Open Access

Guanine and nucleotide binding protein 3 promotes odonto/osteogenic differentiation of apical papilla stem cells via JNK and ERK signaling pathways

  • Authors:
    • Yang Zhang
    • Lichan Yuan
    • Li Meng
    • Mengru Fang
    • Shuyu Guo
    • Dongyue Wang
    • Junqing Ma
    • Lin Wang
  • View Affiliations

  • Published online on: November 7, 2018     https://doi.org/10.3892/ijmm.2018.3984
  • Pages: 382-392
  • Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Odonto/osteogenic differentiation of stem cells from the apical papilla (SCAPs) is a key process in tooth root formation and development. However, the molecular mechanisms underlying this process remain largely unknown. In the present study, it was identified that guanine and nucleotide binding protein 3 (GNAI3) was at least in part responsible for the odonto/osteogenic differentiation of SCAPs. GNAI3 was markedly induced in mouse tooth root development in vivo and in human SCAPs mineralization in vitro. Notably, knockdown of GNAI3 by lentiviral vectors expressing short‑hairpin RNAs against GNAI3 significantly inhibited the proliferation, cell cycle progression and migration of SCAPs, as well as odonto/osteogenic differentiation of SCAPs in vitro, suggesting that GNAI3 may play an essential role in tooth root development. The promotive role of GNAI3 in odonto/osteogenic differentiation was further confirmed by downregulation of odonto/osteogenic makers in GNAI3‑deficient SCAPs. In addition, knockdown of GNAI3 effectively suppressed activity of c‑Jun N‑terminal kinase (JNK) and extracellular‑signal regulated kinase (ERK) signaling pathways that was induced during SCAPs differentiation, suggesting that GNAI3 promotes SCAPs mineralization at least partially via JNK/ERK signaling. Taken together, the present results implicate GNAI3 as a critical regulator of odonto/osteogenic differentiation of SCAPs in tooth root development, and suggest a possible role of GNAI3 in regeneration processes in dentin or other tissues.
View Figures
View References

Related Articles

Journal Cover

January-2019
Volume 43 Issue 1

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Y, Yuan L, Meng L, Fang M, Guo S, Wang D, Ma J and Wang L: Guanine and nucleotide binding protein 3 promotes odonto/osteogenic differentiation of apical papilla stem cells via JNK and ERK signaling pathways. Int J Mol Med 43: 382-392, 2019
APA
Zhang, Y., Yuan, L., Meng, L., Fang, M., Guo, S., Wang, D. ... Wang, L. (2019). Guanine and nucleotide binding protein 3 promotes odonto/osteogenic differentiation of apical papilla stem cells via JNK and ERK signaling pathways. International Journal of Molecular Medicine, 43, 382-392. https://doi.org/10.3892/ijmm.2018.3984
MLA
Zhang, Y., Yuan, L., Meng, L., Fang, M., Guo, S., Wang, D., Ma, J., Wang, L."Guanine and nucleotide binding protein 3 promotes odonto/osteogenic differentiation of apical papilla stem cells via JNK and ERK signaling pathways". International Journal of Molecular Medicine 43.1 (2019): 382-392.
Chicago
Zhang, Y., Yuan, L., Meng, L., Fang, M., Guo, S., Wang, D., Ma, J., Wang, L."Guanine and nucleotide binding protein 3 promotes odonto/osteogenic differentiation of apical papilla stem cells via JNK and ERK signaling pathways". International Journal of Molecular Medicine 43, no. 1 (2019): 382-392. https://doi.org/10.3892/ijmm.2018.3984