|
1
|
Rosso T, Bertuccio P, La Vecchia C, Negri
E and Malvezzi M: Cancer mortality trend analysis in Italy,
1980–2010 and predictions for 2015. Tumori. 101:664–675. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Jankun J, Merrick HW and Goldblatt PJ:
Expression and localization of elements of the plasminogen
activation system in benign breast disease and breast cancers. J
Cell Biochem. 53:135–144. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kiziridou AD, Toliou T, Stefanou D and
Agnantis N: u-PA expression in benign, borderline and malignant
ovarian tumors. Anticancer Res. 22:985–990. 2002.PubMed/NCBI
|
|
4
|
Safavi F and Rostami A: Role of serine
proteases in inflammation: Bowman-Birk protease inhibitor (BBI) as
a potential therapy for autoimmune diseases. Exp Mol Pathol.
93:428–433. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Van Hove I, Lemmens K, Van de Velde S,
Verslegers M and Moons L: Matrix metalloproteinase-3 in the central
nervous system: A look on the bright side. J Neurochem.
123:203–216. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
van der Vorst EP, Keijbeck AA, de Winther
MP and Donners MM: A disintegrin and metalloproteases: Molecular
scissors in angiogenesis, inflammation and atherosclerosis.
Atherosclerosis. 224:302–308. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zheng D, Chen H, Bartee MY, Williams J,
Davids JA, Huang E, Moreb J and Lucas A: Virus-derived
anti-inflammatory proteins: Potential therapeutics for cancer.
Trends Mol Med. 18:304–310. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Avgeris M, Mavridis K and Scorilas A:
Kallikrein-related peptidases in prostate, breast, and ovarian
cancers: from pathobiology to clinical relevance. Biol Chem.
393:301–317. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Frank A, David V, Aurelie TR, Florent G,
William H and Philippe B: Regulation of MMPs during melanoma
progression: From genetic to epigenetic. Anticancer Agents Med
Chem. 12:773–782. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Pulz LH and Strefezzi RF: Proteases as
prognostic markers in human and canine cancers. Vet Comp Oncol.
15:669–683. 2017. View Article : Google Scholar
|
|
11
|
Liu WL, Liu D, Cheng K, Liu YJ, Xing S,
Chi PD, Liu XH, Xue N, Lai YZ, Guo L and Zhang G: Evaluating the
diagnostic and prognostic value of circulating cathepsin S in
gastric cancer. Oncotarget. 7:28124–28138. 2016.PubMed/NCBI
|
|
12
|
Pišlar A, Perišić Nanut M and Kos J:
Lysosomal cysteine peptidases-Molecules signaling tumor cell death
and survival. Semin Cancer Biol. 35:168–179. 2015. View Article : Google Scholar
|
|
13
|
Wallin H, Abrahamson M and Ekstrom U:
Cystatin C properties crucial for uptake and inhibition of
intracellular target enzymes. J Biol Chem. 288:17019–17029. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Eatemadi A, Aiyelabegan HT, Negahdari B,
Mazlomi MA, Daraee H, Daraee N, Eatemadi R and Sadroddiny E: Role
of protease and protease inhibitors in cancer pathogenesis and
treatment. Biomed Pharmacother. 86:221–231. 2017. View Article : Google Scholar
|
|
15
|
Hahlbrock A, Goesswein D, Kunzel J, Wünsch
D and Stauber RH: Threonine Aspartase1: An unexplored protease with
relevance for oral oncology? Oral Oncol. 54:e10–e12. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Werner AB, Tait SW, de Vries E, Eldering E
and Borst J: Requirement for aspartate-cleaved bid in apoptosis
signaling by DNA-damaging anti-cancer regimens. J Biol Chem.
279:28771–28780. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Verollet C, Charrière GM, Labrousse A,
Cougoule C, Le Cabec V and Maridonneau-Parini I: Extracellular
proteolysis in macrophage migration: Losing grip for a
breakthrough. Eur J Immunol. 41:2805–2813. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Roycik MD, Fang X and Sang QX: A fresh
prospect of extracellular matrix hydrolytic enzymes and their
substrates. Curr Pharm Des. 15:1295–1308. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Christiaens V and Lijnen HR: Role of the
fibrinolytic and matrix metalloproteinase systems in development of
adipose tissue. Arch Physiol Biochem. 112:254–259. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Riddick AC, Shukla CJ, Pennington CJ, Bass
R, Nuttall RK, Hogan A, Sethia KK, Ellis V, Collins AT, Maitland
NJ, et al: Identification of degradome components associated with
prostate cancer progression by expression analysis of human
prostatic tissues. Br J Cancer. 92:2171–2180. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Alfano D, Franco P, Vocca I, Gambi N, Pisa
V, Mancini A, Caputi M, Carriero MV, Iaccarino I and Stoppelli MP:
The urokinase plasminogen activator and its receptor: Role in cell
growth and apoptosis. Thromb Haemost. 93:205–211. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Carriero MV and Stoppelli MP: The
urokinase-type plasminogen activator and the generation of
inhibitors of urokinase activity and signaling. Curr Pharm Des.
17:1944–1961. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Liu Y, Wang Y, Teng Z, Chen J, Li Y, Chen
Z, Li Z and Zhang Z: Matrix metalloproteinase 9 expression and
survival of patients with osteosarcoma: A meta-analysis. Eur J
Cancer Care (Engl). 26:e123642017. View Article : Google Scholar
|
|
24
|
Hadler-Olsen E, Winberg JO and
Uhlin-Hansen L: Matrix metal-loproteinases in cancer: Their value
as diagnostic and prognostic markers and therapeutic targets.
Tumour Biol. 34:2041–2051. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Woodward JK, Holen I, Coleman RE and
Buttle DJ: The roles of proteolytic enzymes in the development of
tumour-induced bone disease in breast and prostate cancer. Bone.
41:912–927. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Swiercz R, Keck RW, Skrzypczak-Jankun E,
Selman SH and Jankun J: Recombinant PAI-1 inhibits angiogenesis and
reduces size of LNCaP prostate cancer xenografts in SCID mice.
Oncol Rep. 8:463–470. 2001.PubMed/NCBI
|
|
27
|
Rabbani SA and Xing RH: Role of urokinase
(uPA) and its receptor (uPAR) in invasion and metastasis of
hormone-dependent malignancies. Int J Oncol. 12:911–920.
1998.PubMed/NCBI
|
|
28
|
Gupta S, Gupta A, Saini AK, Majumder K,
Sinha K and Chahal A: Prostate cancer: How young is too young. Curr
Urol. 9:212–215. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Johnston TJ, Shaw GL, Lamb AD, Parashar D,
Greenberg D, Xiong T, Edwards AL, Gnanapragasam V, Holding P,
Herbert P, et al: Mortality among men with advanced prostate cancer
excluded from the protect trial. Eur Urol. 71:381–388. 2017.
View Article : Google Scholar :
|
|
30
|
Litwin MS and Tan HJ: The diagnosis and
treatment of prostate cancer: A review. JAMA. 317:2532–2542. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Macedo F, Ladeira K, Pinho F, Saraiva N,
Bonito N, Pinto L and Goncalves F: Bone metastases: An overview.
Oncol Rev. 11:3212017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hildenbrand R, Allgayer H, Marx A and
Stroebel P: Modulators of the urokinase-type plasminogen activation
system for cancer. Exp Opin Investig Drugs. 19:641–652. 2010.
View Article : Google Scholar
|
|
33
|
Honkavuori M, Talvensaari-Mattila A,
Puistola U, Turpeenniemi-Hujanen T and Santala M: High serum TIMP-1
is associated with adverse prognosis in endometrial carcinoma.
Anticancer Res. 28:2715–2719. 2008.PubMed/NCBI
|
|
34
|
Isogai C, Laug WE, Shimada H, Declerck PJ,
Stins MF, Durden DL, Erdreich-Epstein A and DeClerck YA:
Plasminogen activator inhibitor-1 promotes angiogenesis by
stimulating endothelial cell migration toward fibronectin. Cancer
Res. 61:5587–5594. 2001.PubMed/NCBI
|
|
35
|
Jankun J and Skrzypczak-Jankun E: Yin and
yang of the plasminogen activator inhibitor. Pol Arch Med Wewn.
119:410–417. 2009.PubMed/NCBI
|
|
36
|
Kodaman N, Aldrich MC, Sobota R,
Asselbergs FW, Brown NJ, Moore JH and Williams SM: Plasminogen
activator inhibitor-1 and diagnosis of the metabolic syndrome in a
west african population. J Am Heart Assoc. 5:e0038672016.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Forsgren M, Råden B, Israelsson M, Larsson
K and Hedén LO: Molecular cloning and characterization of a
full-length cDNA clone for human plasminogen. FEBS Lett.
213:254–260. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Miyata T, Iwanaga S, Sakata Y and Aoki N:
Plasminogen Tochigi: Inactive plasmin resulting from replacement of
alanine-600 by threonine in the active site. Proc Natl Acad Sci
USA. 79:6132–6136. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Borisov OV, Field M, Ling VT and Harris
RJ: Characterization of oligosaccharides in recombinant tissue
plasminogen activator produced in Chinese hamster ovary cells: Two
decades of analytical technology development. Anal Chem.
81:9744–9754. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hatton MW, Day S, Ross B, Southward SM,
DeReske M and Richardson M: Plasminogen II accumulates five times
faster than plasminogen I at the site of a balloon
de-endothelializing injury in vivo to the rabbit aorta: Comparison
with other hemostatic proteins. J Lab Clin Med. 134:260–266. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Mølgaard L, Ponting CP and Christensen U:
Glycosylation at Asn-289 facilitates the ligand-induced
conformational changes of human Glu-plasminogen. FEBS Lett.
405:363–368. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Abdul S, Leebeek FW, Rijken DC and Uitte
de Willige S: Natural heterogeneity of α2-antiplasmin: Functional
and clinical consequences. Blood. 127:538–545. 2016. View Article : Google Scholar
|
|
43
|
Stefansson S, Lawrence DA and Argraves WS:
Plasminogen activator inhibitor-1 and vitronectin promote the
cellular clearance of thrombin by low density lipoprotein
receptor-related proteins 1–2. J Biol Chem. 271:8215–8220. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ainsworth S, Carter S, Fisher C, Dawson J,
Makrides L, Nuttall T and Mason SL: Ligneous membranitis in
Scottish Terriers is associated with a single nucleotide
polymorphism in the plasminogen (PLG) gene. Anim Genet. 46:707–710.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Silva GB, Bariani C, Mendonça EF and
Batista AC: Clinical manifestations due to severe plasminogen
deficiency: A case report. J Dent Child(Chic). 73:179–182.
2006.
|
|
46
|
Celkan T: Plasminogen deficiency. J Thromb
Thrombolysis. 43:132–138. 2017. View Article : Google Scholar
|
|
47
|
Sivolella S, De Biagi M, Sartori MT,
Berengo M and Bressan E: Destructive membranous periodontal disease
(ligneous gingivitis): A literature review. J Periodontol.
83:465–476. 2012. View Article : Google Scholar
|
|
48
|
Lotan TL, Tefs K, Schuster V, Miller J,
Manaligod J, Filstead A, Yamada SD and Krausz T: Inherited
plasminogen deficiency presenting as ligneous vaginitis: A case
report with molecular correlation and review of the literature. Hum
Pathol. 38:1569–1575. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Gunhan O, Günhan M, Berker E, Gürgan CA
and Yildirim H: Destructive membranous periodontal disease
(Ligneous peri-odontitis). J Periodontol. 70:919–925. 1999.
View Article : Google Scholar
|
|
50
|
Cohen SR: Ligneous conjunctivitis: An
ophthalmic disease with potentially fatal tracheobronchial
obstruction. Laryngeal and tracheobronchial features. Ann Otol
Rhinol Laryngol. 99:509–512. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Foley JH, Kim PY, Mutch NJ and Gils A:
Insights into thrombin activatable fibrinolysis inhibitor function
and regulation. J Thromb Haemost. 11(Suppl 1): S306–S315. 2013.
View Article : Google Scholar
|
|
52
|
Kolev K, Longstaff C and Machovich R:
Fibrinolysis at the fluid-solid interface of thrombi. Curr Med Chem
Cardiovasc Hematol Agents. 3:341–355. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bode W and Renatus M: Tissue-type
plasminogen activator: Variants and crystal/solution structures
demarcate structural determinants of function. Curr Opin Struct
Biol. 7:865–872. 1997. View Article : Google Scholar
|
|
54
|
Marcos-Contreras OA, Martinez de
Lizarrondo S, Bardou I, Orset C, Pruvost M, Anfray A, Frigout Y,
Hommet Y, Lebouvier L, Montaner J, et al: Hyperfibrinolysis
increases blood-brain barrier permeability by a plasmin- and
bradykinin-dependent mechanism. Blood. 128:2423–2434. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chapman MP, Moore EE, Moore HB, Gonzalez
E, Gamboni F, Chandler JG, Mitra S, Ghasabyan A, Chin TL, Sauaia A,
et al: Overwhelming tPA release, not PAI-1 degradation, is
responsible for hyperfibrinolysis in severely injured trauma
patients. J Trauma Acute Care Surg. 80:16–23; discussion 23–15,
2016. PubMed/NCBI
|
|
56
|
Cardenas JC, Matijevic N, Baer LA, Holcomb
JB, Cotton BA and Wade CE: Elevated tissue plasminogen activator
and reduced plasminogen activator inhibitor promote
hyperfibrinolysis in trauma patients. Shock. 41:514–521. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Genét GF, Ostrowski SR, Sørensen AM and
Johansson PI: Detection of tPA-induced hyperfibrinolysis in whole
blood by RapidTEG, KaolinTEG, and functional fibrinogenTEG in
healthy individuals. Clin Appl Thromb Hemost. 18:638–644. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Prabhudesai A, Shetty S, Ghosh K and
Kulkarni B: Dysfunctional fibrinolysis and cerebral venous
thrombosis. Blood Cells Mol Dis. 65:51–55. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Talens S, Malfliet JJ, Rudež G, Spronk HM,
Janssen NA, Meijer P, Kluft C, de Maat MP and Rijken DC: Biological
variation in tPA-induced plasma clot lysis time. Thromb Haemost.
108:640–646. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang J, Li J and Liu Q: Association
between platelet activation and fibrinolysis in acute stroke
patients. Neurosci Lett. 384:305–309. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Simone TM and Higgins PJ: Low molecular
weight antagonists of plasminogen activator inhibitor-1:
Therapeutic potential in cardiovascular disease. Mol Med Ther.
1:1012012. View Article : Google Scholar
|
|
62
|
Higazi AA, Upson RH, Cohen RL, Manuppello
J, Bognacki J, Henkin J, McCrae KR, Kounnas MZ, Strickland DK,
Preissner KT, et al: Interaction of single-chain urokinase with its
receptor induces the appearance and disappearance of binding
epitopes within the resultant complex for other cell surface
proteins. Blood. 88:542–551. 1996.PubMed/NCBI
|
|
63
|
Finckh U, van Hadeln K, Müller-Thomsen T,
Alberici A, Binetti G, Hock C, Nitsch RM, Stoppe G, Reiss J and Gal
A: Association of late-onset Alzheimer disease with a genotype of
PLAU, the gene encoding urokinase-type plasminogen activator on
chromosome 10q22.2. Neurogenetics. 4:213–217. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Goto Y, Hagikura S, Katsuda N and Hamajima
N: A C to T polymorphism of urokinase plasminogen activator (P141L)
is associated with Helicobacter pylori infection. Asian Pac J
Cancer Prev. 12:803–806. 2011.PubMed/NCBI
|
|
65
|
Kriegbaum MC, Persson M, Haldager L,
Alpízar-Alpízar W, Jacobsen B, Gårdsvoll H, Kjær A and Ploug M:
Rational targeting of the urokinase receptor (uPAR): Development of
antagonists and non-invasive imaging probes. Curr Drug Targets.
12:1711–1728. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Romer J, Nielsen BS and Ploug M: The
urokinase receptor as a potential target in cancer therapy. Curr
Pharm Des. 10:2359–2376. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ploug M, Gardsvoll H, Jorgensen TJ,
Lønborg Hansen L and Dano K: Structural analysis of the interaction
between urokinase-type plasminogen activator and its receptor: A
potential target for anti-invasive cancer therapy. Biochem Soc
Trans. 30:177–183. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Manetti M, Allanore Y, Revillod L, Fatini
C, Guiducci S, Cuomo G, Bonino C, Riccieri V, Bazzichi L, Liakouli
V, et al: A genetic variation located in the promoter region of the
UPAR (CD87) gene is associated with the vascular complications of
systemic sclerosis. Arthritis Rheum. 63:247–256. 2011. View Article : Google Scholar
|
|
69
|
Shih CM, Kuo WH, Lin CW, Chen W, Cheng WE,
Chen SC and Lee YL: Association of polymorphisms in the genes of
the urokinase plasminogen activation system with susceptibility to
and severity of non-small cell lung cancer. Clin Chim Acta.
412:194–198. 2011. View Article : Google Scholar
|
|
70
|
Flevaris P and Vaughan D: The role of
plasminogen activator inhibitor type-1 in fibrosis. Semin Thromb
Hemost. 43:169–177. 2017. View Article : Google Scholar
|
|
71
|
Jankun J, Yang J, Zheng H, Han FQ,
Al-Senaidy A and Skrzypczak-Jankun E: Remarkable extension of PAI-1
half-life surprisingly brings no changes to its structure. Int J
Mol Med. 29:61–64. 2012.
|
|
72
|
Rabieian R, Boshtam M, Zareei M, Kouhpayeh
S, Masoudifar A and Mirzaei H: Plasminogen activator inhibitor
type-1 as a regulator of fibrosis. J Cell Biochem. 119:17–27. 2018.
View Article : Google Scholar
|
|
73
|
Piao L, Jung I, Huh JY, Miyata T and Ha H:
A novel plasminogen activator inhibitor-1 inhibitor, TM5441,
protects against high-fat diet-induced obesity and adipocyte injury
in mice. Br J Pharmacol. 173:2622–2632. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Srikanthan K, Feyh A, Visweshwar H,
Shapiro JI and Sodhi K: Systematic review of metabolic syndrome
biomarkers: A panel for early detection, management, and risk
stratification in the west virginian population. Int J Med Sci.
13:25–38. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Magdoud K, Herbepin VG, Touraine R, Almawi
WY and Mahjoub T: Plasminogen activator inhibitor 1 4G/5G and
-844G/A variants in idiopathic recurrent pregnancy loss. Am J
Reprod Immunol. 70:246–252. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Honig A, Engel JB, Segerer SE, Kranke P,
Häusler S and Wurfel W: Pregnancy-triggered antiphospholipid
syndrome in a patient with multiple late miscarriages. Hum Reprod.
25:2753–2754. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Jankun J and Skrzypczak-Jankun E: Bleeding
diathesis is associated with an A15T heterozygous mutation in exon
2 of the plasminogen activator inhibitor type 1. Exp Ther Med.
1:575–577. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Mehta R and Shapiro AD: Plasminogen
activator inhibitor type 1 deficiency. Haemophilia. 14:1255–1260.
2008. View Article : Google Scholar
|
|
79
|
Schleef RR, Higgins DL, Pillemer E and
Levitt LJ: Bleeding diathesis due to decreased functional activity
of type 1 plasminogen activator inhibitor. J Clin Invest.
83:1747–1752. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Heiman M, Gupta S and Shapiro AD: The
obstetric, gynaecological and fertility implications of homozygous
PAI-1 deficiency: Single-centre experience. Haemophilia.
20:407–412. 2014. View Article : Google Scholar
|
|
81
|
Lin S, Huiya Z, Bo L, Wei W and Yongmei G:
The plasminogen activator inhibitor-1 (PAI-1) gene -844 A/G and
-675 4G/5G promoter polymorphism significantly influences plasma
PAI-1 levels in women with polycystic ovary syndrome. Endocrine.
36:503–509. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Fay WP, Parker AC, Condrey LR and Shapiro
AD: Human plasminogen activator inhibitor-1 (PAI-1) deficiency:
Characterization of a large kindred with a null mutation in the
PAI-1 gene. Blood. 90:204–208. 1997.PubMed/NCBI
|
|
83
|
Jankun J and Skrzypczak-Jankun E: Val17Ile
single nucleotide polymorphisms similarly as Ala15Thr could be
related to the lower secretory dynamics of PAI-1 secretion:
Theoretical evidence. Curr Mol Med. 11:512–516. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Miao C, Liang C, Zhu J, Xu A, Zhao K, Hua
Y, Zhang J, Chen W, Suo C, Zhang C, et al: Prognostic role of
matrix metal-loproteinases in bladder carcinoma: A systematic
review and meta-analysis. Oncotarget. 8:32309–32321.
2017.PubMed/NCBI
|
|
85
|
Turunen SP, Tatti-Bugaeva O and Lehti K:
Membrane-type matrix metalloproteases as diverse effectors of
cancer progression. Biochim Biophys Acta. 1864.1974–1988. 2017.
|
|
86
|
Van Lint P and Libert C: Chemokine and
cytokine processing by matrix metalloproteinases and its effect on
leukocyte migration and inflammation. J Leuk Biol. 82:1375–1381.
2007. View Article : Google Scholar
|
|
87
|
Verma RP and Hansch C: Matrix
metalloproteinases (MMPs): Chemical-biological functions and
(Q)SARs. Bioorg Med Chem. 15:2223–2268. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Swarnakar S, Paul S, Singh LP and Reiter
RJ: Matrix metal-loproteinases in health and disease: Regulation by
melatonin. J Pineal Res. 50:8–20. 2011. View Article : Google Scholar
|
|
89
|
Zitka O, Kukacka J, Krizkova S, Huska D,
Adam V, Masarik M, Prusa R and Kizek R: Matrix metalloproteinases.
Curr Med Chem. 17:3751–3768. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Fisher KE, Fei Q, Laird ER, Stock JL,
Allen MR, Sahagan BG and Strick CA: Engineering autoactivating
forms of matrix metalloproteinase-9 and expression of the active
enzyme in cultured cells and transgenic mouse brain. Biochemistry.
41:8289–8297. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Marchenko GN, Ratnikov BI, Rozanov DV,
Godzik A, Deryugina EI and Strongin AY: Characterization of matrix
metalloproteinase-26, a novel metalloproteinase widely expressed in
cancer cells of epithelial origin. Biochem J. 356:705–718. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Merchant N, Nagaraju GP, Rajitha B,
Lammata S, Jella KK, Buchwald ZS, Lakka SS and Ali AN: Matrix
metalloproteinases: Their functional role in lung cancer.
Carcinogenesis. 38:766–780. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Morgunova E, Tuuttila A, Bergmann U,
Isupov M, Lindqvist Y, Schneider G and Tryggvason K: Structure of
human pro-matrix metalloproteinase-2: Activation mechanism
revealed. Science. 284:1667–1670. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Su SC, Hsieh MJ, Yang WE, Chung WH, Reiter
RJ and Yang SF: Cancer metastasis: Mechanisms of inhibition by
melatonin. J Pineal Research. 62:2017. View Article : Google Scholar
|
|
95
|
Webb AH, Gao BT, Goldsmith ZK, Irvine AS,
Saleh N, Lee RP, Lendermon JB, Bheemreddy R, Zhang Q, Brennan RC,
et al: Inhibition of MMP-2 and MMP-9 decreases cellular migration,
and angiogenesis in in vitro models of retinoblastoma. BMC Cancer.
17:4342017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Eiro N, Fernandez-Gomez J, Sacristan R,
Sacristán R, Fernandez-Garcia B, Lobo B, Gonzalez-Suarez J, Quintas
A, Escaf S and Vizoso FJ: Stromal factors involved in human
prostate cancer development, progression and castration resistance.
J Cancer Res Clin Oncol. 143:351–359. 2017. View Article : Google Scholar
|
|
97
|
Gialeli C, Theocharis AD and Karamanos NK:
Roles of matrix metalloproteinases in cancer progression and their
pharmacological targeting. FEBS J. 278:16–27. 2011. View Article : Google Scholar
|
|
98
|
Grieu F, Li WQ and Iacopetta B: Genetic
polymorphisms in the MMP-2 and MMP-9 genes and breast cancer
phenotype. Breast Cancer Res Treat. 88:197–204. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Singh R, Srivastava P, Srivastava A and
Mittal RD: Matrix metalloproteinase (MMP-9 and MMP-2) gene
polymorphisms influence allograft survival in renal transplant
recipients. Nephrol Dial Transplant. 25:3393–3401. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ghaffarpour S, Ghazanfari T, Kabudanian
Ardestani S, Pourfarzam S, Fallahi F, Shams J, Mirsharif ES,
Mohseni Majd AM and Faghihzadeh S: Correlation between MMP-9 and
MMP-9/ TIMPs complex with pulmonary function in sulfur mustard
exposed civilians: Sardasht-Iran cohort study. Arch Iran Med.
20:74–82. 2017.PubMed/NCBI
|
|
101
|
Ricci S, Bruzzese D and DI Carlo A:
Evaluation of MMP-2, MMP-9, TIMP-1, TIMP-2, NGAL and MMP-9/NGAL
complex in urine and sera from patients with bladder cancer. Oncol
Lett. 10:2527–2532. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Hinterseher I, Krex D, Kuhlisch E, Schmidt
KG, Pilarsky C, Schneiders W, Saeger HD and Bergert H: Tissue
inhibitor of metalloproteinase-1 (TIMP-1) polymorphisms in a
Caucasian population with abdominal aortic aneurysm. World J Surg.
31:2248–2254. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Guo Xu P, Jin W, Wang T, Fan J, Hao D,
Jing Z, Han S, Du C, Jiang JD, et al: TIMP-2 SNPs rs7342880 and
rs4789936 are linked to risk of knee osteoarthritis in the Chinese
Han Population. Oncotarget. 8:1166–1176. 2017.
|
|
104
|
Birbrair A, Zhang T, Wang ZM, Messi ML,
Olson JD, Mintz A and Delbono O: Type-2 pericytes participate in
normal and tumoral angiogenesis. Am J Physiol Cell Physiol.
307:C25–C38. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Lah TT, Durán Alonso MB and Van Noorden
CJ: Antiprotease therapy in cancer: Hot or not. Exp Opin Biol Ther.
6:257–279. 2006. View Article : Google Scholar
|
|
106
|
Wong MS, Sidik SM, Mahmud R and Stanslas
J: Molecular targets in the discovery and development of novel
antimetastatic agents: Current progress and future prospects. Clin
Exp Pharmacol Physiol. 40:307–319. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Jankun J, Maher VM and McCormick JJ:
Malignant transformation of human fibroblasts correlates with
increased activity of receptor-bound plasminogen activator. Cancer
Res. 51:1221–1226. 1991.PubMed/NCBI
|
|
108
|
Jankun J, Selman SH, Aniola J and
Skrzypczak-Jankun E: Nutraceutical inhibitors of urokinase:
Potential applications in prostate cancer prevention and treatment.
Oncol Rep. 16:341–346. 2006.PubMed/NCBI
|
|
109
|
Kamat AM and Lamm DL: Chemoprevention of
bladder cancer. Urol Clin North Am. 29:157–168. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Swiercz R, Skrzypczak-Jankun E, Merrell
MM, Selman SH and Jankun J: Angiostatic activity of synthetic
inhibitors of urokinase type plasminogen activator. Oncol Rep.
6:523–526. 1999.PubMed/NCBI
|
|
111
|
Jankun J, Selman SH, Swiercz R and
Skrzypczak-Jankun E: Why drinking green tea could prevent cancer.
Nature. 387:5611997. View
Article : Google Scholar : PubMed/NCBI
|
|
112
|
Kemberling JK, Hampton JA, Keck RW, Gomez
MA and Selman SH: Inhibition of bladder tumor growth by the green
tea derivative epigallocatechin-3-gallate. J Urol. 170:773–776.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Jankun J, Keck RW and Selman SH:
Epigallocatechin-3-gallate prevents tumor cell implantation/growth
in an experimental rat bladder tumor model. Int J Oncol.
44:147–152. 2014. View Article : Google Scholar
|
|
114
|
Wendt MD, Geyer A, McClellan WJ, Rockway
TW, Weitzberg M, Zhao X, Mantei R, Stewart K, Nienaber V,
Klinghofer V and Giranda VL: Interaction with the S1 beta-pocket of
urokinase: 8-heterocycle substituted and 6,8-disubstituted
2-naphthamidine urokinase inhibitors. Bioorg Med Chem Lett.
14:3063–3068. 2004.PubMed/NCBI
|
|
115
|
Bruncko M, McClellan WJ, Wendt MD, Sauer
DR, Geyer A, Dalton CR, Kaminski MA, Weitzberg M, Gong J, Dellaria
JF, et al: Naphthamidine urokinase plasminogen activator inhibitors
with improved pharmacokinetic properties. Bioorg Med Chem Lett.
15:93–98. 2005. View Article : Google Scholar
|
|
116
|
Katz BA, Sprengeler PA, Luong C, Verner E,
Elrod K, Kirtley M, Janc J, Spencer JR, Breitenbucher JG, Hui H, et
al: Engineering inhibitors highly selective for the S1 sites of
Ser190 trypsin-like serine protease drug targets. Chem Biol.
8:1107–1121. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Schmitt M, Harbeck N, Brünner N, Jänicke
F, Meisner C, Mühlenweg B, Jansen H, Dorn J, Nitz U, Kantelhardt EJ
and Thomssen C: Cancer therapy trials employing level-of-evidence-1
disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Exp
Rev Mol Diagn. 11:617–634. 2011. View Article : Google Scholar
|
|
118
|
Zengel P, Ramp D, Mack B, Zahler S,
Berghaus A, Muehlenweg B, Gires O and Schmitz S: Multimodal therapy
for synergic inhibition of tumour cell invasion and tumour-induced
angiogenesis. BMC Cancer. 10:922010. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Setyono-Han B, Stürzebecher J, Schmalix
WA, Muehlenweg B, Sieuwerts AM, Timmermans M, Magdolen V, Schmitt
M, Klijn JG and Foekens JA: Suppression of rat breast cancer
metastasis and reduction of primary tumour growth by the small
synthetic urokinase inhibitor WX-UK1. Thromb Haemost. 93:779–786.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Ertongur S, Lang S, Mack B, Wosikowski K,
Muehlenweg B and Gires O: Inhibition of the invasion capacity of
carcinoma cells by WX-UK1, a novel synthetic inhibitor of the
urokinase-type plasminogen activator system. Int J Cancer.
110:815–824. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Ossowski L: Invasion of connective tissue
by human carcinoma cell lines: Requirement for urokinase, urokinase
receptor, and interstitial collagenase. Cancer Res. 52:6754–6760.
1992.PubMed/NCBI
|
|
122
|
Ossowski L: In vivo invasion of modified
chorioallantoic membrane by tumor cells: The role of cell
surface-bound urokinase. J Cell Biol. 107:2437–2445. 1988.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Jankun J, Keck RW, Skrzypczak-Jankun E and
Swiercz R: Inhibitors of urokinase reduce size of prostate cancer
xenografts in severe combined immunodeficient mice. Cancer Res.
57:559–563. 1997.PubMed/NCBI
|
|
124
|
Berkenpas MB, Lawrence DA and Ginsburg D:
Molecular evolution of plasminogen activator inhibitor-1 functional
stability. EMBO J. 14:2969–2977. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Chorostowska-Wynimko J, Swiercz R,
Skrzypczak-Jankun E, Wojtowicz A, Selman SH and Jankun J: A novel
form of the plasminogen activator inhibitor created by cysteine
mutations extends its half-life: Relevance to cancer and
angiogenesis. Mol Cancer Ther. 2:19–28. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Tucker HM, Mottonen J, Goldsmith EJ and
Gerard RD: Engineering of plasminogen activator inhibitor-1 to
reduce the rate of latency transition. Nat Struct Biol. 2:442–445.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Binder BR and Mihaly J: The plasminogen
activator inhibitor ‘paradox’ in cancer. Immunol Lett. 118:116–124.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Beaulieu LM, Whitley BR, Wiesner TF,
Rehault SM, Palmieri D, Elkahloun AG and Church FC: Breast cancer
and metabolic syndrome linked through the plasminogen activator
inhibitor-1 cycle. Bioessays. 29:1029–1038. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Duffy MJ: Urokinase plasminogen activator
and its inhibitor, PAI-1, as prognostic markers in breast cancer:
From pilot to level 1 evidence studies. Clin Chem. 48:1194–1197.
2002.PubMed/NCBI
|
|
130
|
Chorostowska-Wynimko J, Swiercz R,
Skrzypczak-Jankun E, Selman SH and Jankun J: Plasminogen activator
inhibitor type-1 mutants regulate angiogenesis of human umbilical
and lung vascular endothelial cells. Oncol Rep. 12:1155–1162.
2004.PubMed/NCBI
|
|
131
|
Masset A, Maillard C, Sounni NE, Jacobs N,
Bruyére F, Delvenne P, Tacke M, Reinheckel T, Foidart JM, Coussens
LM and Noël A: Unimpeded skin carcinogenesis in K14–HPV16
transgenic mice deficient for plasminogen activator inhibitor. Int
J Cancer. 128:283–293. 2011. View Article : Google Scholar
|
|
132
|
Mazar AP, Henkin J and Goldfarb RH: The
urokinase plasminogen activator system in cancer: Implications for
tumor angiogenesis and metastasis. Angiogenesis. 3:15–32. 1999.
View Article : Google Scholar
|
|
133
|
Wyganowska-Świątkowska M and Jankun J:
Plasminogen activation system in oral cancer: Relevance in
prognosis and therapy (Review). Int J Oncol. 47:16–24. 2015.
View Article : Google Scholar
|
|
134
|
Chen SC, Henry DO, Hicks DG, Reczek PR and
Wong MK: Intravesical administration of plasminogen activator
inhibitor type-1 inhibits in vivo bladder tumor invasion and
progression. J Urol. 181:336–342. 2009. View Article : Google Scholar
|
|
135
|
Yamakawa S, Asai T, Uchida T, Matsukawa M,
Akizawa T and Oku N: (-)-Epigallocatechin gallate inhibits
membrane-type 1 matrix metalloproteinase, MT1-MMP, and tumor
angiogenesis. Cancer Lett. 210:47–55. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Stefansson S, Petitclerc E, Wong MK,
McMahon GA, Brooks PC and Lawrence DA: Inhibition of angiogenesis
in vivo by plasminogen activator inhibitor-1. J Biol Chem.
276:8135–8141. 2001. View Article : Google Scholar
|
|
137
|
Su SC, Lin CW, Yang WE, Fan WL and Yang
SF: The urokinase-type plasminogen activator (uPA) system as a
biomarker and therapeutic target in human malignancies. Exp Opin
Ther Targets. 20:551–566. 2016. View Article : Google Scholar
|
|
138
|
Ulisse S, Baldini E, Sorrenti S and
D’Armiento M: The urokinase plasminogen activator system: A target
for anti-cancer therapy. Curr Cancer Drug Targets. 9:32–71. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Iwamoto J, Mizokami Y, Takahashi K,
Nakajima K, Ohtsubo T, Miura S, Narasaka T, Takeyama H, Omata T,
Shimokobe K, et al: Expressions of urokinase-type plasminogen
activator, its receptor and plasminogen activator inhibitor-1 in
gastric cancer cells and effects of Helicobacter pylori. Scand J
Gastroenterol. 40:783–793. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Haj-Yehia A, Nassar T, Sachais BS, Kuo A,
Bdeir K, Al-Mehdi AB, Mazar A, Cines DB and Higazi AA:
Urokinase-derived peptides regulate vascular smooth muscle
contraction in vitro and in vivo. FASEB J. 14:1411–1422. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Guo Y, Higazi AA, Arakelian A, Sachais BS,
Cines D, Goldfarb RH, Jones TR, Kwaan H, Mazar AP and Rabbani SA: A
peptide derived from the nonreceptor binding region of urokinase
plasminogen activator (uPA) inhibits tumor progression and
angiogenesis and induces tumor cell death in vivo. FASEB J.
14:1400–1410. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Berkenblit A, Matulonis UA, Kroener JF,
Dezube BJ, Lam GN, Cuasay LC, Brünner N, Jones TR, Silverman MH and
Gold MA: A6, a urokinase plasminogen activator (uPA)-derived
peptide in patients with advanced gynecologic cancer: A phase I
trial. Gynecol Oncol. 99:50–57. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Mani T, Wang F, Knabe WE, Sinn AL, Khanna
M, Jo I, Sandusky GE, Sledge GW Jr, Jones DR, Khanna R, et al:
Small-molecule inhibition of the uPAR.uPA interaction: Synthesis,
biochemical, cellular, in vivo pharmacokinetics and efficacy
studies in breast cancer metastasis. Bioorg Med Chem. 21:2145–2155.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Wang F, Eric Knabe W, Li L, Jo I, Mani T,
Roehm H, Oh K, Li J, Khanna M and Meroueh SO: Design, synthesis,
biochemical studies, cellular characterization, and structure-based
computational studies of small molecules targeting the urokinase
receptor. Bioorg Med Chem. 20:4760–4773. 2012. View Article : Google Scholar :
|
|
145
|
Jian Q, Yang Z, Shu J, Liu X, Zhang J and
Li Z: Lectin BS-I inhibits cell migration and invasion via
AKT/GSK-3β/β-catenin pathway in hepatocellular carcinoma. J Cell
Mol Med. 22:315–329. 2018. View Article : Google Scholar
|
|
146
|
Li H and Chen C: Quercetin has
antimetastatic effects on gastric cancer cells via the interruption
of uPA/uPAR function by modulating NF-κb, PKC-δ, ERK1/2, and AMPKα.
Integr Cancer Ther. 17:511–523. 2018. View Article : Google Scholar
|
|
147
|
Cathcart J, Pulkoski-Gross A and Cao J:
Targeting matrix metalloproteinases in cancer: Bringing new life to
old ideas. Genes Dis. 2:26–34. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Rothenberg ML, Nelson AR and Hande KR: New
drugs on the horizon: Matrix metalloproteinase inhibitors.
Oncologist. 3:271–274. 1998.
|
|
149
|
Rothenberg ML, Nelson AR and Hande KR: New
drugs on the horizon: Matrix metalloproteinase inhibitors. Stem
cells. 17:237–240. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Coussens LM, Fingleton B and Matrisian LM:
Matrix metal-loproteinase inhibitors and cancer: Trials and
tribulations. Science. 295:2387–2392. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Martens E, Leyssen A, Van Aelst I, Fiten
P, Piccard H, Hu J, Descamps FJ, Van den Steen PE, Proost P, Van
Damme J, et al: A monoclonal antibody inhibits gelatinase B/MMP-9
by selective binding to part of the catalytic domain and not to the
fibronectin or zinc binding domains. Biochim Biophys Acta.
1770:178–186. 2007. View Article : Google Scholar
|
|
152
|
Kaimal R, Aljumaily R, Tressel SL, Pradhan
RV, Covic L, Kuliopulos A, Zarwan C, Kim YB, Sharifi S and Agarwal
A: Selective blockade of matrix metalloprotease-14 with a
monoclonal antibody abrogates invasion, angiogenesis, and tumor
growth in ovarian cancer. Cancer Res. 73:2457–2467. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Shay G, Lynch CC and Fingleton B: Moving
targets: Emerging roles for MMPs in cancer progression and
metastasis. Matrix Biol. 44–46:200–206. 2015. View Article : Google Scholar
|