Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2019 Volume 43 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2019 Volume 43 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review)

  • Authors:
    • Marzena Wyganowska‑Świątkowska
    • Mateusz Tarnowski
    • Daniel Murtagh
    • Ewa Skrzypczak‑Jankun
    • Jerzy Jankun
  • View Affiliations / Copyright

    Affiliations: Department of Dental Surgery and Periodontology, Poznań University of Medical Sciences, 60‑820 Poznań, Poland, Dagmed Medical Center, 60‑681 Poznań, Poland, Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA
    Copyright: © Wyganowska‑Świątkowska et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 15-25
    |
    Published online on: November 7, 2018
       https://doi.org/10.3892/ijmm.2018.3983
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The mortality rates of cancer patients decreased by ~1.5% per year between 2001 and 2015, although the decrease depends on patient sex, ethnic group and type of malignancy. Cancer remains a significant global health problem, requiring a search for novel treatments. The most common property of malignant tumors is their capacity to invade adjacent tissue and to metastasize, and this cancer aggressiveness is contingent on overexpression of proteolytic enzymes. The components of the plasminogen activation system (PAS) and the metalloproteinase family [mainly matrix metalloproteinases (MMPs)] are overexpressed in malignant tumors, driving the local invasion, metastasis and angiogenesis. This is the case for numerous types of cancer, such as breast, colon, prostate and oral carcinoma, among others. Present chemotherapeutics agents typically attack all dividing cells; however, for future therapeutic agents to be clinically successful, they need to be highly selective for a specific protein(s) and act on the cancerous tissues without adverse systemic effects. Inhibition of proteolysis in cancerous tissue has the ability to attenuate tumor invasion, angiogenesis and migration. For that purpose, inhibiting both PAS and MMPs may be another approach, since the two groups of enzymes are overexpressed in cancer. In the present review, the roles and new findings on PAS and MMP families in cancer formation, growth and possible treatments are discussed.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Rosso T, Bertuccio P, La Vecchia C, Negri E and Malvezzi M: Cancer mortality trend analysis in Italy, 1980–2010 and predictions for 2015. Tumori. 101:664–675. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Jankun J, Merrick HW and Goldblatt PJ: Expression and localization of elements of the plasminogen activation system in benign breast disease and breast cancers. J Cell Biochem. 53:135–144. 1993. View Article : Google Scholar : PubMed/NCBI

3 

Kiziridou AD, Toliou T, Stefanou D and Agnantis N: u-PA expression in benign, borderline and malignant ovarian tumors. Anticancer Res. 22:985–990. 2002.PubMed/NCBI

4 

Safavi F and Rostami A: Role of serine proteases in inflammation: Bowman-Birk protease inhibitor (BBI) as a potential therapy for autoimmune diseases. Exp Mol Pathol. 93:428–433. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Van Hove I, Lemmens K, Van de Velde S, Verslegers M and Moons L: Matrix metalloproteinase-3 in the central nervous system: A look on the bright side. J Neurochem. 123:203–216. 2012. View Article : Google Scholar : PubMed/NCBI

6 

van der Vorst EP, Keijbeck AA, de Winther MP and Donners MM: A disintegrin and metalloproteases: Molecular scissors in angiogenesis, inflammation and atherosclerosis. Atherosclerosis. 224:302–308. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Zheng D, Chen H, Bartee MY, Williams J, Davids JA, Huang E, Moreb J and Lucas A: Virus-derived anti-inflammatory proteins: Potential therapeutics for cancer. Trends Mol Med. 18:304–310. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Avgeris M, Mavridis K and Scorilas A: Kallikrein-related peptidases in prostate, breast, and ovarian cancers: from pathobiology to clinical relevance. Biol Chem. 393:301–317. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Frank A, David V, Aurelie TR, Florent G, William H and Philippe B: Regulation of MMPs during melanoma progression: From genetic to epigenetic. Anticancer Agents Med Chem. 12:773–782. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Pulz LH and Strefezzi RF: Proteases as prognostic markers in human and canine cancers. Vet Comp Oncol. 15:669–683. 2017. View Article : Google Scholar

11 

Liu WL, Liu D, Cheng K, Liu YJ, Xing S, Chi PD, Liu XH, Xue N, Lai YZ, Guo L and Zhang G: Evaluating the diagnostic and prognostic value of circulating cathepsin S in gastric cancer. Oncotarget. 7:28124–28138. 2016.PubMed/NCBI

12 

Pišlar A, Perišić Nanut M and Kos J: Lysosomal cysteine peptidases-Molecules signaling tumor cell death and survival. Semin Cancer Biol. 35:168–179. 2015. View Article : Google Scholar

13 

Wallin H, Abrahamson M and Ekstrom U: Cystatin C properties crucial for uptake and inhibition of intracellular target enzymes. J Biol Chem. 288:17019–17029. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Eatemadi A, Aiyelabegan HT, Negahdari B, Mazlomi MA, Daraee H, Daraee N, Eatemadi R and Sadroddiny E: Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed Pharmacother. 86:221–231. 2017. View Article : Google Scholar

15 

Hahlbrock A, Goesswein D, Kunzel J, Wünsch D and Stauber RH: Threonine Aspartase1: An unexplored protease with relevance for oral oncology? Oral Oncol. 54:e10–e12. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Werner AB, Tait SW, de Vries E, Eldering E and Borst J: Requirement for aspartate-cleaved bid in apoptosis signaling by DNA-damaging anti-cancer regimens. J Biol Chem. 279:28771–28780. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Verollet C, Charrière GM, Labrousse A, Cougoule C, Le Cabec V and Maridonneau-Parini I: Extracellular proteolysis in macrophage migration: Losing grip for a breakthrough. Eur J Immunol. 41:2805–2813. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Roycik MD, Fang X and Sang QX: A fresh prospect of extracellular matrix hydrolytic enzymes and their substrates. Curr Pharm Des. 15:1295–1308. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Christiaens V and Lijnen HR: Role of the fibrinolytic and matrix metalloproteinase systems in development of adipose tissue. Arch Physiol Biochem. 112:254–259. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Riddick AC, Shukla CJ, Pennington CJ, Bass R, Nuttall RK, Hogan A, Sethia KK, Ellis V, Collins AT, Maitland NJ, et al: Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. Br J Cancer. 92:2171–2180. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Alfano D, Franco P, Vocca I, Gambi N, Pisa V, Mancini A, Caputi M, Carriero MV, Iaccarino I and Stoppelli MP: The urokinase plasminogen activator and its receptor: Role in cell growth and apoptosis. Thromb Haemost. 93:205–211. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Carriero MV and Stoppelli MP: The urokinase-type plasminogen activator and the generation of inhibitors of urokinase activity and signaling. Curr Pharm Des. 17:1944–1961. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Liu Y, Wang Y, Teng Z, Chen J, Li Y, Chen Z, Li Z and Zhang Z: Matrix metalloproteinase 9 expression and survival of patients with osteosarcoma: A meta-analysis. Eur J Cancer Care (Engl). 26:e123642017. View Article : Google Scholar

24 

Hadler-Olsen E, Winberg JO and Uhlin-Hansen L: Matrix metal-loproteinases in cancer: Their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol. 34:2041–2051. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Woodward JK, Holen I, Coleman RE and Buttle DJ: The roles of proteolytic enzymes in the development of tumour-induced bone disease in breast and prostate cancer. Bone. 41:912–927. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Swiercz R, Keck RW, Skrzypczak-Jankun E, Selman SH and Jankun J: Recombinant PAI-1 inhibits angiogenesis and reduces size of LNCaP prostate cancer xenografts in SCID mice. Oncol Rep. 8:463–470. 2001.PubMed/NCBI

27 

Rabbani SA and Xing RH: Role of urokinase (uPA) and its receptor (uPAR) in invasion and metastasis of hormone-dependent malignancies. Int J Oncol. 12:911–920. 1998.PubMed/NCBI

28 

Gupta S, Gupta A, Saini AK, Majumder K, Sinha K and Chahal A: Prostate cancer: How young is too young. Curr Urol. 9:212–215. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Johnston TJ, Shaw GL, Lamb AD, Parashar D, Greenberg D, Xiong T, Edwards AL, Gnanapragasam V, Holding P, Herbert P, et al: Mortality among men with advanced prostate cancer excluded from the protect trial. Eur Urol. 71:381–388. 2017. View Article : Google Scholar :

30 

Litwin MS and Tan HJ: The diagnosis and treatment of prostate cancer: A review. JAMA. 317:2532–2542. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L and Goncalves F: Bone metastases: An overview. Oncol Rev. 11:3212017. View Article : Google Scholar : PubMed/NCBI

32 

Hildenbrand R, Allgayer H, Marx A and Stroebel P: Modulators of the urokinase-type plasminogen activation system for cancer. Exp Opin Investig Drugs. 19:641–652. 2010. View Article : Google Scholar

33 

Honkavuori M, Talvensaari-Mattila A, Puistola U, Turpeenniemi-Hujanen T and Santala M: High serum TIMP-1 is associated with adverse prognosis in endometrial carcinoma. Anticancer Res. 28:2715–2719. 2008.PubMed/NCBI

34 

Isogai C, Laug WE, Shimada H, Declerck PJ, Stins MF, Durden DL, Erdreich-Epstein A and DeClerck YA: Plasminogen activator inhibitor-1 promotes angiogenesis by stimulating endothelial cell migration toward fibronectin. Cancer Res. 61:5587–5594. 2001.PubMed/NCBI

35 

Jankun J and Skrzypczak-Jankun E: Yin and yang of the plasminogen activator inhibitor. Pol Arch Med Wewn. 119:410–417. 2009.PubMed/NCBI

36 

Kodaman N, Aldrich MC, Sobota R, Asselbergs FW, Brown NJ, Moore JH and Williams SM: Plasminogen activator inhibitor-1 and diagnosis of the metabolic syndrome in a west african population. J Am Heart Assoc. 5:e0038672016. View Article : Google Scholar : PubMed/NCBI

37 

Forsgren M, Råden B, Israelsson M, Larsson K and Hedén LO: Molecular cloning and characterization of a full-length cDNA clone for human plasminogen. FEBS Lett. 213:254–260. 1987. View Article : Google Scholar : PubMed/NCBI

38 

Miyata T, Iwanaga S, Sakata Y and Aoki N: Plasminogen Tochigi: Inactive plasmin resulting from replacement of alanine-600 by threonine in the active site. Proc Natl Acad Sci USA. 79:6132–6136. 1982. View Article : Google Scholar : PubMed/NCBI

39 

Borisov OV, Field M, Ling VT and Harris RJ: Characterization of oligosaccharides in recombinant tissue plasminogen activator produced in Chinese hamster ovary cells: Two decades of analytical technology development. Anal Chem. 81:9744–9754. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Hatton MW, Day S, Ross B, Southward SM, DeReske M and Richardson M: Plasminogen II accumulates five times faster than plasminogen I at the site of a balloon de-endothelializing injury in vivo to the rabbit aorta: Comparison with other hemostatic proteins. J Lab Clin Med. 134:260–266. 1999. View Article : Google Scholar : PubMed/NCBI

41 

Mølgaard L, Ponting CP and Christensen U: Glycosylation at Asn-289 facilitates the ligand-induced conformational changes of human Glu-plasminogen. FEBS Lett. 405:363–368. 1997. View Article : Google Scholar : PubMed/NCBI

42 

Abdul S, Leebeek FW, Rijken DC and Uitte de Willige S: Natural heterogeneity of α2-antiplasmin: Functional and clinical consequences. Blood. 127:538–545. 2016. View Article : Google Scholar

43 

Stefansson S, Lawrence DA and Argraves WS: Plasminogen activator inhibitor-1 and vitronectin promote the cellular clearance of thrombin by low density lipoprotein receptor-related proteins 1–2. J Biol Chem. 271:8215–8220. 1996. View Article : Google Scholar : PubMed/NCBI

44 

Ainsworth S, Carter S, Fisher C, Dawson J, Makrides L, Nuttall T and Mason SL: Ligneous membranitis in Scottish Terriers is associated with a single nucleotide polymorphism in the plasminogen (PLG) gene. Anim Genet. 46:707–710. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Silva GB, Bariani C, Mendonça EF and Batista AC: Clinical manifestations due to severe plasminogen deficiency: A case report. J Dent Child(Chic). 73:179–182. 2006.

46 

Celkan T: Plasminogen deficiency. J Thromb Thrombolysis. 43:132–138. 2017. View Article : Google Scholar

47 

Sivolella S, De Biagi M, Sartori MT, Berengo M and Bressan E: Destructive membranous periodontal disease (ligneous gingivitis): A literature review. J Periodontol. 83:465–476. 2012. View Article : Google Scholar

48 

Lotan TL, Tefs K, Schuster V, Miller J, Manaligod J, Filstead A, Yamada SD and Krausz T: Inherited plasminogen deficiency presenting as ligneous vaginitis: A case report with molecular correlation and review of the literature. Hum Pathol. 38:1569–1575. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Gunhan O, Günhan M, Berker E, Gürgan CA and Yildirim H: Destructive membranous periodontal disease (Ligneous peri-odontitis). J Periodontol. 70:919–925. 1999. View Article : Google Scholar

50 

Cohen SR: Ligneous conjunctivitis: An ophthalmic disease with potentially fatal tracheobronchial obstruction. Laryngeal and tracheobronchial features. Ann Otol Rhinol Laryngol. 99:509–512. 1990. View Article : Google Scholar : PubMed/NCBI

51 

Foley JH, Kim PY, Mutch NJ and Gils A: Insights into thrombin activatable fibrinolysis inhibitor function and regulation. J Thromb Haemost. 11(Suppl 1): S306–S315. 2013. View Article : Google Scholar

52 

Kolev K, Longstaff C and Machovich R: Fibrinolysis at the fluid-solid interface of thrombi. Curr Med Chem Cardiovasc Hematol Agents. 3:341–355. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Bode W and Renatus M: Tissue-type plasminogen activator: Variants and crystal/solution structures demarcate structural determinants of function. Curr Opin Struct Biol. 7:865–872. 1997. View Article : Google Scholar

54 

Marcos-Contreras OA, Martinez de Lizarrondo S, Bardou I, Orset C, Pruvost M, Anfray A, Frigout Y, Hommet Y, Lebouvier L, Montaner J, et al: Hyperfibrinolysis increases blood-brain barrier permeability by a plasmin- and bradykinin-dependent mechanism. Blood. 128:2423–2434. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Chapman MP, Moore EE, Moore HB, Gonzalez E, Gamboni F, Chandler JG, Mitra S, Ghasabyan A, Chin TL, Sauaia A, et al: Overwhelming tPA release, not PAI-1 degradation, is responsible for hyperfibrinolysis in severely injured trauma patients. J Trauma Acute Care Surg. 80:16–23; discussion 23–15, 2016. PubMed/NCBI

56 

Cardenas JC, Matijevic N, Baer LA, Holcomb JB, Cotton BA and Wade CE: Elevated tissue plasminogen activator and reduced plasminogen activator inhibitor promote hyperfibrinolysis in trauma patients. Shock. 41:514–521. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Genét GF, Ostrowski SR, Sørensen AM and Johansson PI: Detection of tPA-induced hyperfibrinolysis in whole blood by RapidTEG, KaolinTEG, and functional fibrinogenTEG in healthy individuals. Clin Appl Thromb Hemost. 18:638–644. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Prabhudesai A, Shetty S, Ghosh K and Kulkarni B: Dysfunctional fibrinolysis and cerebral venous thrombosis. Blood Cells Mol Dis. 65:51–55. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Talens S, Malfliet JJ, Rudež G, Spronk HM, Janssen NA, Meijer P, Kluft C, de Maat MP and Rijken DC: Biological variation in tPA-induced plasma clot lysis time. Thromb Haemost. 108:640–646. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Wang J, Li J and Liu Q: Association between platelet activation and fibrinolysis in acute stroke patients. Neurosci Lett. 384:305–309. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Simone TM and Higgins PJ: Low molecular weight antagonists of plasminogen activator inhibitor-1: Therapeutic potential in cardiovascular disease. Mol Med Ther. 1:1012012. View Article : Google Scholar

62 

Higazi AA, Upson RH, Cohen RL, Manuppello J, Bognacki J, Henkin J, McCrae KR, Kounnas MZ, Strickland DK, Preissner KT, et al: Interaction of single-chain urokinase with its receptor induces the appearance and disappearance of binding epitopes within the resultant complex for other cell surface proteins. Blood. 88:542–551. 1996.PubMed/NCBI

63 

Finckh U, van Hadeln K, Müller-Thomsen T, Alberici A, Binetti G, Hock C, Nitsch RM, Stoppe G, Reiss J and Gal A: Association of late-onset Alzheimer disease with a genotype of PLAU, the gene encoding urokinase-type plasminogen activator on chromosome 10q22.2. Neurogenetics. 4:213–217. 2003. View Article : Google Scholar : PubMed/NCBI

64 

Goto Y, Hagikura S, Katsuda N and Hamajima N: A C to T polymorphism of urokinase plasminogen activator (P141L) is associated with Helicobacter pylori infection. Asian Pac J Cancer Prev. 12:803–806. 2011.PubMed/NCBI

65 

Kriegbaum MC, Persson M, Haldager L, Alpízar-Alpízar W, Jacobsen B, Gårdsvoll H, Kjær A and Ploug M: Rational targeting of the urokinase receptor (uPAR): Development of antagonists and non-invasive imaging probes. Curr Drug Targets. 12:1711–1728. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Romer J, Nielsen BS and Ploug M: The urokinase receptor as a potential target in cancer therapy. Curr Pharm Des. 10:2359–2376. 2004. View Article : Google Scholar : PubMed/NCBI

67 

Ploug M, Gardsvoll H, Jorgensen TJ, Lønborg Hansen L and Dano K: Structural analysis of the interaction between urokinase-type plasminogen activator and its receptor: A potential target for anti-invasive cancer therapy. Biochem Soc Trans. 30:177–183. 2002. View Article : Google Scholar : PubMed/NCBI

68 

Manetti M, Allanore Y, Revillod L, Fatini C, Guiducci S, Cuomo G, Bonino C, Riccieri V, Bazzichi L, Liakouli V, et al: A genetic variation located in the promoter region of the UPAR (CD87) gene is associated with the vascular complications of systemic sclerosis. Arthritis Rheum. 63:247–256. 2011. View Article : Google Scholar

69 

Shih CM, Kuo WH, Lin CW, Chen W, Cheng WE, Chen SC and Lee YL: Association of polymorphisms in the genes of the urokinase plasminogen activation system with susceptibility to and severity of non-small cell lung cancer. Clin Chim Acta. 412:194–198. 2011. View Article : Google Scholar

70 

Flevaris P and Vaughan D: The role of plasminogen activator inhibitor type-1 in fibrosis. Semin Thromb Hemost. 43:169–177. 2017. View Article : Google Scholar

71 

Jankun J, Yang J, Zheng H, Han FQ, Al-Senaidy A and Skrzypczak-Jankun E: Remarkable extension of PAI-1 half-life surprisingly brings no changes to its structure. Int J Mol Med. 29:61–64. 2012.

72 

Rabieian R, Boshtam M, Zareei M, Kouhpayeh S, Masoudifar A and Mirzaei H: Plasminogen activator inhibitor type-1 as a regulator of fibrosis. J Cell Biochem. 119:17–27. 2018. View Article : Google Scholar

73 

Piao L, Jung I, Huh JY, Miyata T and Ha H: A novel plasminogen activator inhibitor-1 inhibitor, TM5441, protects against high-fat diet-induced obesity and adipocyte injury in mice. Br J Pharmacol. 173:2622–2632. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Srikanthan K, Feyh A, Visweshwar H, Shapiro JI and Sodhi K: Systematic review of metabolic syndrome biomarkers: A panel for early detection, management, and risk stratification in the west virginian population. Int J Med Sci. 13:25–38. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Magdoud K, Herbepin VG, Touraine R, Almawi WY and Mahjoub T: Plasminogen activator inhibitor 1 4G/5G and -844G/A variants in idiopathic recurrent pregnancy loss. Am J Reprod Immunol. 70:246–252. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Honig A, Engel JB, Segerer SE, Kranke P, Häusler S and Wurfel W: Pregnancy-triggered antiphospholipid syndrome in a patient with multiple late miscarriages. Hum Reprod. 25:2753–2754. 2010. View Article : Google Scholar : PubMed/NCBI

77 

Jankun J and Skrzypczak-Jankun E: Bleeding diathesis is associated with an A15T heterozygous mutation in exon 2 of the plasminogen activator inhibitor type 1. Exp Ther Med. 1:575–577. 2010. View Article : Google Scholar : PubMed/NCBI

78 

Mehta R and Shapiro AD: Plasminogen activator inhibitor type 1 deficiency. Haemophilia. 14:1255–1260. 2008. View Article : Google Scholar

79 

Schleef RR, Higgins DL, Pillemer E and Levitt LJ: Bleeding diathesis due to decreased functional activity of type 1 plasminogen activator inhibitor. J Clin Invest. 83:1747–1752. 1989. View Article : Google Scholar : PubMed/NCBI

80 

Heiman M, Gupta S and Shapiro AD: The obstetric, gynaecological and fertility implications of homozygous PAI-1 deficiency: Single-centre experience. Haemophilia. 20:407–412. 2014. View Article : Google Scholar

81 

Lin S, Huiya Z, Bo L, Wei W and Yongmei G: The plasminogen activator inhibitor-1 (PAI-1) gene -844 A/G and -675 4G/5G promoter polymorphism significantly influences plasma PAI-1 levels in women with polycystic ovary syndrome. Endocrine. 36:503–509. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Fay WP, Parker AC, Condrey LR and Shapiro AD: Human plasminogen activator inhibitor-1 (PAI-1) deficiency: Characterization of a large kindred with a null mutation in the PAI-1 gene. Blood. 90:204–208. 1997.PubMed/NCBI

83 

Jankun J and Skrzypczak-Jankun E: Val17Ile single nucleotide polymorphisms similarly as Ala15Thr could be related to the lower secretory dynamics of PAI-1 secretion: Theoretical evidence. Curr Mol Med. 11:512–516. 2011. View Article : Google Scholar : PubMed/NCBI

84 

Miao C, Liang C, Zhu J, Xu A, Zhao K, Hua Y, Zhang J, Chen W, Suo C, Zhang C, et al: Prognostic role of matrix metal-loproteinases in bladder carcinoma: A systematic review and meta-analysis. Oncotarget. 8:32309–32321. 2017.PubMed/NCBI

85 

Turunen SP, Tatti-Bugaeva O and Lehti K: Membrane-type matrix metalloproteases as diverse effectors of cancer progression. Biochim Biophys Acta. 1864.1974–1988. 2017.

86 

Van Lint P and Libert C: Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leuk Biol. 82:1375–1381. 2007. View Article : Google Scholar

87 

Verma RP and Hansch C: Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs. Bioorg Med Chem. 15:2223–2268. 2007. View Article : Google Scholar : PubMed/NCBI

88 

Swarnakar S, Paul S, Singh LP and Reiter RJ: Matrix metal-loproteinases in health and disease: Regulation by melatonin. J Pineal Res. 50:8–20. 2011. View Article : Google Scholar

89 

Zitka O, Kukacka J, Krizkova S, Huska D, Adam V, Masarik M, Prusa R and Kizek R: Matrix metalloproteinases. Curr Med Chem. 17:3751–3768. 2010. View Article : Google Scholar : PubMed/NCBI

90 

Fisher KE, Fei Q, Laird ER, Stock JL, Allen MR, Sahagan BG and Strick CA: Engineering autoactivating forms of matrix metalloproteinase-9 and expression of the active enzyme in cultured cells and transgenic mouse brain. Biochemistry. 41:8289–8297. 2002. View Article : Google Scholar : PubMed/NCBI

91 

Marchenko GN, Ratnikov BI, Rozanov DV, Godzik A, Deryugina EI and Strongin AY: Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin. Biochem J. 356:705–718. 2001. View Article : Google Scholar : PubMed/NCBI

92 

Merchant N, Nagaraju GP, Rajitha B, Lammata S, Jella KK, Buchwald ZS, Lakka SS and Ali AN: Matrix metalloproteinases: Their functional role in lung cancer. Carcinogenesis. 38:766–780. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Morgunova E, Tuuttila A, Bergmann U, Isupov M, Lindqvist Y, Schneider G and Tryggvason K: Structure of human pro-matrix metalloproteinase-2: Activation mechanism revealed. Science. 284:1667–1670. 1999. View Article : Google Scholar : PubMed/NCBI

94 

Su SC, Hsieh MJ, Yang WE, Chung WH, Reiter RJ and Yang SF: Cancer metastasis: Mechanisms of inhibition by melatonin. J Pineal Research. 62:2017. View Article : Google Scholar

95 

Webb AH, Gao BT, Goldsmith ZK, Irvine AS, Saleh N, Lee RP, Lendermon JB, Bheemreddy R, Zhang Q, Brennan RC, et al: Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer. 17:4342017. View Article : Google Scholar : PubMed/NCBI

96 

Eiro N, Fernandez-Gomez J, Sacristan R, Sacristán R, Fernandez-Garcia B, Lobo B, Gonzalez-Suarez J, Quintas A, Escaf S and Vizoso FJ: Stromal factors involved in human prostate cancer development, progression and castration resistance. J Cancer Res Clin Oncol. 143:351–359. 2017. View Article : Google Scholar

97 

Gialeli C, Theocharis AD and Karamanos NK: Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 278:16–27. 2011. View Article : Google Scholar

98 

Grieu F, Li WQ and Iacopetta B: Genetic polymorphisms in the MMP-2 and MMP-9 genes and breast cancer phenotype. Breast Cancer Res Treat. 88:197–204. 2004. View Article : Google Scholar : PubMed/NCBI

99 

Singh R, Srivastava P, Srivastava A and Mittal RD: Matrix metalloproteinase (MMP-9 and MMP-2) gene polymorphisms influence allograft survival in renal transplant recipients. Nephrol Dial Transplant. 25:3393–3401. 2010. View Article : Google Scholar : PubMed/NCBI

100 

Ghaffarpour S, Ghazanfari T, Kabudanian Ardestani S, Pourfarzam S, Fallahi F, Shams J, Mirsharif ES, Mohseni Majd AM and Faghihzadeh S: Correlation between MMP-9 and MMP-9/ TIMPs complex with pulmonary function in sulfur mustard exposed civilians: Sardasht-Iran cohort study. Arch Iran Med. 20:74–82. 2017.PubMed/NCBI

101 

Ricci S, Bruzzese D and DI Carlo A: Evaluation of MMP-2, MMP-9, TIMP-1, TIMP-2, NGAL and MMP-9/NGAL complex in urine and sera from patients with bladder cancer. Oncol Lett. 10:2527–2532. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Hinterseher I, Krex D, Kuhlisch E, Schmidt KG, Pilarsky C, Schneiders W, Saeger HD and Bergert H: Tissue inhibitor of metalloproteinase-1 (TIMP-1) polymorphisms in a Caucasian population with abdominal aortic aneurysm. World J Surg. 31:2248–2254. 2007. View Article : Google Scholar : PubMed/NCBI

103 

Guo Xu P, Jin W, Wang T, Fan J, Hao D, Jing Z, Han S, Du C, Jiang JD, et al: TIMP-2 SNPs rs7342880 and rs4789936 are linked to risk of knee osteoarthritis in the Chinese Han Population. Oncotarget. 8:1166–1176. 2017.

104 

Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A and Delbono O: Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol. 307:C25–C38. 2014. View Article : Google Scholar : PubMed/NCBI

105 

Lah TT, Durán Alonso MB and Van Noorden CJ: Antiprotease therapy in cancer: Hot or not. Exp Opin Biol Ther. 6:257–279. 2006. View Article : Google Scholar

106 

Wong MS, Sidik SM, Mahmud R and Stanslas J: Molecular targets in the discovery and development of novel antimetastatic agents: Current progress and future prospects. Clin Exp Pharmacol Physiol. 40:307–319. 2013. View Article : Google Scholar : PubMed/NCBI

107 

Jankun J, Maher VM and McCormick JJ: Malignant transformation of human fibroblasts correlates with increased activity of receptor-bound plasminogen activator. Cancer Res. 51:1221–1226. 1991.PubMed/NCBI

108 

Jankun J, Selman SH, Aniola J and Skrzypczak-Jankun E: Nutraceutical inhibitors of urokinase: Potential applications in prostate cancer prevention and treatment. Oncol Rep. 16:341–346. 2006.PubMed/NCBI

109 

Kamat AM and Lamm DL: Chemoprevention of bladder cancer. Urol Clin North Am. 29:157–168. 2002. View Article : Google Scholar : PubMed/NCBI

110 

Swiercz R, Skrzypczak-Jankun E, Merrell MM, Selman SH and Jankun J: Angiostatic activity of synthetic inhibitors of urokinase type plasminogen activator. Oncol Rep. 6:523–526. 1999.PubMed/NCBI

111 

Jankun J, Selman SH, Swiercz R and Skrzypczak-Jankun E: Why drinking green tea could prevent cancer. Nature. 387:5611997. View Article : Google Scholar : PubMed/NCBI

112 

Kemberling JK, Hampton JA, Keck RW, Gomez MA and Selman SH: Inhibition of bladder tumor growth by the green tea derivative epigallocatechin-3-gallate. J Urol. 170:773–776. 2003. View Article : Google Scholar : PubMed/NCBI

113 

Jankun J, Keck RW and Selman SH: Epigallocatechin-3-gallate prevents tumor cell implantation/growth in an experimental rat bladder tumor model. Int J Oncol. 44:147–152. 2014. View Article : Google Scholar

114 

Wendt MD, Geyer A, McClellan WJ, Rockway TW, Weitzberg M, Zhao X, Mantei R, Stewart K, Nienaber V, Klinghofer V and Giranda VL: Interaction with the S1 beta-pocket of urokinase: 8-heterocycle substituted and 6,8-disubstituted 2-naphthamidine urokinase inhibitors. Bioorg Med Chem Lett. 14:3063–3068. 2004.PubMed/NCBI

115 

Bruncko M, McClellan WJ, Wendt MD, Sauer DR, Geyer A, Dalton CR, Kaminski MA, Weitzberg M, Gong J, Dellaria JF, et al: Naphthamidine urokinase plasminogen activator inhibitors with improved pharmacokinetic properties. Bioorg Med Chem Lett. 15:93–98. 2005. View Article : Google Scholar

116 

Katz BA, Sprengeler PA, Luong C, Verner E, Elrod K, Kirtley M, Janc J, Spencer JR, Breitenbucher JG, Hui H, et al: Engineering inhibitors highly selective for the S1 sites of Ser190 trypsin-like serine protease drug targets. Chem Biol. 8:1107–1121. 2001. View Article : Google Scholar : PubMed/NCBI

117 

Schmitt M, Harbeck N, Brünner N, Jänicke F, Meisner C, Mühlenweg B, Jansen H, Dorn J, Nitz U, Kantelhardt EJ and Thomssen C: Cancer therapy trials employing level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Exp Rev Mol Diagn. 11:617–634. 2011. View Article : Google Scholar

118 

Zengel P, Ramp D, Mack B, Zahler S, Berghaus A, Muehlenweg B, Gires O and Schmitz S: Multimodal therapy for synergic inhibition of tumour cell invasion and tumour-induced angiogenesis. BMC Cancer. 10:922010. View Article : Google Scholar : PubMed/NCBI

119 

Setyono-Han B, Stürzebecher J, Schmalix WA, Muehlenweg B, Sieuwerts AM, Timmermans M, Magdolen V, Schmitt M, Klijn JG and Foekens JA: Suppression of rat breast cancer metastasis and reduction of primary tumour growth by the small synthetic urokinase inhibitor WX-UK1. Thromb Haemost. 93:779–786. 2005. View Article : Google Scholar : PubMed/NCBI

120 

Ertongur S, Lang S, Mack B, Wosikowski K, Muehlenweg B and Gires O: Inhibition of the invasion capacity of carcinoma cells by WX-UK1, a novel synthetic inhibitor of the urokinase-type plasminogen activator system. Int J Cancer. 110:815–824. 2004. View Article : Google Scholar : PubMed/NCBI

121 

Ossowski L: Invasion of connective tissue by human carcinoma cell lines: Requirement for urokinase, urokinase receptor, and interstitial collagenase. Cancer Res. 52:6754–6760. 1992.PubMed/NCBI

122 

Ossowski L: In vivo invasion of modified chorioallantoic membrane by tumor cells: The role of cell surface-bound urokinase. J Cell Biol. 107:2437–2445. 1988. View Article : Google Scholar : PubMed/NCBI

123 

Jankun J, Keck RW, Skrzypczak-Jankun E and Swiercz R: Inhibitors of urokinase reduce size of prostate cancer xenografts in severe combined immunodeficient mice. Cancer Res. 57:559–563. 1997.PubMed/NCBI

124 

Berkenpas MB, Lawrence DA and Ginsburg D: Molecular evolution of plasminogen activator inhibitor-1 functional stability. EMBO J. 14:2969–2977. 1995. View Article : Google Scholar : PubMed/NCBI

125 

Chorostowska-Wynimko J, Swiercz R, Skrzypczak-Jankun E, Wojtowicz A, Selman SH and Jankun J: A novel form of the plasminogen activator inhibitor created by cysteine mutations extends its half-life: Relevance to cancer and angiogenesis. Mol Cancer Ther. 2:19–28. 2003. View Article : Google Scholar : PubMed/NCBI

126 

Tucker HM, Mottonen J, Goldsmith EJ and Gerard RD: Engineering of plasminogen activator inhibitor-1 to reduce the rate of latency transition. Nat Struct Biol. 2:442–445. 1995. View Article : Google Scholar : PubMed/NCBI

127 

Binder BR and Mihaly J: The plasminogen activator inhibitor ‘paradox’ in cancer. Immunol Lett. 118:116–124. 2008. View Article : Google Scholar : PubMed/NCBI

128 

Beaulieu LM, Whitley BR, Wiesner TF, Rehault SM, Palmieri D, Elkahloun AG and Church FC: Breast cancer and metabolic syndrome linked through the plasminogen activator inhibitor-1 cycle. Bioessays. 29:1029–1038. 2007. View Article : Google Scholar : PubMed/NCBI

129 

Duffy MJ: Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: From pilot to level 1 evidence studies. Clin Chem. 48:1194–1197. 2002.PubMed/NCBI

130 

Chorostowska-Wynimko J, Swiercz R, Skrzypczak-Jankun E, Selman SH and Jankun J: Plasminogen activator inhibitor type-1 mutants regulate angiogenesis of human umbilical and lung vascular endothelial cells. Oncol Rep. 12:1155–1162. 2004.PubMed/NCBI

131 

Masset A, Maillard C, Sounni NE, Jacobs N, Bruyére F, Delvenne P, Tacke M, Reinheckel T, Foidart JM, Coussens LM and Noël A: Unimpeded skin carcinogenesis in K14–HPV16 transgenic mice deficient for plasminogen activator inhibitor. Int J Cancer. 128:283–293. 2011. View Article : Google Scholar

132 

Mazar AP, Henkin J and Goldfarb RH: The urokinase plasminogen activator system in cancer: Implications for tumor angiogenesis and metastasis. Angiogenesis. 3:15–32. 1999. View Article : Google Scholar

133 

Wyganowska-Świątkowska M and Jankun J: Plasminogen activation system in oral cancer: Relevance in prognosis and therapy (Review). Int J Oncol. 47:16–24. 2015. View Article : Google Scholar

134 

Chen SC, Henry DO, Hicks DG, Reczek PR and Wong MK: Intravesical administration of plasminogen activator inhibitor type-1 inhibits in vivo bladder tumor invasion and progression. J Urol. 181:336–342. 2009. View Article : Google Scholar

135 

Yamakawa S, Asai T, Uchida T, Matsukawa M, Akizawa T and Oku N: (-)-Epigallocatechin gallate inhibits membrane-type 1 matrix metalloproteinase, MT1-MMP, and tumor angiogenesis. Cancer Lett. 210:47–55. 2004. View Article : Google Scholar : PubMed/NCBI

136 

Stefansson S, Petitclerc E, Wong MK, McMahon GA, Brooks PC and Lawrence DA: Inhibition of angiogenesis in vivo by plasminogen activator inhibitor-1. J Biol Chem. 276:8135–8141. 2001. View Article : Google Scholar

137 

Su SC, Lin CW, Yang WE, Fan WL and Yang SF: The urokinase-type plasminogen activator (uPA) system as a biomarker and therapeutic target in human malignancies. Exp Opin Ther Targets. 20:551–566. 2016. View Article : Google Scholar

138 

Ulisse S, Baldini E, Sorrenti S and D’Armiento M: The urokinase plasminogen activator system: A target for anti-cancer therapy. Curr Cancer Drug Targets. 9:32–71. 2009. View Article : Google Scholar : PubMed/NCBI

139 

Iwamoto J, Mizokami Y, Takahashi K, Nakajima K, Ohtsubo T, Miura S, Narasaka T, Takeyama H, Omata T, Shimokobe K, et al: Expressions of urokinase-type plasminogen activator, its receptor and plasminogen activator inhibitor-1 in gastric cancer cells and effects of Helicobacter pylori. Scand J Gastroenterol. 40:783–793. 2005. View Article : Google Scholar : PubMed/NCBI

140 

Haj-Yehia A, Nassar T, Sachais BS, Kuo A, Bdeir K, Al-Mehdi AB, Mazar A, Cines DB and Higazi AA: Urokinase-derived peptides regulate vascular smooth muscle contraction in vitro and in vivo. FASEB J. 14:1411–1422. 2000. View Article : Google Scholar : PubMed/NCBI

141 

Guo Y, Higazi AA, Arakelian A, Sachais BS, Cines D, Goldfarb RH, Jones TR, Kwaan H, Mazar AP and Rabbani SA: A peptide derived from the nonreceptor binding region of urokinase plasminogen activator (uPA) inhibits tumor progression and angiogenesis and induces tumor cell death in vivo. FASEB J. 14:1400–1410. 2000. View Article : Google Scholar : PubMed/NCBI

142 

Berkenblit A, Matulonis UA, Kroener JF, Dezube BJ, Lam GN, Cuasay LC, Brünner N, Jones TR, Silverman MH and Gold MA: A6, a urokinase plasminogen activator (uPA)-derived peptide in patients with advanced gynecologic cancer: A phase I trial. Gynecol Oncol. 99:50–57. 2005. View Article : Google Scholar : PubMed/NCBI

143 

Mani T, Wang F, Knabe WE, Sinn AL, Khanna M, Jo I, Sandusky GE, Sledge GW Jr, Jones DR, Khanna R, et al: Small-molecule inhibition of the uPAR.uPA interaction: Synthesis, biochemical, cellular, in vivo pharmacokinetics and efficacy studies in breast cancer metastasis. Bioorg Med Chem. 21:2145–2155. 2013. View Article : Google Scholar : PubMed/NCBI

144 

Wang F, Eric Knabe W, Li L, Jo I, Mani T, Roehm H, Oh K, Li J, Khanna M and Meroueh SO: Design, synthesis, biochemical studies, cellular characterization, and structure-based computational studies of small molecules targeting the urokinase receptor. Bioorg Med Chem. 20:4760–4773. 2012. View Article : Google Scholar :

145 

Jian Q, Yang Z, Shu J, Liu X, Zhang J and Li Z: Lectin BS-I inhibits cell migration and invasion via AKT/GSK-3β/β-catenin pathway in hepatocellular carcinoma. J Cell Mol Med. 22:315–329. 2018. View Article : Google Scholar

146 

Li H and Chen C: Quercetin has antimetastatic effects on gastric cancer cells via the interruption of uPA/uPAR function by modulating NF-κb, PKC-δ, ERK1/2, and AMPKα. Integr Cancer Ther. 17:511–523. 2018. View Article : Google Scholar

147 

Cathcart J, Pulkoski-Gross A and Cao J: Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis. 2:26–34. 2015. View Article : Google Scholar : PubMed/NCBI

148 

Rothenberg ML, Nelson AR and Hande KR: New drugs on the horizon: Matrix metalloproteinase inhibitors. Oncologist. 3:271–274. 1998.

149 

Rothenberg ML, Nelson AR and Hande KR: New drugs on the horizon: Matrix metalloproteinase inhibitors. Stem cells. 17:237–240. 1999. View Article : Google Scholar : PubMed/NCBI

150 

Coussens LM, Fingleton B and Matrisian LM: Matrix metal-loproteinase inhibitors and cancer: Trials and tribulations. Science. 295:2387–2392. 2002. View Article : Google Scholar : PubMed/NCBI

151 

Martens E, Leyssen A, Van Aelst I, Fiten P, Piccard H, Hu J, Descamps FJ, Van den Steen PE, Proost P, Van Damme J, et al: A monoclonal antibody inhibits gelatinase B/MMP-9 by selective binding to part of the catalytic domain and not to the fibronectin or zinc binding domains. Biochim Biophys Acta. 1770:178–186. 2007. View Article : Google Scholar

152 

Kaimal R, Aljumaily R, Tressel SL, Pradhan RV, Covic L, Kuliopulos A, Zarwan C, Kim YB, Sharifi S and Agarwal A: Selective blockade of matrix metalloprotease-14 with a monoclonal antibody abrogates invasion, angiogenesis, and tumor growth in ovarian cancer. Cancer Res. 73:2457–2467. 2013. View Article : Google Scholar : PubMed/NCBI

153 

Shay G, Lynch CC and Fingleton B: Moving targets: Emerging roles for MMPs in cancer progression and metastasis. Matrix Biol. 44–46:200–206. 2015. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wyganowska‑Świątkowska M, Tarnowski M, Murtagh D, Skrzypczak‑Jankun E and Jankun J: Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review). Int J Mol Med 43: 15-25, 2019.
APA
Wyganowska‑Świątkowska, M., Tarnowski, M., Murtagh, D., Skrzypczak‑Jankun, E., & Jankun, J. (2019). Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review). International Journal of Molecular Medicine, 43, 15-25. https://doi.org/10.3892/ijmm.2018.3983
MLA
Wyganowska‑Świątkowska, M., Tarnowski, M., Murtagh, D., Skrzypczak‑Jankun, E., Jankun, J."Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review)". International Journal of Molecular Medicine 43.1 (2019): 15-25.
Chicago
Wyganowska‑Świątkowska, M., Tarnowski, M., Murtagh, D., Skrzypczak‑Jankun, E., Jankun, J."Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review)". International Journal of Molecular Medicine 43, no. 1 (2019): 15-25. https://doi.org/10.3892/ijmm.2018.3983
Copy and paste a formatted citation
x
Spandidos Publications style
Wyganowska‑Świątkowska M, Tarnowski M, Murtagh D, Skrzypczak‑Jankun E and Jankun J: Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review). Int J Mol Med 43: 15-25, 2019.
APA
Wyganowska‑Świątkowska, M., Tarnowski, M., Murtagh, D., Skrzypczak‑Jankun, E., & Jankun, J. (2019). Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review). International Journal of Molecular Medicine, 43, 15-25. https://doi.org/10.3892/ijmm.2018.3983
MLA
Wyganowska‑Świątkowska, M., Tarnowski, M., Murtagh, D., Skrzypczak‑Jankun, E., Jankun, J."Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review)". International Journal of Molecular Medicine 43.1 (2019): 15-25.
Chicago
Wyganowska‑Świątkowska, M., Tarnowski, M., Murtagh, D., Skrzypczak‑Jankun, E., Jankun, J."Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review)". International Journal of Molecular Medicine 43, no. 1 (2019): 15-25. https://doi.org/10.3892/ijmm.2018.3983
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team