|
1
|
Ene IV and Bennett RJ: The cryptic sexual
strategies of human fungal pathogens. Nat Rev Microbiol.
12:239–251. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zhang N, Magee BB, Magee PT, Holland BR,
Rodrigues E, Holmes AR, Cannon RD and Schmid J: Selective
advantages of a parasexual cycle for the Yeas candida albicans.
Genetics. 200:1117–1132. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hickman MA, Zeng G, Forche A, Hirakawa MP,
Abbey D, Harrison BD, Wang YM, Su CH, Bennett RJ, Wang Y and Berman
J: The ‘obligate diploid’ Candida albicans forms mating-competent
haploids. Nature. 494:55–59. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bennett RJ: The parasexual lifestyle of
Candida albicans. Curr Opin Microbiol. 28:10–17. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Fidel PL Jr: History and update on host
defense against vaginal candidiasis. Am J Reprod Immunol. 57:2–12.
2007. View Article : Google Scholar
|
|
6
|
Cassone A: Vulvovaginal Candida albicans
infections: Pathogenesis, immunity and vaccine prospects. BJOG.
122:785–794. 2015. View Article : Google Scholar
|
|
7
|
Patil S, Rao RS, Majumdar B and Anil S:
Clinical appearance of oral Candida infection and therapeutic
strategies. Front Microbiol. 6:13912015. View Article : Google Scholar
|
|
8
|
Garcia-Cuesta C, Sarrion-Pérez MG and
Bágan JV: Current treatment of oral candidiasis: A literature
review. J Clin Exp Dent. 6:e576-e5822014.
|
|
9
|
Pappas PG, Kauffman CA, Andes D, Benjamin
DK Jr, Calandra TF, Edwards JE Jr, Filler SG, Fisher JF, Kullberg
BJ, Ostrosky-Zeichner L, et al: Clinical practice guidelines for
the management of candidiasis: 2009 update by the infectious
diseases society of America. Clin Infect Dis. 48:503–535. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Pappas PG, Kauffman CA, Andes DR, Clancy
CJ, Marr KA, Ostrosky-Zeichner L, Reboli AC, Schuster MG, Vazquez
JA, Walsh TJ, et al: Clinical practice guideline for the management
of candidiasis: 2016 update by the infectious diseases society of
America. Clin Infect Dis. 62:e1-e502016. View Article : Google Scholar :
|
|
11
|
Teoh F and Pavelka N: How chemotherapy
increases the risk of systemic candidiasis in cancer patients:
Current paradigm and future directions. Pathogens. 5:pii: E62016.
View Article : Google Scholar
|
|
12
|
Sudbery P: Morphogenesis of a human fungal
pathogen requires septin phosphorylation. Dev Cell. 13:315–316.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sudbery P, Gow N and Berman J: The
distinct morphogenic states o. Candida albicans Trends Microbiol.
12:317–324. 2004. View Article : Google Scholar
|
|
14
|
Whiteway M and Bachewich C: Morphogenesis
i. Candida albicans Annu Rev Microbiol. 61:529–553. 2007.
View Article : Google Scholar
|
|
15
|
Lu Y, Su C and Liu H: Candida albicans
hyphal initiation and elongation. Trends Microbiol. 22:707–714.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Brand A: Hyphal growth in human fungal
pathogens and its role in virulence. Int J Microbiol.
2012.517529:2012.
|
|
17
|
Navarro-Garcia F, Sánchez M, Nombela C and
Pla J: Virulence genes in the pathogenic yeas. Candida albicans
FEMS Microbiol Rev. 25:245–268. 2001. View Article : Google Scholar
|
|
18
|
Gow NA, van de Veerdonk FL, Brown AJ and
Netea MG: Candida albicans morphogenesis and host defence:
Discriminating invasion from colonization. Nat Rev Microbiol.
10:112–122. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Rizzetto L, Weil T and Cavalieri D:
Systems level dissection of Candida recognition by dectins: A
matter of fungal morphology and site of infection. Pathogens.
4:639–661. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Berman J and Sudbery PE: Candida albicans:
A molecular revolution built on lessons from budding yeast. Nat Rev
Genet. 3:918–930. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
21
|
Biswas S, Van Dijck P and Datta A:
Environmental sensing and signal transduction pathways regulating
morphopathogenic determinants of Candida albicans. Microbiol Mol
Biol Rev. 71:348–376. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Martchenko M, Levitin A and Whiteway M:
Transcriptional activation domains of the Candida albicans Gcn4p
and Gal4p homologs. Eukaryot Cell. 6:291–301. 2007. View Article : Google Scholar :
|
|
23
|
Berman J: Morphogenesis and cell cycle
progression in Candida albicans. Curr Opin Microbiol. 9:595–601.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Perez-Martin J, Bardetti P, Castanheira S,
de la Torre A and Tenorio-Gómez M: Virulence-specific cell cycle
and morphogenesis connections in pathogenic fungi. Semin Cell Dev
Biol. 57:93–99. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Atir-Lande A, Gildor T and Kornitzer D:
Role for the SCFCDC4 ubiquitin ligase in Candida albicans
morphogenesis. Mol Biol Cell. 16:2772–2785. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bensen ES, Clemente-Blanco A, Finley KR,
Correa-Bordes J and Berman J: The mitotic cyclins Clb2p and Clb4p
affect morphogenesis in Candida albicans. Mol Biol Cell.
16:3387–3400. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bensen ES, Filler SG and Berman J: A
forkhead transcription factor is important for true hyphal as well
as yeast morphogenesis i. Candida albicans Eukaryot Cell.
1:787–798. 2002. View Article : Google Scholar
|
|
28
|
Butler DK, All O, Goffena J, Loveless T,
Wilson T and Toenjes KA: The GRR1 gene of Candida albicans is
involved in the negative control of pseudohyphal morphogenesis.
Fungal Genet Biol. 43:573–582. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Li WJ, Wang YM, Zheng XD, Shi QM, Zhang
TT, Bai C, Li D, Sang JL and Wang Y: The F-box protein Grr1
regulates the stability of Ccn1, Cln3 and Hof1 and cell
morphogenesis i. Candida albicans Mol Microbiol. 62:212–226. 2006.
View Article : Google Scholar
|
|
30
|
Shieh JC, White A, Cheng YC and Rosamond
J: Identification and functional characterization of Candida
albicans CDC4. J Biomed Sci. 12:913–924. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Agam G, Shamir A, Shaltiel G and Greenberg
ML: Myo-inositol-1-phosphate (MIP) synthase: A possible new target
for antibipolar drugs. Bipolar Disord. 4(Suppl 1): S15–S20. 2002.
View Article : Google Scholar
|
|
32
|
Hochstrasser M: Protein degradation or
regulation: Ub the judge. Cell. 84:813–815. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Chin C, Lai WC, Lee TL, Tseng TL and Shieh
JC: Dissection of the Candida albicans Cdc4 protein reveals the
involvement of domains in morphogenesis and cell flocculation. J
Biomed Sci. 20:972013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Galán-Ladero MA, Blanco-Blanco MT, Hurtado
C, Pérez-Giraldo C, Blanco MT and Gómez-Garcia AC: Determination of
biofilm production by Candida tropicalis isolated from hospitalized
patients and its relation to cellular surface hydrophobicity,
plastic adherence and filamentation ability. Yeast. 30:331–339.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ramage G, VandeWalle K, López-Ribot JL and
Wickes BL: The filamentation pathway controlled by the Efg1
regulator protein is required for normal biofilm formation and
development in Candida albicans. FEMS Microbiol Lett. 214:95–100.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ryan O, Shapiro RS, Kurat CF, Mayhew D,
Baryshnikova A, Chin B, Lin ZY, Cox MJ, Vizeacoumar F, Cheung D, et
al: Global gene deletion analysis exploring yeast filamentous
growth. Science. 337:1353–1356. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kavanaugh NL, Zhang AQ, Nobile CJ, Johnson
AD and Ribbeck K: Mucins suppress virulence traits of Candida
albicans. MBio. 5:e019112014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Verstrepen KJ and Klis FM: Flocculation,
adhesion and biofilm formation in yeasts. Mol Microbiol. 60:5–15.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Verstrepen KJ, Reynolds TB and Fink GR:
Origins of variation in the fungal cell surface. Nat Rev Microbiol.
2:533–540. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Tseng TL, Lai WC, Lee TL, Hsu WH, Sun YW,
Li WC, Cheng CW and Shieh JC: A role of Candida albicans CDC4 in
the negative regulation of biofilm formation. Can J Microbiol.
61:247–255. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tseng TL, Lai WC, Jian T, Li C, Sun HF,
Way TD and Shieh JC: Affinity purification of Candida albicans
CaCdc4-associated proteins reveals the presence of novel proteins
involved in morphogenesis. Biochem Biophys Res Commun. 395:152–157.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ramos C and Calderón IL: Biochemical
evidence that the Saccharomyces cerevisiae THR4 gene encodes
threonine synthetase. FEBS Lett. 351:357–359. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Schultes NP, Ellington AD, Cherry JM and
Szostak JW: Saccharomyces cerevisiae homoserine kinase is
homologous to prokaryotic homoserine kinases. Gene. 96:177–180.
1990. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kingsbury JM and McCusker JH: Homoserine
toxicity in Saccharomyces cerevisiae and Candida albicans
homoserine kinase (thr1Delta) mutants. Eukaryot Cell. 9:717–728.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kingsbury JM and McCusker JH: Fungal
homoserine kinase (thr1Delta) mutants are attenuated in virulence
and die rapidly upon threonine starvation and serum incubation.
Eukaryot Cell. 9:729–737. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Staschke KA, Dey S, Zaborske JM, Palam LR,
McClintick JN, Pan T, Edenberg HJ and Wek RC: Integration of
general amino acid control and target of rapamycin (TOR) regulatory
pathways in nitrogen assimilation in yeast. J Biol Chem.
285:16893–16911. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Valenzuela L, Aranda C and González A: TOR
modulates GCN4-dependent expression of genes turned on by nitrogen
limitation. J Bacteriol. 183:2331–2334. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Conrad M, Schothorst J, Kankipati HN, Van
Zeebroeck G, Rubio-Texeira M and Thevelein JM: Nutrient sensing and
signaling in the yeas Saccharomyces cerevisiae. FEMS Microbiol Rev.
38:254–299. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ljungdahl PO and Daignan-Fornier B:
Regulation of amino acid, nucleotide, and phosphate metabolism in
Saccharomyces cerevisiae. Genetics. 190:885–929. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Heitman J, Movva NR and Hall MN: Targets
for cell cycle arrest by the immunosuppressant rapamycin in yeast.
Science. 253:905–909. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kunz J, Henriquez R, Schneider U,
Deuter-Reinhard M, Movva NR and Hall MN: Target of rapamycin in
yeast, TOR2, is an essential phosphatidylinositol kinase homolog
required for G1 progression. Cell. 73:585–596. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Cruz MC, Goldstein AL, Blankenship J, Del
Poeta M, Perfect JR, McCusker JH, Bennani YL, Cardenas ME and
Heitman J: Rapamycin and less immunosuppressive analogs are toxic
to Candida albicans and Cryptococcus neoformans via
FKBP12-dependent inhibition of TOR. Antimicrob Agents Chemother.
45:3162–3170. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bastidas RJ, Heitman J and Cardenas ME:
The protein kinase Tor1 regulates adhesin gene expression in
Candida albicans. PLoS Pathog. 5:e10002942009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Jones EW and Fink GR: Regulation of amino
acid and nucleotide biosynthesis in yeast. Cold Spring Harbor
monograph series, The Molecular biology of the yeast Saccharomyces:
Metabolism and gene expression. Strathern JN, Jones EW and Broach
JR: Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: pp.
6801982
|
|
55
|
Ellenberger TE, Brandl CJ, Struhl K and
Harrison SC: The GCN4 basic region leucine zipper binds DNA as a
dimer of uninterrupted alpha helices: Crystal structure of the
protein-DNA complex. Cell. 71:1223–1237. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Natarajan K, Meyer MR, Jackson BM, Slade
D, Roberts C, Hinnebusch AG and Marton MJ: Transcriptional
profiling shows that Gcn4p is a master regulator of gene expression
during amino acid starvation in yeast. Mol Cell Biol. 21:4347–4368.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hughes JD, Estep PW, Tavazoie S and Church
GM: Computational identification of cis-regulatory elements
associated with groups of functionally related genes in
Saccharomyces cerevisiae. J Mol Biol. 296:1205–1214. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Meussdoerffer F and Fink GR: Structure and
expression of two aminoacyl-tRNA synthetase genes fro.
Saccharomyces cerevisiae J Biol Chem. 258:6293–6299. 1983.
|
|
59
|
Arndt K and Fink GR: GCN4 protein, a
positive transcription factor in yeast, binds general control
promoters at all 5 ‘TGACTC 3’ sequences. Proc Natl Acad Sci USA.
83:8516–8520. 1986. View Article : Google Scholar
|
|
60
|
Hinnebusch AG: Mechanisms of gene
regulation in the general control of amino acid biosynthesis in
Saccharomyces cerevisiae. Microbiol Rev. 52:248–273.
1988.PubMed/NCBI
|
|
61
|
Albrecht G, Mosch HU, Hoffmann B, Reusser
U and Braus GH: Monitoring the Gcn4 protein-mediated response in
the yeast Saccharomyces cerevisiae. J Biol Chem. 273:12696–12702.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lavoie H, Hogues H and Whiteway M:
Rearrangements of the transcriptional regulatory networks of
metabolic pathways in fungi. Curr Opin Microbiol. 12:655–663. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Tripathi G, Wiltshire C, Macaskill S,
Tournu H, Budge S and Brown AJ: Gcn4 co-ordinates morphogenetic and
metabolic responses to amino acid starvation in Candida albicans.
EMBO J. 21:5448–5456. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tournu H, Tripathi G, Bertram G, Macaskill
S, Mavor A, Walker L, Odds FC, Gow NA and Brown AJ: Global role of
the protein kinase Gcn2 in the human pathoge Candida albicans.
Eukaryot Cell. 4:1687–1696. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hinnebusch AG: The general control of
amino acid biosynthetic genes in the yeas Saccharomyces cerevisiae.
CRC Crit Rev Biochem. 21:277–317. 1986. View Article : Google Scholar
|
|
66
|
Hinnebusch AG and Natarajan K: Gcn4p, a
master regulator of gene expression, is controlled at multiple
levels by diverse signals of starvation and stress. Eukaryot Cell.
1:22–32. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Han TL, Cannon RD and Villas-Boas SG: The
metabolic basis of Candida albicans morphogenesis and quorum
sensing. Fungal Genet Biol. 48:747–763. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Rawal Y, Qiu H and Hinnebusch AG:
Accumulation of a threonine biosynthetic intermediate attenuates
general amino acid control by accelerating degradation of Gcn4 via
Pho85 and Cdk8. PLoS Genet. 10:e10045342014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ernst JF: Transcription factors in Candida
albicans-environmental control of morphogenesis. Microbiology.
146:1763–1774. 2000. View Article : Google Scholar
|
|
70
|
Murad AM, d’Enfert C, Gaillardin C, Tournu
H, Tekaia F, Talibi D, Marechal D, Marchais V, Cottin J and Brown
AJ: Transcript profiling in Candida albicans reveals new cellular
functions for the transcriptional repressors CaTup1, CaMig1 and
CaNrg1. Mol Microbiol. 42:981–993. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Murad AM, Leng P, Straffon M, Wishart J,
Macaskill S, MacCallum D, Schnell N, Talibi D, Marechal D, Tekaia
F, et al: NRG1 represses yeast-hypha morphogenesis and
hypha-specific gene expression i. Candida albicans EMBO J.
20:4742–4752. 2001. View Article : Google Scholar
|
|
72
|
Nantel A, Dignard D, Bachewich C, Harcus
D, Marcil A, Bouin AP, Sensen CW, Hogues H, van het Hoog M, Gordon
P, et al: Transcription profiling of Candida albicans cells
undergoing the yeast-to-hyphal transition. Mol Biol Cell.
13:3452–3465. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lo HJ, Köhler JR, DiDomenico B, Loebenberg
D, Cacciapuoti A and Fink GR: Nonfilamentous C. albicans mutants
are avirulent. Cell. 90:939–949. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Gillum AM, Tsay EY and Kirsch DR:
Isolation of the Candida albicans gene for orotidine-5′-phosphate
decarboxylase by complementation of S. cerevisiae ura3 and E. coli
pyrF mutations. Mol Gen Genet. 198:179–182. 1984. View Article : Google Scholar
|
|
75
|
Wilson RB, Davis D and Mitchell AP: Rapid
hypothesis testing with Candida albicans through gene disruption
with short homology regions. J Bacteriol. 181:1868–1874.
1999.PubMed/NCBI
|
|
76
|
Chen Q, Chen X, Wang Q, Zhang F, Lou Z,
Zhang Q and Zhou DX: Structural basis of a histone H3 lysine 4
demethylase required for stem elongation in rice. PLoS Genet.
9:e10032392013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Warren G and Sherratt D: Incompatibility
and transforming efficiency of ColE1 and related plasmids. Mol Gen
Genet. 161:39–47. 1978. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Dower WJ, Miller JF and Ragsdale CW: High
efficiency transformation of E. coli by high voltage
electroporation. Nucleic Acids Res. 16:6127–6145. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gietz RD: Yeast transformation by the
LiAc/SS carrier DNA/PEG method. Methods Mol Biol. 1205:1–12. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Becker DM and Lundblad V: Introduction of
DNA into yeast cells. Curr Protoc Mol Biol Chapter.
13:Unit13.72001.
|
|
81
|
Lai WC, Sun HF, Lin PH, Ho Lin HL and
Shieh JC: A new rapid and efficient system with dominant selection
developed to inactivate and conditionally express genes in Candida
albicans. Curr Genet. 62:213–235. 2016. View Article : Google Scholar
|
|
82
|
Kaneko A, Umeyama T, Hanaoka N, Monk BC,
Uehara Y and Niimi M: Tandem affinity purification of the Candida
albicans septin protein complex. Yeast. 21:1025–1033. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Reuss O, Vik A, Kolter R and Morschhäuser
J: The SAT1 flipper, an optimized tool for gene disruption in
Candida albicans. Gene. 341:119–127. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Shieh JC, Cheng YC, Su MC, Moore M, Choo Y
and Klug A: Tailor-made zinc-finger transcription factors activate
FLO11 gene expression with phenotypic consequences in the yeas
Saccharomyces cerevisiae. PLoS One. 2:e7462007. View Article : Google Scholar
|
|
85
|
Liu H, Köhler J and Fink GR: Suppression
of hyphal formation in Candida albicans by mutation of a STE12
homolog. Science. 266:1723–1726. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Gildor T, Shemer R, Atir-Lande A and
Kornitzer D: Coevolution of cyclin Pcl5 and its substrate Gcn4.
Eukaryot Cell. 4:310–318. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Garcia-Sanchez S, Aubert S, Iraqui I,
Janbon G, Ghigo JM and d’Enfert C: Candida albicans biofilms: A
developmental state associated with specific and stable gene
expression patterns. Eukaryot Cell. 3:536–545. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Enjalbert B, Smith DA, Cornell MJ, Alam I,
Nicholls S, Brown AJ and Quinn J: Role of the Hog1 stress-activated
protein kinase in the global transcriptional response to stress in
the fungal pathoge Candida albicans. Mol Biol Cell. 17:1018–1032.
2006. View Article : Google Scholar :
|
|
89
|
Blankenship JR, Fanning S, Hamaker JJ and
Mitchell AP: An extensive circuitry for cell wall regulation in
Candida albicans. PLoS Pathog. 6:e10007522010. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Deveau A, Piispanen AE, Jackson AA and
Hogan DA: Farnesol induces hydrogen peroxide resistance in Candida
albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway.
Eukaryot Cell. 9:569–577. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Su C, Lu Y and Liu H: Reduced TOR
signaling sustains hyphal development in Candida albicans by
lowering Hog1 basal activity. Mol Biol Cell. 24:385–397. 2013.
View Article : Google Scholar :
|
|
92
|
Nelson DE, Randle SJ and Laman H: Beyond
ubiquitination: The atypical functions of Fbxo7 and other F-box
proteins. Open Biol. 3:1301312013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Herscovics A and Orlean P: Glycoprotein
biosynthesis in yeast. FASEB J. 7:540–550. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Payne SH and Loomis WF: Retention and loss
of amino acid biosynthetic pathways based on analysis of
whole-genome sequences. Eukaryot Cell. 5:272–276. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Goldstein AL and McCusker JH: Development
of Saccharomyces cerevisiae as a model pathogen. A system for the
genetic identification of gene products required for survival in
the mammalian host environment. Genetics. 159:499–513.
2001.PubMed/NCBI
|
|
96
|
Kingsbury JM, Yang Z, Ganous TM, Cox GM
and McCusker JH: Cryptococcus neoformans Ilv2p confers resistance
to sulfometuron methyl and is required for survival at 37 degrees C
and in vivo. Microbiology. 150:1547–1558. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Pascon RC, Ganous TM, Kingsbury JM, Cox GM
and McCusker JH: Cryptococcus neoformans methionine synthase:
Expression analysis and requirement for virulence. Microbiology.
150:3013–3023. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Cynober LA: Plasma amino acid levels with
a note on membrane transport: Characteristics, regulation, and
metabolic significance. Nutrition. 18:761–766. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Sundaram A and Grant CM: A single
inhibitory upstream open reading frame (uORF) is sufficient to
regulate Candida albicans GCN4 translation in response to amino
acid starvation conditions. RNA. 20:559–567. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Jia MH, Larossa RA, Lee JM, Rafalski A,
Derose E, Gonye G and Xue Z: Global expression profiling of yeast
treated with an inhibitor of amino acid biosynthesis, sulfometuron
methyl. Physiol Genomics. 3:83–92. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Mountain HA, Bystrom AS, Larsen JT and
Korch C: Four major transcriptional responses in the
methionine/threonine biosynthetic pathway o. Saccharomyces
cerevisiae Yeast. 7:781–803. 1991. View Article : Google Scholar
|
|
102
|
Ramos C, Delgado MA and Calderon IL:
Inhibition by different amino acids of the aspartate kinase and the
homoserine kinase of the yeas. Saccharomyces cerevisiae FEBS Lett.
278:123–126. 1991. View Article : Google Scholar
|
|
103
|
Vendrell A, Martinez-Pastor M,
González-Novo A, Pascual-Ahuir A, Sinclair DA, Proft M and Posas F:
Sir2 histone deacetylase prevents programmed cell death caused by
sustained activation of the Hog1 stress-activated protein kinase.
EMBO Rep. 12:1062–1068. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Nicholls S, Straffon M, Enjalbert B,
Nantel A, Macaskill S, Whiteway M and Brown AJ: Msn2- and Msn4-like
transcription factors play no obvious roles in the stress responses
of the fungal pathoge Candida albicans. Eukaryot Cell. 3:1111–1123.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ihmels J, Bergmann S, Gerami-Nejad M,
Yanai I, McClellan M, Berman J and Barkai N: Rewiring of the yeast
transcriptional network through the evolution of motif usage.
Science. 309:938–940. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Fan Y, He H, Dong Y and Pan H:
Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1 and relevant
signaling pathways in Candida albicans. Mycopathologia.
176:329–335. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Sharkey LL, McNemar MD, Saporito-Irwin SM,
Sypherd PS and Fonzi WA: HWP1 functions in the morphological
development of Candida albicans downstream of EFG1, TUP1, and RBF1.
J Bacteriol. 181:5273–5279. 1999.PubMed/NCBI
|
|
108
|
Bockmuhl DP and Ernst JF: A potential
phosphorylation site for an A-type kinase in the Efg1 regulator
protein contributes to hyphal morphogenesis of Candida albicans.
Genetics. 157:1523–1530. 2001.PubMed/NCBI
|
|
109
|
Harcus D, Nantel A, Marcil A, Rigby T and
Whiteway M: Transcription profiling of cyclic AMP signaling in
Candida albicans. Mol Biol Cell. 15:4490–4499. 2004. View Article : Google Scholar : PubMed/NCBI
|