke in the mouse. Exp Neurol. 292:46–55. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Murthy P, Durco F, Miller-Ocuin JL,
Takedai T, Shankar S, Liang X, Liu X, Cui X, Sachdev U, Rath D, et
al: The NLRP3 inflammasome and bruton's tyrosine kinase in
platelets co‑regulate platelet activation, aggregation, and in
vitro thrombus formation. Biochem Biophys Res Commun. 483:230–236.
2017. View Article : Google Scholar
|
|
104
|
Peng J, Deng X, Huang W, Yu JH, Wang JX,
Wang JP, Yang SB, Liu X, Wang L, Zhang Y, et al: Irisin protects
against neuronal injury induced by oxygen-glucose deprivation in
part depends on the inhibition of ROS-NLRP3 inflammatory signaling
pathway. Mol Immunol. 91:185–194. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ismael S, Zhao L, Nasoohi S and Ishrat T:
Inhibition of the NLRP3‑inflammasome as a potential approach for
neuroprotection after stroke. Sci Rep. 8:59712018. View Article : Google Scholar
|
|
106
|
He Q, Li Z, Wang Y, Hou Y, Li L and Zhao
J: Resveratrol alleviates cerebral ischemia/reperfusion injury in
rats by inhibiting NLRP3 inflammasome activation through
Sirt1-dependent autophagy induction. Int Immunopharmacol.
50:208–215. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
He YB, Nan LH, Huang M, Zheng YF, Yang L,
Xu W and Chu KD: Paeoniflorin down‑regulates the expression of
NLRP1 and NLRP3 inflammasomes in rat hippocampal slices after
oxygen-glucose deprivation. Int J Clin Exp Med. 9:10907–10914.
2016.
|
|
108
|
Qiu J, Wang M, Zhang J, Cai Q, Lu D, Li Y,
Dong Y, Zhao T and Chen H: The neuroprotection of Sinomenine
against ischemic stroke in mice by suppressing NLRP3 inflammasome
via AMPK signaling. Int Immunopharmacol. 40:492–500. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Rabuffetti M, Sciorati C, Tarozzo G,
Clementi E, Manfredi AA and Beltramo M: Inhibition of
caspase‑1‑like activity by Ac‑Tyr‑Val‑Ala‑Asp‑chloromethyl ketone
induces long‑lasting neuroprotection in cerebral ischemia through
apoptosis reduction and decrease of proinflammatory cytokines. J
Neurosci. 20:4398–4404. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ross J, Brough D, Gibson RM, Loddick SA
and Rothwell NJ: A selective, non‑peptide caspase‑1 inhibitor,
VRT‑018858, markedly reduces brain damage induced by transient
ischemia in the rat. Neuropharmacology. 53:638–642. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Lu Y, Xiao G and Luo W: Minocycline
suppresses NLRP3 inflammasome activation in experimental ischemic
stroke. Neuroimmunomodulation. 23:230–238. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Fann DY, Santro T, Manzanero S,
Widiapradja A, Cheng YL, Lee SY, Chunduri P, Jo DG, Stranahan AM,
Mattson MP and Arumugam TV: Intermittent fasting attenuates
inflammasome activity in ischemic stroke. Exp Neurol. 257:114–119.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Lamkanfi M, Mueller JL, Vitari AC, Misaghi
S, Fedorova A, Deshayes K, Lee WP, Hoffman HM and Dixit VM:
Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Boil.
187:61–70. 2009. View Article : Google Scholar
|
|
114
|
Jiang H, He H, Chen Y, Huang W, Cheng J,
Ye J, Wang A, Tao J, Wang C, Liu Q, et al: Identification of a
selective and direct NLRP3 inhibitor to treat inflammatory
disorders. J Exp Med. 214:3219–3238. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Primiano MJ, Lefker BA, Bowman MR, Bree
AG, Hubeau C, Bonin PD, Mangan M, Dower K, Monks BG, Cushing L, et
al: Efficacy and pharmacology of the NLRP3 inflammasome inhibitor
CP-456,773 (CRID3) in murine models of dermal and pulmonary
inflammation. J Immunol. 197:2421–2433. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Coll RC, Robertson A, Butler M, Cooper M
and O'Neill LA: The cytokine release inhibitory drug CRID3 targets
ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. PLoS One.
6:e295392011. View Article : Google Scholar
|
|
117
|
Feng X, Luo Q, Wang H, Zhang H and Chen F:
MicroRNA-22 suppresses cell proliferation, migration and invasion
in oral squamous cell carcinoma by targeting NLRP3. J Cell Physiol.
233:6705–6713. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Byeon HE, Jeon JY, Kim HJ, Kim DJ, Lee KW,
Kang Y and Han SJ: MicroRNA-132 negatively regulates
palmitate-induced NLRP3 inflammasome activation through FOXO3
down‑regulation in THP-1 cells. Nutrients. 9:E13702017. View Article : Google Scholar
|
|
119
|
Hu H, Wang Y, Ding X, He Y, Lu Z, Wu P,
Tian L, Yuan H, Liu D, Shi G, et al: Long non-coding RNA
XLOC_000647 suppresses progression of pancreatic cancer and
decreases epithelial-mesenchymal transition-induced cell invasion
by down‑regulating NLRP3. Mol Cancer. 17:182018. View Article : Google Scholar
|
|
120
|
Qin YY, Li M, Feng X, Wang J, Cao L, Shen
XK, Chen J, Sun M, Sheng R, Han F and Qin ZH: Combined NADPH and
the NOX inhibitor apocynin provides greater anti-inflammatory and
neuroprotective effects in a mouse model of stroke. Free Radic Biol
Med. 104:333–345. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Zhao AP, Dong YF, Liu W, Gu J and Sun XL:
Nicorandil inhibits inflammasome activation and toll‑like
receptor‑4 signal transduction to protect against oxygen-glucose
deprivation-induced inflammation in BV‑2 cells. CNS Neurosci Ther.
20:147–153. 2014. View Article : Google Scholar
|
|
122
|
Li C, Wang J, Fang Y, Liu Y, Chen T, Sun
H, Zhou XF and Liao H: Nafamostat mesilate improves function
recovery after stroke by inhibiting neuroinflammation in rats.
Brain Behav Immun. 56:230–245. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Cao G, Jiang N, Hu Y, Zhang Y, Wang G, Yin
M, Ma X, Zhou K, Qi J, Yu B, et al: Ruscogenin attenuates cerebral
ischemia-induced blood-brain barrier dysfunction by suppressing
TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Int J Mol
Sci. 17:E14182016. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Wang X, Li R, Wang X, Fu Q and Ma S:
Umbelliferone ameliorates cerebral ischemia-reperfusion injury via
upregulating the PPAR gamma expression and suppressing TXNIP/NLRP3
inflammasome. Neurosci Lett. 600:182–187. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Li Y, Li J, Li S, Wang X, Liu B, Fu Q and
Ma S: Curcumin attenuates glutamate neurotoxicity in the
hippocampus by suppression of ER stress‑associated TXNIP/NLRP3
inflamma-some activation in a manner dependent on AMPK. Toxicol
Appl Pharmacol. 286:53–63. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Zhang N, Zhang X, Liu X, Wang H, Xue J, Yu
J, Kang N and Wang X: Chrysophanol inhibits NALP3 inflammasome
activation and ameliorates cerebral ischemia/reperfusion in mice.
Mediators Inflamm. 2014:3705302014. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Thakkar R, Wang R, Sareddy G, Wang J,
Thiruvaiyaru D, Vadlamudi R, Zhang Q and Brann D: NLRP3
inflammasome activation in the brain after global cerebral ischemia
and regulation by 17β-estradiol. Oxid Med Cell Longev.
2016:83090312016. View Article : Google Scholar
|
|
128
|
Lammerding L, Slowik A, Johann S, Beyer C
and Zendedel A: Poststroke inflammasome expression and regulation
in the peri-infarct area by gonadal steroids after transient focal
ischemia in the rat brain. Neuroendocrinology. 103:460–475. 2016.
View Article : Google Scholar
|
|
129
|
Zhang S, Jiang L, Che F, Lu Y, Xie Z and
Wang H: Arctigenin attenuates ischemic stroke via SIRT1-dependent
inhibition of NLRP3 inflammasome. Biochem Biophys Res Commun.
493:821–826. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Yu C, He Q, Zheng J, Li LY, Hou YH and
Song FZ: Sulforaphane improves outcomes and slows cerebral
ischemic/reperfusion injury via inhibition of NLRP3 inflammasome
activation in rats. Int Immunopharmacol. 45:74–78. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Li M, Li H, Fang F, Deng X and Ma S:
Astragaloside IV attenuates cognitive impairments induced by
transient cerebral ischemia and reperfusion in mice via
anti‑inflammatory mechanisms. Neurosci Lett. 639:114–119. 2017.
View Article : Google Scholar
|
|
132
|
Ishrat T, Mohamed IN, Pillai B, Soliman S,
Fouda AY, Ergul A, El‑Remessy AB and Fagan SC:
Thioredoxin-interacting protein: A novel target for neuroprotection
in experimental thromboembolic stroke in mice. Mol Neurobiol.
51:766–778. 2015. View Article : Google Scholar
|