Fibroblast growth factor-23 may serve as a novel biomarker for renal osteodystrophy progression

  • Authors:
    • Si Yan Liu
    • Dong Dong Zhang
    • Yang Fang Wu
    • Huang Huang Luo
    • Guang Mei Jiang
    • Yao Xu
    • Yue Wu
    • Xun Xia
    • Wei Wei
    • Bo Hu
    • Peng Hu
  • View Affiliations

  • Published online on: October 15, 2018     https://doi.org/10.3892/ijmm.2018.3934
  • Pages: 535-546
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The purpose of the present study was to determine whether fibroblast growth factor (FGF)‑23 could serve as a novel biomarker for renal osteodystrophy (ROD) progression. A rat model of ROD was induced by left nephrectomy plus intravenous injection of Adriamycin. Serum FGF‑23 was determined using an enzyme‑linked immunosorbent assay. Serum level and bone expression of FGF‑23 were both significantly elevated in the ROD group at 24 h post‑surgery. Serum FGF‑23 was negatively correlated with calcium, phosphate, 25‑hydroxyvitamin D, conventional bone biomarkers and bone collagen X. More importantly, serum FGF‑23 was significantly associated with abnormalities in bone formation rate, osteoblasts, osteoclasts, trabecular volume thickness and osteoid volume. Therefore, FGF‑23 may serve as a novel biomarker for ROD.

References

1 

Sherrard DJ, Hercz G, Pei Y, Maloney NA, Greenwood C, Manuel A, Saiphoo C, Fenton SS and Segre GV: The spectrum of bone disease in end stage renal failure-an evolving disorder. Kidney Int. 43:436–442. 1993. View Article : Google Scholar : PubMed/NCBI

2 

Afifi A: Renal osteodystrophy in developing countries. Artif Organs. 26:767–769. 2002. View Article : Google Scholar : PubMed/NCBI

3 

Mathias R, Salusky I, Harman W, Paredes A, Emans J, Segre G and Goodman W: Renal bone disease in pediatric and young adult patients on hemodialysis in a children’s hospital. J Am Soc Nephrol. 3:1938–1946. 1993.PubMed/NCBI

4 

Moore C, Yee J, Malluche H, Rao DS, Monier-Faugere MC, Adams E, Daramola-Ogunwuyi O, Fehmi H, Bhat S and Osman-Malik Y: Association between bone histology and markers of bone and mineral metabolism in african-american hemodialysis patients. Clin J Am Soc Nephrol. 4:1484–1493. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Ferreira A, Saraiva M, Behets G, Macedo A, Galvão M, D’Haese P and Drüeke TB: evaluation of bone remodeling in hemodialysis patients: Serum biochemistry, circulating cytokines and bone histomorphometry. J Nephrol. 22:783–793. 2009.PubMed/NCBI

6 

Bervoets AR, Spasovski GB, Behets GJ, Dams G, Polenakovic MH, Zafirovska K, Van Hoof VO, De Broe Me and D’Haese PC: Useful biochemical markers for diagnosing renal osteodystrophy in predialysis end-stage renal failure patients. Am J Kidney Dis. 41:997–1007. 2003. View Article : Google Scholar : PubMed/NCBI

7 

Portale AA, Zhang MY, David V, Martin A, Jiao Y, Gu W and Perwad F: Characterization of FGF23-dependent egr-1 cistrome in the mouse renal proximal tubule. PLoS One. 10:e01429242015. View Article : Google Scholar : PubMed/NCBI

8 

Hu P, Xuan Q, Hu B, Lu L, Wang J and Qin YH: Fibroblast growth factor-23 helps explain the biphasic cardiovascular effects of vitamin D in chronic kidney disease. Int J Biol Sci. 8:663–671. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Bai X, Miao D, Li J, Goltzman D and Karaplis AC: Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. endocrinology. 145:5269–5279. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Wang H, Yoshiko Y, Yamamoto R, Minamizaki T, Kozai K, Tanne K, Aubin JE and Maeda N: Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res. 23:939–948. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Parker VJ, Harjes LM, Dembek K, Young GS, Chew DJ and Toribio RE: Association of Vitamin D metabolites with parathyroid hormone, fibroblast growth factor-23, calcium, and phosphorus in dogs with various stages of chronic kidney disease. J Vet Intern Med. 31:791–798. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, Wahl P, Gutiérrez OM, Steigerwalt S, He J, et al Chronic renal Insufficiency Cohort (Cric) Study Group: Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 305:2432–2439. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Kim J and Shin W: How to do random allocation (randomization). Clin Orthop Surg. 6:103–109. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

15 

Schmittgen TD and Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Hu P, Qin YH, Pei J, Lei FY, Hu B and Lu L: Beneficial effect of all-trans retinoic acid (ATRA) on glomerulosclerosis rats via the downregulation of alpha-smooth muscle actin: A comparative study between ATRA and benazepril. Exp Mol Pathol. 89:51–57. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Okuda S, Oh Y, Tsuruda H, Onoyama K, Fujimi S and Fujishima M: Adriamycin-induced nephropathy as a model of chronic progressive glomerular disease. Kidney Int. 29:502–510. 1986. View Article : Google Scholar : PubMed/NCBI

18 

Van Vleet JF and Ferrans VJ: Clinical and pathologic features of chronic adriamycin toxicosis in rabbits. Am J Vet Res. 41:1462–1469. 1980.PubMed/NCBI

19 

Ishii H, Wada M, Furuya Y, Nagano N, Nemeth EF and Fox J: Daily intermittent decreases in serum levels of parathyroid hormone have an anabolic-like action on the bones of uremic rats with low-turnover bone and osteomalacia. Bone. 26:175–182. 2000. View Article : Google Scholar : PubMed/NCBI

20 

Wu HJ, Yiu WH, Wong DW, Li RX, Chan LY, Leung JC, Zhang Y, Lian Q, Lai KN, Tse HF, et al: Human induced pluripotent stem cell-derived mesenchymal stem cells prevent adriamycin nephropathy in mice. Oncotarget. 8:103640–103656. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Wang Y, Wang YP, Tay YC and Harris DC: Progressive adriamycin nephropathy in mice: Sequence of histologic and immunohistochemical events. Kidney Int. 58:1797–1804. 2000. View Article : Google Scholar : PubMed/NCBI

22 

Brod J and Sirota JH: The renal clearance of endogenous ‘creatinine’ in man. J Clin Invest. 27:645–654. 1948. View Article : Google Scholar : PubMed/NCBI

23 

Cousins C, Mohammadtaghi S, Mubashar M, Strong R, Gunasekera RD, Myers MJ and Peters AM: Clearance kinetics of solutes used to measure glomerular filtration rate. Nucl Med Commun. 20:1047–1054. 1999. View Article : Google Scholar : PubMed/NCBI

24 

Hu P, Huang BY, Xia X, Xuan Q, Hu B and Qin YH: Therapeutic effect of CNP on renal osteodystrophy by antagonizing the FGF-23/MAPK pathway. J Recept Signal Transduct Res. 36:213–219. 2016. View Article : Google Scholar

25 

Wolf M: Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 82:737–747. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Doyon A, Fischer DC, Bayazit AK, Canpolat N, Duzova A, Sözeri B, Bacchetta J, Balat A, Büscher A, Candan C, et al: Markers of bone metabolism are affected by renal function and growth hormone therapy in children with chronic kidney disease. PLoS One. 10:e01134822015. View Article : Google Scholar : PubMed/NCBI

27 

Hasegawa H, Nagano N, Urakawa I, Yamazaki Y, Iijima K, Fujita T, Yamashita T, Fukumoto S and Shimada T: Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int. 78:975–980. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S and Yamashita T: Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 444:770–774. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Mace ML, Gravesen E, Nordholm A, Hofman-Bang J, Secher T, Olgaard K and Lewin E: Kidney fibroblast growth factor 23 does not contribute to elevation of its circulating levels in uremia. Kidney Int. 92:165–178. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Shalhoub V, Ward SC, Sun B, Stevens J, Renshaw L, Hawkins N and Richards WG: Fibroblast growth factor 23 (FGF23) and alpha-klotho stimulate osteoblastic MC3T3e1 cell proliferation and inhibit mineralization. Calcif Tissue Int. 89:140–150. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Schmid TM and Linsenmayer TF: Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol. 100:598–605. 1985. View Article : Google Scholar : PubMed/NCBI

32 

Kwan AP, Cummings CE, Chapman JA and Grant ME: Macromolecular organization of chicken type X collagen in vitro. J Cell Biol. 114:597–604. 1991. View Article : Google Scholar : PubMed/NCBI

33 

Chung KS, Jacenko O, Boyle P, Olsen BR and Nishimura I: Craniofacial abnormalities in mice carrying a dominant interference mutation in type X collagen. Dev Dyn. 208:544–552. 1997. View Article : Google Scholar : PubMed/NCBI

34 

Chan D, Weng YM, Graham HK, Sillence DO and Bateman JF: A nonsense mutation in the carboxyl-terminal domain of type X collagen causes haploinsufficiency in schmid metaphyseal chon-drodysplasia. J Clin Invest. 101:1490–1499. 1998. View Article : Google Scholar : PubMed/NCBI

35 

Wang X, Wang S, Li C, Gao T, Liu Y, Rangiani A, Sun Y, Hao J, George A, Lu Y, et al: Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice. PLoS Genet. 8:e10027082012. View Article : Google Scholar : PubMed/NCBI

36 

Liu ES, Martins JS, Raimann A, Chae BT, Brooks DJ, Jorgetti V, Bouxsein ML and Demay MB: 1,25-Dihydroxyvitamin D alone improves skeletal growth, microarchitecture, and strength in a murine model of XLH, despite enhanced FGF23 expression. J Bone Miner Res. 31:929–939. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Kanda E, Yoshida M and Sasaki S: Applicability of fibroblast growth factor 23 for evaluation of risk of vertebral fracture and chronic kidney disease-mineral bone disease in elderly chronic kidney disease patients. BMC Nephrol. 13:1222012. View Article : Google Scholar : PubMed/NCBI

38 

Riminucci M, Collins MT, Fedarko NS, Cherman N, Corsi A, White KE, Waguespack S, Gupta A, Hannon T, Econs MJ, et al: FGF-23 in fibrous dysplasia of bone and its association to renal phosphate wasting. Clin J Invest. 112:683–692. 2003. View Article : Google Scholar

Related Articles

Journal Cover

January 2019
Volume 43 Issue 1

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, S.Y., Zhang, D.D., Wu, Y.F., Luo, H.H., Jiang, G.M., Xu, Y. ... Hu, P. (2019). Fibroblast growth factor-23 may serve as a novel biomarker for renal osteodystrophy progression. International Journal of Molecular Medicine, 43, 535-546. https://doi.org/10.3892/ijmm.2018.3934
MLA
Liu, S. Y., Zhang, D. D., Wu, Y. F., Luo, H. H., Jiang, G. M., Xu, Y., Wu, Y., Xia, X., Wei, W., Hu, B., Hu, P."Fibroblast growth factor-23 may serve as a novel biomarker for renal osteodystrophy progression". International Journal of Molecular Medicine 43.1 (2019): 535-546.
Chicago
Liu, S. Y., Zhang, D. D., Wu, Y. F., Luo, H. H., Jiang, G. M., Xu, Y., Wu, Y., Xia, X., Wei, W., Hu, B., Hu, P."Fibroblast growth factor-23 may serve as a novel biomarker for renal osteodystrophy progression". International Journal of Molecular Medicine 43, no. 1 (2019): 535-546. https://doi.org/10.3892/ijmm.2018.3934