Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
December-2018 Volume 42 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2018 Volume 42 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans

  • Authors:
    • Yuan‑Ti Lee
    • Yi‑Ya Fang
    • Yu Wen Sun
    • Hsiao‑Chi Hsu
    • Shan‑Mei Weng
    • Tzu‑Ling Tseng
    • Ting‑Hui Lin
    • Jia‑Ching Shieh
  • View Affiliations / Copyright

    Affiliations: Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C., Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C.
    Copyright: © Lee et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3193-3208
    |
    Published online on: October 12, 2018
       https://doi.org/10.3892/ijmm.2018.3930
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Candida albicans (C. albicans) CDC4 (CaCDC4), encoding the F‑box protein for the substrate specificity of the Skp1‑cullin‑F‑box E3 ubiquitin ligase complex, suppresses the yeast‑to‑filament transition in C. albicans. In our previous study, Thr1 was identified as a CaCdc4‑associated protein using affinity purification. THR1 encodes a homoserine kinase, which is involved in the threonine biosynthesis pathway. The present study generated a strain with repressible CaCDC4 expression and continuous THR1 expression. Colony and cell morphology analyses, as well as immunoblotting, revealed that the Thr1 protein was detectable under conditions in which the expression of CaCDC4 was repressed and that the filaments resulting from the repressed expression of CaCDC4 were suppressed by the constitutive expression of THR1 in C. albicans. Additionally, by using the CaSAT1‑flipper method, the present study produced null mutants of THR1, GCN4, and CaCDC4. The phenotypic consequences were evaluated by growth curves, spotting assays, microscopic analysis, reverse transcription‑polymerase chain reaction and XTT‑based biofilm formation ability. The results revealed that fewer cells lacking THR1 entered the stationary phase but had no apparent morphological alteration. It was observed that the expression of THR1 was upregulated concurrently with GCN4 during nutrient depletion and that cells lacking GCN4 rescued the lethality of cells in the absence of THR1 in conditions accumulating homoserine in the threonine biosynthesis pathway. Of note, it was found that cells with either CaCDC4 or THR1 loss were sensitive to oxidative stress and osmotic stress, with those with THR1 loss being more sensitive. In addition, it was observed that cells with loss of either CaCDC4 or THR1 exhibited the ability to increase biofilm formation, with those lacking CaCDC4 exhibiting a greater extent of enhancement. It was concluded that CaCDC4 is important in the coordination of morphogenesis, nutrient sensing, and the stress response through THR1 in C. albicans.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Ene IV and Bennett RJ: The cryptic sexual strategies of human fungal pathogens. Nat Rev Microbiol. 12:239–251. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Zhang N, Magee BB, Magee PT, Holland BR, Rodrigues E, Holmes AR, Cannon RD and Schmid J: Selective advantages of a parasexual cycle for the Yeas candida albicans. Genetics. 200:1117–1132. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Hickman MA, Zeng G, Forche A, Hirakawa MP, Abbey D, Harrison BD, Wang YM, Su CH, Bennett RJ, Wang Y and Berman J: The ‘obligate diploid’ Candida albicans forms mating-competent haploids. Nature. 494:55–59. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Bennett RJ: The parasexual lifestyle of Candida albicans. Curr Opin Microbiol. 28:10–17. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Fidel PL Jr: History and update on host defense against vaginal candidiasis. Am J Reprod Immunol. 57:2–12. 2007. View Article : Google Scholar

6 

Cassone A: Vulvovaginal Candida albicans infections: Pathogenesis, immunity and vaccine prospects. BJOG. 122:785–794. 2015. View Article : Google Scholar

7 

Patil S, Rao RS, Majumdar B and Anil S: Clinical appearance of oral Candida infection and therapeutic strategies. Front Microbiol. 6:13912015. View Article : Google Scholar

8 

Garcia-Cuesta C, Sarrion-Pérez MG and Bágan JV: Current treatment of oral candidiasis: A literature review. J Clin Exp Dent. 6:e576-e5822014.

9 

Pappas PG, Kauffman CA, Andes D, Benjamin DK Jr, Calandra TF, Edwards JE Jr, Filler SG, Fisher JF, Kullberg BJ, Ostrosky-Zeichner L, et al: Clinical practice guidelines for the management of candidiasis: 2009 update by the infectious diseases society of America. Clin Infect Dis. 48:503–535. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, Reboli AC, Schuster MG, Vazquez JA, Walsh TJ, et al: Clinical practice guideline for the management of candidiasis: 2016 update by the infectious diseases society of America. Clin Infect Dis. 62:e1-e502016. View Article : Google Scholar :

11 

Teoh F and Pavelka N: How chemotherapy increases the risk of systemic candidiasis in cancer patients: Current paradigm and future directions. Pathogens. 5:pii: E62016. View Article : Google Scholar

12 

Sudbery P: Morphogenesis of a human fungal pathogen requires septin phosphorylation. Dev Cell. 13:315–316. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Sudbery P, Gow N and Berman J: The distinct morphogenic states o. Candida albicans Trends Microbiol. 12:317–324. 2004. View Article : Google Scholar

14 

Whiteway M and Bachewich C: Morphogenesis i. Candida albicans Annu Rev Microbiol. 61:529–553. 2007. View Article : Google Scholar

15 

Lu Y, Su C and Liu H: Candida albicans hyphal initiation and elongation. Trends Microbiol. 22:707–714. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Brand A: Hyphal growth in human fungal pathogens and its role in virulence. Int J Microbiol. 2012.517529:2012.

17 

Navarro-Garcia F, Sánchez M, Nombela C and Pla J: Virulence genes in the pathogenic yeas. Candida albicans FEMS Microbiol Rev. 25:245–268. 2001. View Article : Google Scholar

18 

Gow NA, van de Veerdonk FL, Brown AJ and Netea MG: Candida albicans morphogenesis and host defence: Discriminating invasion from colonization. Nat Rev Microbiol. 10:112–122. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Rizzetto L, Weil T and Cavalieri D: Systems level dissection of Candida recognition by dectins: A matter of fungal morphology and site of infection. Pathogens. 4:639–661. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Berman J and Sudbery PE: Candida albicans: A molecular revolution built on lessons from budding yeast. Nat Rev Genet. 3:918–930. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Biswas S, Van Dijck P and Datta A: Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev. 71:348–376. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Martchenko M, Levitin A and Whiteway M: Transcriptional activation domains of the Candida albicans Gcn4p and Gal4p homologs. Eukaryot Cell. 6:291–301. 2007. View Article : Google Scholar :

23 

Berman J: Morphogenesis and cell cycle progression in Candida albicans. Curr Opin Microbiol. 9:595–601. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Perez-Martin J, Bardetti P, Castanheira S, de la Torre A and Tenorio-Gómez M: Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi. Semin Cell Dev Biol. 57:93–99. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Atir-Lande A, Gildor T and Kornitzer D: Role for the SCFCDC4 ubiquitin ligase in Candida albicans morphogenesis. Mol Biol Cell. 16:2772–2785. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Bensen ES, Clemente-Blanco A, Finley KR, Correa-Bordes J and Berman J: The mitotic cyclins Clb2p and Clb4p affect morphogenesis in Candida albicans. Mol Biol Cell. 16:3387–3400. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Bensen ES, Filler SG and Berman J: A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis i. Candida albicans Eukaryot Cell. 1:787–798. 2002. View Article : Google Scholar

28 

Butler DK, All O, Goffena J, Loveless T, Wilson T and Toenjes KA: The GRR1 gene of Candida albicans is involved in the negative control of pseudohyphal morphogenesis. Fungal Genet Biol. 43:573–582. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Li WJ, Wang YM, Zheng XD, Shi QM, Zhang TT, Bai C, Li D, Sang JL and Wang Y: The F-box protein Grr1 regulates the stability of Ccn1, Cln3 and Hof1 and cell morphogenesis i. Candida albicans Mol Microbiol. 62:212–226. 2006. View Article : Google Scholar

30 

Shieh JC, White A, Cheng YC and Rosamond J: Identification and functional characterization of Candida albicans CDC4. J Biomed Sci. 12:913–924. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Agam G, Shamir A, Shaltiel G and Greenberg ML: Myo-inositol-1-phosphate (MIP) synthase: A possible new target for antibipolar drugs. Bipolar Disord. 4(Suppl 1): S15–S20. 2002. View Article : Google Scholar

32 

Hochstrasser M: Protein degradation or regulation: Ub the judge. Cell. 84:813–815. 1996. View Article : Google Scholar : PubMed/NCBI

33 

Chin C, Lai WC, Lee TL, Tseng TL and Shieh JC: Dissection of the Candida albicans Cdc4 protein reveals the involvement of domains in morphogenesis and cell flocculation. J Biomed Sci. 20:972013. View Article : Google Scholar : PubMed/NCBI

34 

Galán-Ladero MA, Blanco-Blanco MT, Hurtado C, Pérez-Giraldo C, Blanco MT and Gómez-Garcia AC: Determination of biofilm production by Candida tropicalis isolated from hospitalized patients and its relation to cellular surface hydrophobicity, plastic adherence and filamentation ability. Yeast. 30:331–339. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Ramage G, VandeWalle K, López-Ribot JL and Wickes BL: The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett. 214:95–100. 2002. View Article : Google Scholar : PubMed/NCBI

36 

Ryan O, Shapiro RS, Kurat CF, Mayhew D, Baryshnikova A, Chin B, Lin ZY, Cox MJ, Vizeacoumar F, Cheung D, et al: Global gene deletion analysis exploring yeast filamentous growth. Science. 337:1353–1356. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Kavanaugh NL, Zhang AQ, Nobile CJ, Johnson AD and Ribbeck K: Mucins suppress virulence traits of Candida albicans. MBio. 5:e019112014. View Article : Google Scholar : PubMed/NCBI

38 

Verstrepen KJ and Klis FM: Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol. 60:5–15. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Verstrepen KJ, Reynolds TB and Fink GR: Origins of variation in the fungal cell surface. Nat Rev Microbiol. 2:533–540. 2004. View Article : Google Scholar : PubMed/NCBI

40 

Tseng TL, Lai WC, Lee TL, Hsu WH, Sun YW, Li WC, Cheng CW and Shieh JC: A role of Candida albicans CDC4 in the negative regulation of biofilm formation. Can J Microbiol. 61:247–255. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Tseng TL, Lai WC, Jian T, Li C, Sun HF, Way TD and Shieh JC: Affinity purification of Candida albicans CaCdc4-associated proteins reveals the presence of novel proteins involved in morphogenesis. Biochem Biophys Res Commun. 395:152–157. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Ramos C and Calderón IL: Biochemical evidence that the Saccharomyces cerevisiae THR4 gene encodes threonine synthetase. FEBS Lett. 351:357–359. 1994. View Article : Google Scholar : PubMed/NCBI

43 

Schultes NP, Ellington AD, Cherry JM and Szostak JW: Saccharomyces cerevisiae homoserine kinase is homologous to prokaryotic homoserine kinases. Gene. 96:177–180. 1990. View Article : Google Scholar : PubMed/NCBI

44 

Kingsbury JM and McCusker JH: Homoserine toxicity in Saccharomyces cerevisiae and Candida albicans homoserine kinase (thr1Delta) mutants. Eukaryot Cell. 9:717–728. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Kingsbury JM and McCusker JH: Fungal homoserine kinase (thr1Delta) mutants are attenuated in virulence and die rapidly upon threonine starvation and serum incubation. Eukaryot Cell. 9:729–737. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Staschke KA, Dey S, Zaborske JM, Palam LR, McClintick JN, Pan T, Edenberg HJ and Wek RC: Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem. 285:16893–16911. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Valenzuela L, Aranda C and González A: TOR modulates GCN4-dependent expression of genes turned on by nitrogen limitation. J Bacteriol. 183:2331–2334. 2001. View Article : Google Scholar : PubMed/NCBI

48 

Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M and Thevelein JM: Nutrient sensing and signaling in the yeas Saccharomyces cerevisiae. FEMS Microbiol Rev. 38:254–299. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Ljungdahl PO and Daignan-Fornier B: Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics. 190:885–929. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Heitman J, Movva NR and Hall MN: Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 253:905–909. 1991. View Article : Google Scholar : PubMed/NCBI

51 

Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR and Hall MN: Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell. 73:585–596. 1993. View Article : Google Scholar : PubMed/NCBI

52 

Cruz MC, Goldstein AL, Blankenship J, Del Poeta M, Perfect JR, McCusker JH, Bennani YL, Cardenas ME and Heitman J: Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Antimicrob Agents Chemother. 45:3162–3170. 2001. View Article : Google Scholar : PubMed/NCBI

53 

Bastidas RJ, Heitman J and Cardenas ME: The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog. 5:e10002942009. View Article : Google Scholar : PubMed/NCBI

54 

Jones EW and Fink GR: Regulation of amino acid and nucleotide biosynthesis in yeast. Cold Spring Harbor monograph series, The Molecular biology of the yeast Saccharomyces: Metabolism and gene expression. Strathern JN, Jones EW and Broach JR: Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: pp. 6801982

55 

Ellenberger TE, Brandl CJ, Struhl K and Harrison SC: The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: Crystal structure of the protein-DNA complex. Cell. 71:1223–1237. 1992. View Article : Google Scholar : PubMed/NCBI

56 

Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG and Marton MJ: Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol. 21:4347–4368. 2001. View Article : Google Scholar : PubMed/NCBI

57 

Hughes JD, Estep PW, Tavazoie S and Church GM: Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol. 296:1205–1214. 2000. View Article : Google Scholar : PubMed/NCBI

58 

Meussdoerffer F and Fink GR: Structure and expression of two aminoacyl-tRNA synthetase genes fro. Saccharomyces cerevisiae J Biol Chem. 258:6293–6299. 1983.

59 

Arndt K and Fink GR: GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5 ‘TGACTC 3’ sequences. Proc Natl Acad Sci USA. 83:8516–8520. 1986. View Article : Google Scholar

60 

Hinnebusch AG: Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev. 52:248–273. 1988.PubMed/NCBI

61 

Albrecht G, Mosch HU, Hoffmann B, Reusser U and Braus GH: Monitoring the Gcn4 protein-mediated response in the yeast Saccharomyces cerevisiae. J Biol Chem. 273:12696–12702. 1998. View Article : Google Scholar : PubMed/NCBI

62 

Lavoie H, Hogues H and Whiteway M: Rearrangements of the transcriptional regulatory networks of metabolic pathways in fungi. Curr Opin Microbiol. 12:655–663. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Tripathi G, Wiltshire C, Macaskill S, Tournu H, Budge S and Brown AJ: Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO J. 21:5448–5456. 2002. View Article : Google Scholar : PubMed/NCBI

64 

Tournu H, Tripathi G, Bertram G, Macaskill S, Mavor A, Walker L, Odds FC, Gow NA and Brown AJ: Global role of the protein kinase Gcn2 in the human pathoge Candida albicans. Eukaryot Cell. 4:1687–1696. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Hinnebusch AG: The general control of amino acid biosynthetic genes in the yeas Saccharomyces cerevisiae. CRC Crit Rev Biochem. 21:277–317. 1986. View Article : Google Scholar

66 

Hinnebusch AG and Natarajan K: Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell. 1:22–32. 2002. View Article : Google Scholar : PubMed/NCBI

67 

Han TL, Cannon RD and Villas-Boas SG: The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol. 48:747–763. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Rawal Y, Qiu H and Hinnebusch AG: Accumulation of a threonine biosynthetic intermediate attenuates general amino acid control by accelerating degradation of Gcn4 via Pho85 and Cdk8. PLoS Genet. 10:e10045342014. View Article : Google Scholar : PubMed/NCBI

69 

Ernst JF: Transcription factors in Candida albicans-environmental control of morphogenesis. Microbiology. 146:1763–1774. 2000. View Article : Google Scholar

70 

Murad AM, d’Enfert C, Gaillardin C, Tournu H, Tekaia F, Talibi D, Marechal D, Marchais V, Cottin J and Brown AJ: Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Mol Microbiol. 42:981–993. 2001. View Article : Google Scholar : PubMed/NCBI

71 

Murad AM, Leng P, Straffon M, Wishart J, Macaskill S, MacCallum D, Schnell N, Talibi D, Marechal D, Tekaia F, et al: NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression i. Candida albicans EMBO J. 20:4742–4752. 2001. View Article : Google Scholar

72 

Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, Bouin AP, Sensen CW, Hogues H, van het Hoog M, Gordon P, et al: Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell. 13:3452–3465. 2002. View Article : Google Scholar : PubMed/NCBI

73 

Lo HJ, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A and Fink GR: Nonfilamentous C. albicans mutants are avirulent. Cell. 90:939–949. 1997. View Article : Google Scholar : PubMed/NCBI

74 

Gillum AM, Tsay EY and Kirsch DR: Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet. 198:179–182. 1984. View Article : Google Scholar

75 

Wilson RB, Davis D and Mitchell AP: Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol. 181:1868–1874. 1999.PubMed/NCBI

76 

Chen Q, Chen X, Wang Q, Zhang F, Lou Z, Zhang Q and Zhou DX: Structural basis of a histone H3 lysine 4 demethylase required for stem elongation in rice. PLoS Genet. 9:e10032392013. View Article : Google Scholar : PubMed/NCBI

77 

Warren G and Sherratt D: Incompatibility and transforming efficiency of ColE1 and related plasmids. Mol Gen Genet. 161:39–47. 1978. View Article : Google Scholar : PubMed/NCBI

78 

Dower WJ, Miller JF and Ragsdale CW: High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16:6127–6145. 1988. View Article : Google Scholar : PubMed/NCBI

79 

Gietz RD: Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol Biol. 1205:1–12. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Becker DM and Lundblad V: Introduction of DNA into yeast cells. Curr Protoc Mol Biol Chapter. 13:Unit13.72001.

81 

Lai WC, Sun HF, Lin PH, Ho Lin HL and Shieh JC: A new rapid and efficient system with dominant selection developed to inactivate and conditionally express genes in Candida albicans. Curr Genet. 62:213–235. 2016. View Article : Google Scholar

82 

Kaneko A, Umeyama T, Hanaoka N, Monk BC, Uehara Y and Niimi M: Tandem affinity purification of the Candida albicans septin protein complex. Yeast. 21:1025–1033. 2004. View Article : Google Scholar : PubMed/NCBI

83 

Reuss O, Vik A, Kolter R and Morschhäuser J: The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene. 341:119–127. 2004. View Article : Google Scholar : PubMed/NCBI

84 

Shieh JC, Cheng YC, Su MC, Moore M, Choo Y and Klug A: Tailor-made zinc-finger transcription factors activate FLO11 gene expression with phenotypic consequences in the yeas Saccharomyces cerevisiae. PLoS One. 2:e7462007. View Article : Google Scholar

85 

Liu H, Köhler J and Fink GR: Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science. 266:1723–1726. 1994. View Article : Google Scholar : PubMed/NCBI

86 

Gildor T, Shemer R, Atir-Lande A and Kornitzer D: Coevolution of cyclin Pcl5 and its substrate Gcn4. Eukaryot Cell. 4:310–318. 2005. View Article : Google Scholar : PubMed/NCBI

87 

Garcia-Sanchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM and d’Enfert C: Candida albicans biofilms: A developmental state associated with specific and stable gene expression patterns. Eukaryot Cell. 3:536–545. 2004. View Article : Google Scholar : PubMed/NCBI

88 

Enjalbert B, Smith DA, Cornell MJ, Alam I, Nicholls S, Brown AJ and Quinn J: Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathoge Candida albicans. Mol Biol Cell. 17:1018–1032. 2006. View Article : Google Scholar :

89 

Blankenship JR, Fanning S, Hamaker JJ and Mitchell AP: An extensive circuitry for cell wall regulation in Candida albicans. PLoS Pathog. 6:e10007522010. View Article : Google Scholar : PubMed/NCBI

90 

Deveau A, Piispanen AE, Jackson AA and Hogan DA: Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. Eukaryot Cell. 9:569–577. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Su C, Lu Y and Liu H: Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity. Mol Biol Cell. 24:385–397. 2013. View Article : Google Scholar :

92 

Nelson DE, Randle SJ and Laman H: Beyond ubiquitination: The atypical functions of Fbxo7 and other F-box proteins. Open Biol. 3:1301312013. View Article : Google Scholar : PubMed/NCBI

93 

Herscovics A and Orlean P: Glycoprotein biosynthesis in yeast. FASEB J. 7:540–550. 1993. View Article : Google Scholar : PubMed/NCBI

94 

Payne SH and Loomis WF: Retention and loss of amino acid biosynthetic pathways based on analysis of whole-genome sequences. Eukaryot Cell. 5:272–276. 2006. View Article : Google Scholar : PubMed/NCBI

95 

Goldstein AL and McCusker JH: Development of Saccharomyces cerevisiae as a model pathogen. A system for the genetic identification of gene products required for survival in the mammalian host environment. Genetics. 159:499–513. 2001.PubMed/NCBI

96 

Kingsbury JM, Yang Z, Ganous TM, Cox GM and McCusker JH: Cryptococcus neoformans Ilv2p confers resistance to sulfometuron methyl and is required for survival at 37 degrees C and in vivo. Microbiology. 150:1547–1558. 2004. View Article : Google Scholar : PubMed/NCBI

97 

Pascon RC, Ganous TM, Kingsbury JM, Cox GM and McCusker JH: Cryptococcus neoformans methionine synthase: Expression analysis and requirement for virulence. Microbiology. 150:3013–3023. 2004. View Article : Google Scholar : PubMed/NCBI

98 

Cynober LA: Plasma amino acid levels with a note on membrane transport: Characteristics, regulation, and metabolic significance. Nutrition. 18:761–766. 2002. View Article : Google Scholar : PubMed/NCBI

99 

Sundaram A and Grant CM: A single inhibitory upstream open reading frame (uORF) is sufficient to regulate Candida albicans GCN4 translation in response to amino acid starvation conditions. RNA. 20:559–567. 2014. View Article : Google Scholar : PubMed/NCBI

100 

Jia MH, Larossa RA, Lee JM, Rafalski A, Derose E, Gonye G and Xue Z: Global expression profiling of yeast treated with an inhibitor of amino acid biosynthesis, sulfometuron methyl. Physiol Genomics. 3:83–92. 2000. View Article : Google Scholar : PubMed/NCBI

101 

Mountain HA, Bystrom AS, Larsen JT and Korch C: Four major transcriptional responses in the methionine/threonine biosynthetic pathway o. Saccharomyces cerevisiae Yeast. 7:781–803. 1991. View Article : Google Scholar

102 

Ramos C, Delgado MA and Calderon IL: Inhibition by different amino acids of the aspartate kinase and the homoserine kinase of the yeas. Saccharomyces cerevisiae FEBS Lett. 278:123–126. 1991. View Article : Google Scholar

103 

Vendrell A, Martinez-Pastor M, González-Novo A, Pascual-Ahuir A, Sinclair DA, Proft M and Posas F: Sir2 histone deacetylase prevents programmed cell death caused by sustained activation of the Hog1 stress-activated protein kinase. EMBO Rep. 12:1062–1068. 2011. View Article : Google Scholar : PubMed/NCBI

104 

Nicholls S, Straffon M, Enjalbert B, Nantel A, Macaskill S, Whiteway M and Brown AJ: Msn2- and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathoge Candida albicans. Eukaryot Cell. 3:1111–1123. 2004. View Article : Google Scholar : PubMed/NCBI

105 

Ihmels J, Bergmann S, Gerami-Nejad M, Yanai I, McClellan M, Berman J and Barkai N: Rewiring of the yeast transcriptional network through the evolution of motif usage. Science. 309:938–940. 2005. View Article : Google Scholar : PubMed/NCBI

106 

Fan Y, He H, Dong Y and Pan H: Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1 and relevant signaling pathways in Candida albicans. Mycopathologia. 176:329–335. 2013. View Article : Google Scholar : PubMed/NCBI

107 

Sharkey LL, McNemar MD, Saporito-Irwin SM, Sypherd PS and Fonzi WA: HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. J Bacteriol. 181:5273–5279. 1999.PubMed/NCBI

108 

Bockmuhl DP and Ernst JF: A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics. 157:1523–1530. 2001.PubMed/NCBI

109 

Harcus D, Nantel A, Marcil A, Rigby T and Whiteway M: Transcription profiling of cyclic AMP signaling in Candida albicans. Mol Biol Cell. 15:4490–4499. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lee YT, Fang YY, Sun YW, Hsu HC, Weng SM, Tseng TL, Lin TH and Shieh JC: THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans. Int J Mol Med 42: 3193-3208, 2018.
APA
Lee, Y., Fang, Y., Sun, Y.W., Hsu, H., Weng, S., Tseng, T. ... Shieh, J. (2018). THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans. International Journal of Molecular Medicine, 42, 3193-3208. https://doi.org/10.3892/ijmm.2018.3930
MLA
Lee, Y., Fang, Y., Sun, Y. W., Hsu, H., Weng, S., Tseng, T., Lin, T., Shieh, J."THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans". International Journal of Molecular Medicine 42.6 (2018): 3193-3208.
Chicago
Lee, Y., Fang, Y., Sun, Y. W., Hsu, H., Weng, S., Tseng, T., Lin, T., Shieh, J."THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans". International Journal of Molecular Medicine 42, no. 6 (2018): 3193-3208. https://doi.org/10.3892/ijmm.2018.3930
Copy and paste a formatted citation
x
Spandidos Publications style
Lee YT, Fang YY, Sun YW, Hsu HC, Weng SM, Tseng TL, Lin TH and Shieh JC: THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans. Int J Mol Med 42: 3193-3208, 2018.
APA
Lee, Y., Fang, Y., Sun, Y.W., Hsu, H., Weng, S., Tseng, T. ... Shieh, J. (2018). THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans. International Journal of Molecular Medicine, 42, 3193-3208. https://doi.org/10.3892/ijmm.2018.3930
MLA
Lee, Y., Fang, Y., Sun, Y. W., Hsu, H., Weng, S., Tseng, T., Lin, T., Shieh, J."THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans". International Journal of Molecular Medicine 42.6 (2018): 3193-3208.
Chicago
Lee, Y., Fang, Y., Sun, Y. W., Hsu, H., Weng, S., Tseng, T., Lin, T., Shieh, J."THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans". International Journal of Molecular Medicine 42, no. 6 (2018): 3193-3208. https://doi.org/10.3892/ijmm.2018.3930
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team