Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
December-2018 Volume 42 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2018 Volume 42 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Repetitive magnetic stimulation promotes the proliferation of neural progenitor cells via modulating the expression of miR-106b

  • Authors:
    • Hua Liu
    • Gaohua Li
    • Chunlian Ma
    • Yanfang Chen
    • Jinju Wang
    • Yi Yang
  • View Affiliations / Copyright

    Affiliations: College of Health Science, Wuhan Sports University, Wuhan, Hubei 430079, P.R. China, Graduate School, Wuhan Sports University, Wuhan, Hubei 430079, P.R. China, Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
  • Pages: 3631-3639
    |
    Published online on: October 9, 2018
       https://doi.org/10.3892/ijmm.2018.3922
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Increasing evidence shows that repetitive transcranial magnetic stimulation (rTMS) promotes neurogenesis and the expression of microRNA (miR)‑106b. The present study investigated whether rTMS promotes the proliferation of neural progenitor cells (NPCs) and whether the effect is associated with the expression of miR‑106b. NPCs were cultured from the rat hippocampus and exposed to rTMS daily, comprising 1,000 stimuli for 3 days at 10 Hz, with 1.75 T output. The proliferation ability of the NPCs was revealed by EdU staining, and the levels of miR‑106b and downstream gene p21 in the NPCs were measured by reverse transcription‑quantitative polymerase chain reaction and western blot analyses. For analysis of the mechanism, the NPCs were transfected with Lenti‑miR‑106b or small interfering RNAs prior to rTMS. The results showed that: i) rTMS increased NPC proliferation, as revealed by the increased proportion of EdU‑positive cells; ii) rTMS was able to upregulate the expression of miR‑106b and downregulate the level of p21 in NPCs; iii) overexpression of miR‑106b further enhanced the effects of rTMS, whereas knockdown of miR‑106b had the opposite effects. Taken together, these data indicated that rTMS can promote NPC proliferation by upregulating the expression of miR‑106b and possibly inhibiting the expression of p21.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Lewis G: Transcranial magnetic stimulation for depression. Lancet. 391:1639–1640. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Hosomi K, Shimokawa T, Ikoma K, Nakamura Y, Sugiyama K, Ugawa Y, Uozumi T, Yamamoto T and Saitoh Y: Daily repetitive transcranial magnetic stimulation of primary motor cortex for neuropathic pain: A randomized, multicenter, double-blind, crossover, sham-controlled trial. Pain. 154:1065–1072. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Gersner R, Oberman L, Sanchez MJ, Chiriboga N, Kaye HL, Pascual-Leone A, Libenson M, Roth Y, Zangen A, Rotenberg A, et al: H-coil repetitive transcranial magnetic stimulation for treatment of temporal lobe epilepsy: A case report. Epilepsy Behav Case Rep. 5:52–56. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Kalita J, Laskar S, Bhoi SK and Misra UK: Efficacy of single versus three sessions of high rate repetitive transcranial magnetic stimulation in chronic migraine and tension-type headache. J Neurol. 263:2238–2246. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Jiang CG, Zhang T, Yue FG, Yi ML and Gao D: Efficacy of repetitive transcranial magnetic stimulation in the treatment of patients with chronic primary insomnia. Cell Biochem Biophys. 67:169–173. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Bentwich J, Dobronevsky E, Aichenbaum S, Shorer R, Peretz R, Khaigrekht M, Marton RG and Rabey JM: Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer's disease: A proof of concept study. J Neural Transm (Vienna). 118:463–471. 2011. View Article : Google Scholar

7 

Bilek E, Schäfer A, Ochs E, Esslinger C, Zangl M, Plichta MM, Braun U, Kirsch P, Schulze TG, Rietschel M, et al: Application of high-frequency repetitive transcranial magnetic stimulation to the DLPFC alters human prefrontal-hippocampal functional interaction. J Neurosci. 33:7050–7056. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Lee SA, Oh BM, Kim SJ and Paik NJ: The molecular evidence of neural plasticity induced by cerebellar repetitive transcranial magnetic stimulation in the rat brain: A preliminary report. Neurosci Lett. 575:47–52. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Touge T, Gerschlager W, Brown P and Rothwell JC: Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clin Neurophysiol. 112:2138–2145. 2001. View Article : Google Scholar : PubMed/NCBI

10 

Liu Y, Yang H, Tang X, Bai W, Wang G and Tian X: Repetitive transcranial magnetic stimulation regulates L-type Ca(2+) channel activity inhibited by early sevoflurane exposure. Brain Res. 1646:207–218. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Zhang N, Xing M, Wang Y, Tao H and Cheng Y: Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF-NMDAR pathways in a rat model of vascular dementia. Neuroscience. 311:284–289. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Ming GL and Song H: Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci. 28:223–250. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Müller-Dahlhaus F and Ziemann U: Metaplasticity in human cortex. Neuroscientist. 21:185–202. 2015. View Article : Google Scholar

14 

Ueyama E, Ukai S, Ogawa A, Yamamoto M, Kawaguchi S, Ishii R and Shinosaki K: Chronic repetitive transcranial magnetic stimulation increases hippocampal neurogenesis in rats. Psychiatry Clin Neurosci. 65:77–81. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Guo F, Han X, Zhang J, Zhao X, Lou J, Chen H and Huang X: Repetitive transcranial magnetic stimulation promotes neural stem cell proliferation via the regulation of miR-25 in a rat model of focal cerebral ischemia. PLoS One. 9:e1092672014. View Article : Google Scholar : PubMed/NCBI

16 

Zeng Y, Yi R and Cullen BR: Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 24:138–148. 2005. View Article : Google Scholar :

17 

Chen H, Qian K, Tang ZP, Xing B, Chen H, Liu N, Huang X and Zhang S: Bioinformatics and microarray analysis of microRNA expression profiles of murine embryonic stem cells, neural stem cells induced from ESCs and isolated from E8.5 mouse neural tube. Neurol Res. 32:603–613. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Anokye-Danso F, Snitow M and Morrisey EE: How microRNAs facilitate reprogramming to pluripotency. J Cell Sci. 125:4179–4187. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Brett JO, Renault VM, Rafalski VA, Webb AE and Brunet A: The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY). 3:108–124. 2011. View Article : Google Scholar

20 

Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM, Kobayashi SV, Lim L, Burchard J, Jackson AL, et al: MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol. 28:2167–2174. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Karimian A, Ahmadi Y and Yousefi B: Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst). 42:63–71. 2016. View Article : Google Scholar

22 

Wang H, Zhu LJ, Yang YC, Wang ZX and Wang R: MiR-224 promotes the chemoresistance of human lung adenocarcinoma cells to cisplatin via regulating G1/S transition and apoptosis by targeting p21(WAF1/CIP1). Br J Cancer. 111:339–354. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Semaan A, Qazi AM, Seward S, Chamala S, Bryant CS, Kumar S, Morris R, Steffes CP, Bouwman DL, Munkarah AR, et al: MicroRNA-101 inhibits growth of epithelial ovarian cancer by relieving chromatin-mediated transcriptional repression of p21(waf1/cip1). Pharm Res. 28:3079–3090. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Liu H, Han XH, Chen H, Zheng CX, Yang Y and Huang XL: Repetitive magnetic stimulation promotes neural stem cells proliferation by upregulating MiR-106b in vitro. J Huazhong Univ Sci Technolog Med Sci. 35:766–772. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Reynolds BA and Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 255:1707–1710. 1992. View Article : Google Scholar : PubMed/NCBI

26 

Casula EP, Tarantino V, Basso D, Arcara G, Marino G, Toffolo GM, Rothwell JC and Bisiacchi PS: Low-frequency rTMS inhibitory effects in the primary motor cortex: Insights from TMS-evoked potentials. Neuroimage. 98:225–232. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Cash RFH, Dar A, Hui J, De Ruiter L, Baarbé J, Fettes P, Peters S, Fitzgerald PB, Downar J and Chen R: Influence of inter-train interval on the plastic effects of rTMS. Brain Stimul. 10:630–636. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Stock M, Kirchner B, Waibler D, Cowley DE, Pfaffl MW and Kuehn R: Effect of magnetic stimulation on the gene expression profile of in vitro cultured neural cells. Neurosci Lett. 526:122–127. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Cui M, Ge H, Zhao H, Zou Y, Chen Y and Feng H: Electromagnetic fields for the regulation of neural stem cells. Stem Cells Int. 2017:98984392017. View Article : Google Scholar : PubMed/NCBI

30 

Barker AT, Freeston IL, Jalinous R and Jarratt JA: Magnetic stimulation of the human brain and peripheral nervous system: An introduction and the results of an initial clinical evaluation. Neurosurgery. 20:100–109. 1987. View Article : Google Scholar : PubMed/NCBI

31 

Vlachos A, Müller-Dahlhaus F, Rosskopp J, Lenz M, Ziemann U and Deller T: Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures? J Neurosci. 21:17514–17523. 2012. View Article : Google Scholar

32 

Sun P, Wang F, Wang L, Zhang Y, Yamamoto R, Sugai T, Zhang Q, Wang Z and Kato N: Increase in cortical pyramidal cell excitability accompanies depression-like behavior in mice: A transcranial magnetic stimulation study. J Neurosci. 31:16464–16472. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Samuels BA and Hen R: Neurogenesis and affective disorders. Eur J Neurosci. 33:1152–1159. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Bakker N, Shahab S, Giacobbe P, Blumberger DM, Daskalakis ZJ, Kennedy SH and Downar J: rTMS of the dorsomedial prefrontal cortex for major depression: Safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation. Brain Stimul. 8:208–215. 2015. View Article : Google Scholar

35 

Uhm KE, Kim YH, Yoon KJ, Hwang JM and Chang WH: BDNF genotype influence the efficacy of rTMS in stroke patients. Neurosci Lett. 594:117–121. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Post A, Müller MB, Engelmann M and Keck ME: Repetitive transcranial magnetic stimulation in rats: Evidence for a neuroprotective effect in vitro and in vivo. Eur J Neurosci. 11:3247–3254. 1999. View Article : Google Scholar : PubMed/NCBI

37 

Aydin-Abidin S, Trippe J, Funke K, Eysel UT and Benali A: High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Exp Brain Res. 188:249–261. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Lefaucheur JP, Drouot X, Ménard-Lefaucheur I, Keravel Y and Nguyen JP: Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology. 67:1568–1574. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Cruccu G, Aziz TZ, Garcia-Larrea L, Hansson P, Jensen TS, Lefaucheur JP, Simpson BA and Taylor RS: A meta-analysis neurostimulation therapy for neuropathic pain. Eur J Neurol. 14:952–970. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Grehl S, Martina D, Goyenvalle C, Deng ZD, Rodger J and Sherrard RM: In vitro magnetic stimulation: A simple stimulation device to deliver defined low intensity electromagnetic fields. Front Neural Circuits. 10:852016. View Article : Google Scholar :

41 

Hewitt CA, Ling KH, Merson TD, Simpson KM, Ritchie ME, King SL, Pritchard MA, Smyth GK, Thomas T, Scott HS and Voss AK: Gene network disruptions and neurogenesis defects in the adult Ts1Cje mouse model of Down syndrome. PLoS One. 5:e115612010. View Article : Google Scholar : PubMed/NCBI

42 

Kouroupi G, Lavdas AA, Gaitanou M, Thomaidou D, Stylianopoulou F and Matsas R: Lentivirus-mediated expression of insulin-like growth factor-I promotes neural stem/precursor cell proliferation and enhances their potential to generate neurons. J Neurochem. 115:460–474. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Sherr CJ and Roberts JM: Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9:1149–1163. 1995. View Article : Google Scholar : PubMed/NCBI

44 

Denicourt C and Dowdy SF: Cip/Kip proteins: More than just CDKs inhibitors. Genes Dev. 18:851–855. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Ilyin GP, Glaise D, Gilot D, Baffet G and Guguen-Guillouzo C: Regulation and role of p21 and p27 cyclin-dependent kinase inhibitors during hepatocyte differentiation and growth. Am J Physiol Gastrointest Liver Physiol. 285:G115–G127. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Marqués-Torrejón MÁ, Porlan E, Banito A, Gómez-Ibarlucea E, Lopez-Contreras AJ, Fernández-Capetillo O, Vidal A, Gil J, Torres J and Fariñas I: Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression. Cell Stem Cell. 12:88–100. 2013. View Article : Google Scholar :

47 

Arnold K, Sarkar A, Yram MA, Polo JM, Bronson R, Sengupta S, Seandel M, Geijsen N and Hochedlinger K: Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell. 9:317–329. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Wang Y, Liu HK and Schütz G: Role of the nuclear receptor Tailless in adult neural stem cells. Mech Dev. 130:388–390. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Liu HK, Belz T, Bock D, Takacs A, Wu H, Lichter P, Chai M and Schütz G: The nuclear receptor tailless is required for neurogenesis in the adult subventricular zone. Genes Dev. 22:2473–2478. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Yoon KJ, Lee YT and Han TR: Mechanism of functional recovery after repetitive transcranial magnetic stimulation (rTMS) in the subacute cerebral ischemic rat model: Neural plasticity or anti-apoptosis? Exp Brain Res. 214:549–556. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Liu Z, Yang D, Xie P, Ren G, Sun G, Zeng X and Sun X: MiR-106b and MiR-15b modulate apoptosis and angiogenesis in myocardial infarction. Cell Physiol Biochem. 29:851–862. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Chambers RA, Potenza MN, Hoffman RE and Miranker W: Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks. Neuropsychopharmacology. 29:747–758. 2004. View Article : Google Scholar : PubMed/NCBI

53 

Leslie KF: p21: Protector of progenitor pools. Science Signal. 6:ec2732013. View Article : Google Scholar

54 

Kippin TE, Martens DJ and van der Kooy D: p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev. 19:756–767. 2005. View Article : Google Scholar : PubMed/NCBI

55 

Orford KW and Scadden DT: Deconstructing stem cell self-renewal: Genetic insights into cell-cycle regulation. Nat Rev Genet. 9:115–128. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Paik JH, Ding Z, Narurkar R, Ramkissoon S, Muller F, Kamoun WS, Chae SS, Zheng H, Ying H, Mahoney J, et al: FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell. 5:540–553. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Boström E, Westerlund I, Vial C, Buchholz BA, et al: Dynamics of hippocampal neurogenesis in adult humans. Cell. 153:1219–1227. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Kronenberg G, Reuter K, Steiner B, Brandt MD, Jessberger S, Yamaguchi M and Kempermann G: Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol. 467:455–463. 2003. View Article : Google Scholar : PubMed/NCBI

59 

Nam SM, Kim JW, Yoo DY, Yim HS, Kim DW, Choi JH, Kim W, Jung HY, Won MH, Hwang IK, et al: Physical exercise ameliorates the reduction of neural stem cell, cell proliferation and neuroblast differentiation in senescent mice induced by D-galactose. BMC Neurosci. 15:1162014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu H, Li G, Ma C, Chen Y, Wang J and Yang Y: Repetitive magnetic stimulation promotes the proliferation of neural progenitor cells via modulating the expression of miR-106b. Int J Mol Med 42: 3631-3639, 2018.
APA
Liu, H., Li, G., Ma, C., Chen, Y., Wang, J., & Yang, Y. (2018). Repetitive magnetic stimulation promotes the proliferation of neural progenitor cells via modulating the expression of miR-106b. International Journal of Molecular Medicine, 42, 3631-3639. https://doi.org/10.3892/ijmm.2018.3922
MLA
Liu, H., Li, G., Ma, C., Chen, Y., Wang, J., Yang, Y."Repetitive magnetic stimulation promotes the proliferation of neural progenitor cells via modulating the expression of miR-106b". International Journal of Molecular Medicine 42.6 (2018): 3631-3639.
Chicago
Liu, H., Li, G., Ma, C., Chen, Y., Wang, J., Yang, Y."Repetitive magnetic stimulation promotes the proliferation of neural progenitor cells via modulating the expression of miR-106b". International Journal of Molecular Medicine 42, no. 6 (2018): 3631-3639. https://doi.org/10.3892/ijmm.2018.3922
Copy and paste a formatted citation
x
Spandidos Publications style
Liu H, Li G, Ma C, Chen Y, Wang J and Yang Y: Repetitive magnetic stimulation promotes the proliferation of neural progenitor cells via modulating the expression of miR-106b. Int J Mol Med 42: 3631-3639, 2018.
APA
Liu, H., Li, G., Ma, C., Chen, Y., Wang, J., & Yang, Y. (2018). Repetitive magnetic stimulation promotes the proliferation of neural progenitor cells via modulating the expression of miR-106b. International Journal of Molecular Medicine, 42, 3631-3639. https://doi.org/10.3892/ijmm.2018.3922
MLA
Liu, H., Li, G., Ma, C., Chen, Y., Wang, J., Yang, Y."Repetitive magnetic stimulation promotes the proliferation of neural progenitor cells via modulating the expression of miR-106b". International Journal of Molecular Medicine 42.6 (2018): 3631-3639.
Chicago
Liu, H., Li, G., Ma, C., Chen, Y., Wang, J., Yang, Y."Repetitive magnetic stimulation promotes the proliferation of neural progenitor cells via modulating the expression of miR-106b". International Journal of Molecular Medicine 42, no. 6 (2018): 3631-3639. https://doi.org/10.3892/ijmm.2018.3922
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team