|
1
|
Khawaja AP, Cooke Bailey JN, Wareham NJ,
Scott RA, Simcoe M, Igo RP Jr, Song YE, Wojciechowski R, Cheng CY,
Khaw PT, et al: Genome-wide analyses identify 68 new loci
associated with intraocular pressure and improve risk prediction
for primary open-angle glaucoma. Nat Genet. 50:778–782. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wang X, Huai G, Wang H, Liu Y, Qi P, Shi
W, Peng J, Yang H, Deng S and Wang Y: Mutual regulation of the
Hippo/Wnt/LPA/TGF-β signaling pathways and their roles in glaucoma
(Review). Int J Mol Med. 41:1201–1212. 2018.
|
|
3
|
Rangachari K, Bankoti N, Shyamala N,
Michael D, Sameer Ahmed Z, Chandrasekaran P and Sekar K: Glaucoma
Pred: Glaucoma prediction based on myocilin genotype and phenotype
information. Genomics. S0888–S7543. 30087–30089. 2018.PubMed/NCBI
|
|
4
|
Narooie-Nejad M, Rasouli A, Mousavi M and
Rohani MR: Study of MYOC gene mutation in POAG patients in zahedan
iran. Clin Lab. 63:1283–1291. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Rasnitsyn A, Doucette L, Seifi M, Footz T,
Raymond V and Walter MA: FOXC1 modulates MYOC secretion through
regulation of the exocytic proteins RAB3GAP1, RAB3GAP2 and SNAP25.
PLoS One. 12:e01785182017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sharma S, Bollinger KE, Kodeboyina SK, Zhi
W, Patton J, Bai S, Edwards B, Ulrich L, Bogorad D and Sharma A:
Proteomic alterations in aqueous humor from patients with primary
open angle glaucoma. Invest Ophthalmol Vis Sci. 59:2635–2643. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hamanaka T, Kimura M, Sakurai T, Ishida N,
Yasuda J, Nagasaki M, Nariai N, Endo A, Homma K, Katsuoka F, et al:
A histologic categorization of aqueous outflow routes in familial
open-angle glaucoma and associations with mutations in the MYOC
gene in japanese patients. Invest Ophthalmol Vis Sci. 58:2818–2831.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Fini ME: Another piece of the puzzle: MYOC
and myocilin glaucoma. Invest Ophthalmol Vis Sci. 58:53192017.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Donegan RK and Lieberman RL: Discovery of
molecular therapeutics for glaucoma: Challenges successes and
promising directions. J Med Chem. 59:788–809. 2016. View Article : Google Scholar
|
|
10
|
Katoli P, Godbole A, Romanowski MJ, Clark
K, Meredith E, Saenz-Vash V, Wang YK, Lewicki N, Nguyen AA and
Lynch JM: Full-length myocilin protein is purified from mammalian
cells as a dimer. Protein Expr Purif. 147:38–48. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Faralli JA, Clark RW, Filla MS and Peters
DM: NFATc1 activity regulates the expression of myocilin induced by
dexamethasone. Exp Eye Res. 130:9–16. 2015. View Article : Google Scholar
|
|
12
|
Qiu Y, Shen X, Shyam R, Yue BY and Ying H:
Cellular processing of myocilin. PLoS One. 9:928452014. View Article : Google Scholar
|
|
13
|
Gupta V, Somarajan BI, Gupta S, Chaurasia
AK, Kumar S, Dutta P, Gupta V, Sharma A, Tayo BO and Nischal K: The
inheritance of juvenile onset primary open angle glaucoma. Clin
Genet. 92:134–142. 2017. View Article : Google Scholar
|
|
14
|
Mauri L, Uebe S, Sticht H, Vossmerbaeumer
U, Weisschuh N, Manfredini E, Maselli E, Patrosso M, Weinreb RN,
Penco S, et al: Expanding the clinical spectrum of COL1A1 mutations
in different forms of glaucoma. Orphanet J Rare Dis. 11:1082016.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Huang C, Xie L, Wu Z, Cao Y, Zheng Y, Pang
CP and Zhang M: Detection of mutations in MYOC OPTN NTF4 WDR36 and
CYP1B1 in Chinese juvenile onset open-angle glaucoma using exome
sequencing. Sci Rep. 8:4498–4505. 2018. View Article : Google Scholar
|
|
16
|
Wiggs JL and Vollrath D: Molecular and
clinical evaluation of a patient hemizygous for TIGR/MYOC. Arch
Ophthalmol. 119:1674–1678. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Gupta V, Ganesan VL, Kumar S, Chaurasia
AK, Malhotra S and Gupta S: Visual disability among juvenile
open-angle glaucoma patients. J Glaucoma. 27:e87-e892018.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Borrás T: The effects of myocilin
expression on functionally relevant trabecular meshwork genes: A
mini-review. J Ocul Pharmacol Ther. 30:202–212. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Liu Y and Vollrath D: Reversal of mutant
myocilin non-secretion and cell killing: Implications for glaucoma.
Hum Mol Genet. 13:1193–1204. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hernandez H, Millar JC, Curry SM, Clark AF
and McDowell CM: BMP and activin membrane bound inhibitor regulates
the extracellular matrix in the trabecular meshwork. Invest
Ophthalmol Vis Sci. 59:2154–2166. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Jain A, Zode G, Kasetti RB, Ran FA, Yan W,
Sharma TP, Bugge K, Searby CC, Fingert JH, Zhang F, et al:
CRISPR-Cas9-based treatment of myocilin-associated glaucoma. Proc
Natl Acad Sci USA. 114:11199–11204. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kim JH and Caprioli J: Intraocular
pressure fluctuation: Is it important. J Ophthalmic Vis Res.
13:170–174. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Aroca-Aguilar JD, Sánchez-Sánchez F, Ghosh
S, Coca-Prados M and Escribano J: Myocilin mutations causing
glaucoma inhibit the intracellular endoproteolytic cleavage of
myocilin between amino acids Arg226 and Ile227. J Biol Chem.
280:21043–21051. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Jiang L, Eaves S, Dhillon N and Ranjit P:
Postoperative outcomes following trabeculectomy and nonpenetrating
surgical procedures: A 5-year longitudinal study. Clin Ophthalmol.
12:995–1002. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wang Y, Gao Y, Hill SE, Huard DJE, Tomlin
MO, Lieberman RL, Paravastu AK and Hall CK: Simulations and
experiments delineate amyloid fibrilization by peptides derived
from glaucoma-associated myocilin. J Phys Chem B. 122:5845–5850.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hewitt AW, Mackey DA and Craig JE:
Myocilin myocilin allele-specific glaucoma phenotype database. Hum
Mutat. 29:207–211. 2008. View Article : Google Scholar
|
|
27
|
Stothert AR, Fontaine SN, Sabbagh JJ and
Dickey CA: Targeting the ER-autophagy system in the trabecular
meshwork to treat glaucoma. Exp Eye Res. 144:38–45. 2016.
View Article : Google Scholar :
|
|
28
|
Yao YH, Wang YQ, Fang WF, Zhang L, Yang JH
and Zhu YH: A recurrent G367R mutation in MYOC associated with
juvenile open angle glaucoma in a large chinese family. Int J
Ophthalmol. 11:369–374. 2018.
|
|
29
|
Souzeau E, Burdon KP, Ridge B, Dubowsky A,
Ruddle JB and Craig JE: A novel de novo myocilin variant in a
patient with sporadic juvenile open angle glaucoma. BMC Med Genet.
17:302016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang F, Li Y, Lan L, Li B, Lin L, Lu X and
Li J: Ser341 Pro MYOC gene mutation in a family with primary
open-angle glaucoma. Int J Mol Med. 35:1230–1236. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yang Y, Shi Y, Huang X, Li X, Ye Z, Shuai
P, Qu C, Chen R, Xu J, Yang Z, et al: Identification of a novel
MYOC mutation in a Chinese family with primary open-angle glaucoma.
Gene. 571:188–193. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zadoo S, Nguyen A, Zode G and Hulleman JD:
A novel luciferase assay for sensitively monitoring myocilin
variants in cell culture. Invest Ophthalmol Vis Sci. 57:1939–1950.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Aroca-Aguilar JD, Martínez-Redondo F,
Sánchez-Sánchez F, Coca-Prados M and Escribano J: Functional role
of proteolytic processing of recombinant myocilin in
self-aggregation. Invest Ophthalmol Vis Sci. 51:72–78. 2010.
View Article : Google Scholar :
|
|
34
|
Aroca-Aguilar JD, Sánchez-Sánchez F, Ghosh
S, Fernández-Navarro A, Coca-Prados M and Escribano J: Interaction
of recombinant myocilin with the matricellular protein SPARC:
Functional implications. Invest Ophthalmol Vis Sci. 52:179–189.
2011. View Article : Google Scholar :
|
|
35
|
Resch ZT and Fautsch MP:
Glaucoma-associated myocilin: A better understanding but much more
to learn. Exp Eye Res. 88:704–712. 2009. View Article : Google Scholar :
|
|
36
|
Caballero M, Rowlette LL and Borras T:
Altered secretion of a TIGR/MYOC mutant lacking the olfactomedin
domain. Biochim Biophys Acta. 1502:447–460. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Gobeil S, Letartre L and Raymond V:
Functional analysis of the glaucoma-causing TIGR/myocilin protein:
Integrity of amino-terminal coiled-coil regions and olfactomedin
homology domain is essential for extracellular adhesion and
secretion. Exp Eye Res. 82:1017–1029. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhou T, Souzeau E, Sharma S, Landers J,
Mills R, Goldberg I, Healey PR, Graham S, Hewitt AW, Mackey DA, et
al: Whole exome sequencing implicates eye development the unfolded
protein response and plasma membrane homeostasis in primary
open-angle glaucoma. PLoS One. 12:e01724272017. View Article : Google Scholar
|
|
39
|
Goldwich A, Ethier CR, Chan DW and Tamm
ER: Perfusion with the olfactomedin domain of myocilin does not
affect outflow facility. Invest Ophthalmol Vis Sci. 44:1953–1961.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sánchez-Sánchez F, Martínez-Redondo F,
Aroca-Aguilar JD, Coca-Prados M and Escribano J: Characterization
of the intracellular proteolytic cleavage of myocilin and
identification of calpain II as a myocilin-processing protease. J
Biol Chem. 282:27810–27824. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Jacobson N, Andrews M, Shepard AR,
Nishimura D, Searby C, Fingert JH, Hageman G, Mullins R, Davidson
BL, Kwon YH, et al: Non-secretion of mutant proteins of the
glaucoma gene myocilin in cultured trabecular meshwork cells and in
aqueous humor. Hum Mol Genet. 10:117–125. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Aroca-Aguilar JD, Sánchez-Sánchez F,
Martínez-Redondo F, Coca-Prados M and Escribano J: Heterozygous
expression of myocilin glaucoma mutants increases secretion of the
mutant forms and reduces extracellular processed myocilin. Mol Vis.
14:2097–2108. 2008.PubMed/NCBI
|
|
43
|
Hood JL, Brooks WH and Roszman TL:
Differential compart-mentalization of the calpain/calpastatin
network with the endoplasmic reticulum and Golgi apparatus. J Biol
Chem. 279:43126–43135. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wei YT, Li YQ, Bai YJ, Wang M, Chen JH, Ge
J and Zhuo YH: Pro370Leu myocilin mutation in a chinese pedigree
with juvenile-onset open angle glaucoma. Mol Vis. 17:1449–1456.
2011.PubMed/NCBI
|
|
45
|
Ueda J, Wentz-Hunter K and Yue BY:
Distribution of myocilin and extracellular matrix components in the
juxtacanalicular tissue of human eyes. Invest Ophthalmol Vis Sci.
43:1068–1076. 2002.PubMed/NCBI
|
|
46
|
Li Y, Aroca-Aguilar JD, Ghosh S,
Sánchez-Sánchez F, Escribano J and Coca-Prados M: Interaction of
myocilin with the C-terminal region of hevin. Biochem Biophys Res
Commun. 339:797–804. 2006. View Article : Google Scholar
|
|
47
|
Torrado M, Trivedi R, Zinovieva R,
Karavanova I and Tomarev SI: Optimedin: A novel
olfactomedin-related protein that interacts with myocilin. Hum Mol
Genet. 11:1291–1301. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Filla MS, Liu X, Nguyen TD, Polansky JR,
Brandt CR, Kaufman PL and Peters DM: In vitro localization of
TIGR/MYOC in trabecular meshwork extracellular matrix and binding
to fibro-nectin. Invest Ophthalmol Vis Sci. 43:151–161.
2002.PubMed/NCBI
|
|
49
|
Fautsch MP, Vrabel AM and Johnson DH: The
identification of myocilin-associated proteins in the human
trabecular meshwork. Exp Eye Res. 82:1046–1052. 2006. View Article : Google Scholar
|
|
50
|
Joe MK, Lieberman RL, Nakaya N and Tomarev
SI: Myocilin regulates metalloprotease 2 activity through
interaction with TIMP3. Invest Ophthalmol Vis Sci. 58:5308–5318.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Patel GC, Phan TN, Maddineni P, Kasetti
RB, Millar JC, Clark AF and Zode GS: Dexamethasone-induced ocular
hypertension in mice: Effects of myocilin and route of
administration. Am J Pathol. 187:713–723. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Li G, Cui G, Dismuke WM, Navarro I,
Perkumas K, Woodward DF and Stamer WD: Differential response and
withdrawal profile of glucocorticoid-treated human trabecular
meshwork cells. Exp Eye Res. 155:38–46. 2017. View Article : Google Scholar :
|
|
53
|
Webber HC, Bermudez JY, Sethi A, Clark AF
and Mao W: Crosstalk between TGFβ and Wnt signaling pathways in the
human trabecular meshwork. Exp Eye Res. 148:97–102. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Raghunathan VK, Morgan JT, Park SA, Weber
D, Phinney BS, Murphy CJ and Russell P: Dexamethasone stiffens
trabecular meshwork trabecular meshwork cells and matrix. Invest
Ophthalmol Vis Sci. 56:4447–4459. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Nguyen TD, Chen P, Huang WD, Chen H,
Johnson D and Polansky JR: Gene structure and properties of
myocilin an olfactomedin-related glycoprotein cloned from
glucocorticoid-induced trabecular meshwork cells. J Biol Chem.
273:6341–6350. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Agrahari V, Li G, Agrahari V, Navarro I,
Perkumas K, Mandal A, Stamer WD and Mitra AK: Pentablock copolymer
dexamethasone nanoformulations elevate MYOC: In vitro liberation,
activity and safety in human trabecular meshwork cells.
Nanomedicine (Lond). 12:1911–1926. 2017. View Article : Google Scholar
|
|
57
|
Prat C, Belville C, Comptour A, Marceau G,
Clairefond G, Chiambaretta F, Sapin V and Blanchon L: Myocilin
expression is regulated by retinoic acid in the trabecular
meshwork-derived cellular environment. Exp Eye Res. 155:91–98.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wu Y, Chen W, Guo M, He Q and Hu Y:
Effects of transforming growth factor-β2 on myocilin expression and
secretion in human primary cultured trabecular meshwork cells. Int
J Clin Exp Pathol. 7:4827–4836. 2014.
|
|
59
|
Huang X, Li M, Guo X, Li S, Xiao X, Jia X,
Liu X and Zhang Q: Mutation analysis of seven known
glaucoma-associated genes in Chinese patients with glaucoma. Invest
Ophthalmol Vis Sci. 55:3594–3602. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Park J, Kim M, Park CK, Chae H, Lee S, Kim
Y, Jang W, Chi HY, Park HY and Park SH: Molecular analysis of
myocilin and optineurin genes in Korean primary glaucoma patients.
Mol Med Rep. 14:2439–2448. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Maurya N, Agarwal NR and Ghosh I: Low-dose
rotenone exposure induces early senescence leading to late
apoptotic signaling cascade in human trabecular meshwork (HTM) cell
line: An in vitro glaucoma model. Cell Biol Int. 40:107–120. 2016.
View Article : Google Scholar
|
|
62
|
Pattabiraman PP and Rao PV: Hic-5
regulates actin cytoskeletal reorganization and expression of
fibrogenic markers and myocilin in trabecular meshwork cells.
Invest Ophthalmol Vis Sci. 56:5656–5669. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wei X, Cho KS, Thee EF, Jager MJ and Chen
DF: Neuroimmflammation and microglia in glaucoma: Time for a
paradigm shift. J Neurosci Res. 2018.Epub ahead of print.
|
|
64
|
Wareham LK, Buys ES and Sappington RM: The
nitric oxide-guanylate cyclase pathway and glaucoma. Nitric Oxide.
77:75–87. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Michelessi M, Bicket AK and Lindsley K:
Cyclodestructive procedures for non-refractory glaucoma. Cochrane
Database Syst Rev. 4:CD0093132018.PubMed/NCBI
|
|
66
|
Stamer WD and Acott TS: Current
understanding of conventional outflow dysfunction in glaucoma. Curr
Opin Ophthalmol. 23:135–143. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kim BS, Savinova OV, Reedy MV, Martin J,
Lun Y, Gan L, Smith RS, Tomarev SI, John SW and Johnson RL:
Targeted disruption of the myocilin gene (Myoc) suggests that human
glaucoma-causing mutations are gain of function. Mol Cell Biol.
21:7707–7713. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Acott TS, Kelley MJ, Keller KE, Vranka JA,
Abu-Hassan DW, Li X, Aga M and Bradley JM: Intraocular pressure
homeostasis: Maintaining balance in a high-pressure environment. J
Ocul Pharmacol Ther. 30:94–101. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fautsch MP, Bahler CK, Jewison DJ and
Johnson DH: Recombinant TIGR/MYOC increases outflow resistance in
the human anterior segment. Invest Ophthalmol Vis Sci.
41:4163–4168. 2000.PubMed/NCBI
|
|
70
|
Patel GC, Liu Y, Millar JC and Clark AF:
Glucocorticoid receptor GRβ regulates glucocorticoid-induced ocular
hypertension in mice. Sci Rep. 8:8622018. View Article : Google Scholar
|
|
71
|
Faralli JA, Dimeo KD, Trane RM and Peters
D: Absence of a secondary glucocorticoid response in C57BL/6J mice
treated with topical dexamethasone. PLoS One. 13:e01926652018.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Nazir S, Mukhtar M, Shahnawaz M, Farooqi
S, Fatima N, Mehmood R and Sheikh N: A novel single nucleotide
polymorphism in exon 3 of MYOC enhances the risk of glaucoma. PLoS
One. 13:e01951572018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Shepard AR, Jacobson N, Millar JC, Pang
IH, Steely HT, Searby CC, Sheffield VC, Stone EM and Clark AF:
Glaucoma-causing myocilin mutants require the Peroxisomal targeting
signal-1 receptor (PTS1R) to elevate intraocular pressure. Hum Mol
Genet. 16:609–617. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Guan Y, Li J, Zhan T, Wang JW, Yu JB and
Yang L: Idebenone maintains survival of mutant myocilin cells by
inhibiting apoptosis. Chin Med J (Engl). 129:2001–2004. 2016.
View Article : Google Scholar
|
|
75
|
Nag A, Lu H, Arno M, Iglesias AI,
Bonnemaijer P, Broer L, Uitterlinden AG, Klaver CC, van Duijn C,
Hysi PG and Hammond CJ: Evaluation of the myocilin mutation
gln368stop demonstrates reduced penetrance for glaucoma in european
populations. Ophthalmology. 124:547–553. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lam DS, Leung YF, Chua JK, Baum L, Fan DS,
Choy KW and Pang CP: Truncations in the TIGR gene in individuals
with and without primary open-angle glaucoma. Invest Ophthalmol Vis
Sci. 41:1386–1391. 2000.PubMed/NCBI
|
|
77
|
Morissette J, Clépet C, Moisan S, Dubois
S, Winstall E, Vermeeren D, Nguyen TD, Polansky JR, Côté G, Anctil
JL, et al: Homozygotes carrying an autosomal dominant TIGR mutation
do not manifest glaucoma. Nat Genet. 19:319–321. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kuchtey J, Chowdhury UR, Uptegraft CC,
Fautsch MP and Kuchtey RW: A de novo MYOC mutation detected in
juvenile open angle glaucoma causes non-secretion of associated
with reduced myocilin protein in aqueous humor. Eur J Med Genet.
56:292–296. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Huard DJE, Crowley VM, Du Y, Cordova RA,
Sun Z, Tomlin MO, Dickey CA, Koren J III, Blair L, Fu H, et al:
Trifunctional high-throughput screen identifies promising scaffold
to inhibit Grp94 and treat myocilin-associated glaucoma. ACS Chem
Biol. 13:933–941. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Stothert AR, Suntharalingam A, Huard DJ,
Fontaine SN, Crowley VM, Mishra S, Blagg BS, Lieberman RL and
Dickey CA: Exploiting the interaction between Grp94 and aggregated
myocilin to treat glaucoma. Hum Mol Genet. 23:6470–6480. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Caballero M and Borras T: Inefficient
processing of an olfactomedindeficient myocilin mutant: Potential
physiological relevance to glaucoma. Biochem Biophys Res Commun.
282:662–670. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Vollrath D and Liu Y: Temperature
sensitive secretion of mutant myocilins. Exp Eye Res. 82:1030–1036.
2006. View Article : Google Scholar
|
|
83
|
Yam GH, Gaplovska-Kysela K, Zuber C and
Roth J: Aggregated myocilin induces russell bodies and causes
apoptosis: Implications for the pathogenesis of myocilin-caused
primary open-angle glaucoma. Am J Pathol. 170:100–109. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Joe MK, Sohn S, Hur W, Moon Y, Choi YR and
Kee C: Accumulation of mutant myocilins in ER leads to ER stress
and potential cytotoxicity in human trabecular meshwork cells.
Biochem Biophys Res Commun. 312:592–600. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gould DB, Miceli-Libby L, Savinova OV,
Torrado M, Tomarev SI, Smith RS and John SW: Genetically increasing
Myoc expression supports a necessary pathologic role of abnormal
proteins in glaucoma. Mol Cell Biol. 24:9019–9025. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Joe MK, Nakaya N, Abu-Asab M and Tomarev
SI: Mutated myocilin and heterozygous Sod2 deficiency act
synergistically in a mouse model of open-angle glaucoma. Hum Mol
Genet. 24:3322–3334. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Joe MK and Tomarev SI: Expression of
myocilin mutants sensitizes cells to oxidative stress-induced
apoptosis: Implication for glaucoma pathogenesis. Am J Pathol.
176:2880–2890. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Hill SE and Donegan RK: The
glaucoma-associated olfactomedin domain of myocilin forms
polymorphic fibrils that are constrained by partial unfolding and
peptide sequence. J Mol Biol. 426:921–935. 2014. View Article : Google Scholar :
|
|
89
|
Zode GS, Kuehn MH, Nishimura DY, Searby
CC, Mohan K, Grozdanic SD, Bugge K, Anderson MG, Clark AF, Stone EM
and Sheffield VC: Reduction of ER stress via a chemical chaperone
prevents disease phenotypes in a mouse model of primary open angle
glaucoma. J Clin Invest. 121:3542–3553. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Maddineni P, Kasetti RB and Zode GS:
Methods for analyzing endoplasmic reticulum stress in the
trabecular meshwork of glaucoma models. Methods Mol Biol.
1695:121–134. 2018. View Article : Google Scholar
|
|
91
|
Chong WC, Shastri MD and Eri R:
Endoplasmic reticulum stress and oxidative stress: A vicious nexus
implicated in bowel disease pathophysiology. Int J Mol Sci.
18:E7712017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Plaisance V, Brajkovic S, Tenenbaum M,
Favre D, Ezanno H, Bonnefond A, Bonner C, Gmyr V, Kerr-Conte J,
Gauthier BR, et al: Endoplasmic reticulum stress links oxidative
stress to impaired pancreatic beta-cell function caused by human
oxidized LDL. PLoS One. 11:e01630462016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhao J, Wang S, Zhong W, Yang B, Sun L and
Zheng Y: Oxidative stress in the trabecular meshwork (Review). Int
J Mol Med. 38:995–1002. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Grootjans J, Kaser A, Kaufman RJ and
Blumberg RS: The unfolded protein response in immunity and
inflammation. Nat Rev Immunol. 16:469–484. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Luo K and Cao SS: Endoplasmic reticulum
stress in intestinal epithelial cell function and inflammatory
bowel disease. Gastroenterol Res Pract. 2015:3287912015. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Peters JC, Bhattacharya S, Clark AF and
Zode GS: Increased endoplasmic reticulum stress in human
glaucomatous trabecular meshwork cells and tissues. Invest
Ophthalmol Vis Sci. 56:3860–3868. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Huard DJ and Lieberman RL: Progress toward
development of a proteostasis drug for myocilin-associated
glaucoma. Future Med Chem. 10:1391–1393. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Mishra SJ, Ghosh S, Stothert AR, Dickey CA
and Blagg BS: Transformation of the non-selective
aminocyclohexanol-based Hsp90 inhibitor into a Grp94-seletive
scaffold. ACS Chem Biol. 12:244–253. 2017. View Article : Google Scholar :
|
|
99
|
Crowley VM, Khandelwal A, Mishra S,
Stothert AR, Huard DJ, Zhao J, Muth A, Duerfeldt AS, Kizziah JL,
Lieberman RL, et al: Development of glucose regulated protein
94-selective inhibitors based on the BnIm and radamide scaffold. J
Med Chem. 59:3471–3488. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Stothert AR, Suntharalingam A, Tang X,
Crowley VM, Mishra SJ, Webster JM, Nordhues BA, Huard DJE,
Passaglia CL, Lieberman RL, et al: Isoform-selective Hsp90
inhibition rescues model of hereditary open-angle glaucoma. Sci
Rep. 7:179512017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Keller KE and Wirtz MK: Working your SOCS
off: The role of ASB10 and protein degradation pathways in
glaucoma. Exp Eye Res. 158:154–160. 2017. View Article : Google Scholar
|
|
102
|
Wang N, Chintala SK, Fini ME and Schuman
JS: Activation of a tissue-specific stress response in the aqueous
outflow pathway of the eye defines the glaucoma disease phenotype.
Nat Med. 7:304–309. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yerramothu P, Vijay AK and Willcox MDP:
Inflammasomes the eye and anti-inflammasome therapy. Eye (Lond).
32:491–505. 2018. View Article : Google Scholar
|
|
104
|
Meier-Soelch J, Jurida L, Weber A, Newel
D, Kim J, Braun T, Schmitz ML and Kracht M: RNAi-based
identification of gene-specific nuclear cofactor networks
regulating interleukin-1 target genes. Front Immunol. 9:7752018.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Yasuda M, Takayama K, Kanda T, Taguchi M,
Someya H and Takeuchi M: Comparison of intraocular
pressure-lowering effects of ripasudil hydrochloride hydrate for
inflammatory and corticosteroid-induced ocular hypertension. PLoS
One. 12:e01853052017. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Itakura T, Peters DM and Fini ME:
Glaucomatous MYOC mutations activate the IL-1/NF-κB inflammatory
stress response and the glaucoma marker SELE in trabecular meshwork
cells. Mol Vis. 21:1071–1084. 2015.
|
|
107
|
Kasetti RB, Phan TN, Millar JC and Zode
GS: Expression of mutant myocilin induces abnormal intracellular
accumulation of selected extracellular matrix proteins in the
trabecular meshwork. Invest Ophthalmol Vis Sci. 57:6058–6069. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Donegan RK, Hill SE, Freeman DM, Nguyen E,
Orwig SD, Turnage KC and Lieberman RL: Structural basis for
misfolding in myocilin-associated glaucoma. Hum Mol Genet.
24:2111–2124. 2015. View Article : Google Scholar :
|
|
109
|
Joe MK, Sohn S, Choi YR, Park H and Kee C:
Identification of flotillin-1 as a protein interacting with
myocilin: Implications for the pathogenesis of primary open-angle
glaucoma. Biochem Biophys Res Commun. 336:1201–1206. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Joe MK, Kwon HS, Cojocaru R and Tomarev
SI: Myocilin regulates cell proliferation and survival. J Biol
Chem. 289:10155–10167. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kessenbrock K, Wang CY and Werb Z: Matrix
metalloproteinases in stem cell regulation and cancer. Matrix Biol.
46:184–190. 2015. View Article : Google Scholar
|
|
112
|
De Groef L, Van Hove I, Dekeyster E,
Stalmans I and Moons L: MMPs in the neuroretina and optic nerve:
Modulators of glaucoma pathogenesis and repair. Invest Ophthalmol
Vis Sci. 55:1953–1964. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ashworth Briggs EL, Toh T, Eri R, Hewitt
AW and Cook AL: TIMP1 TIMP2 and TIMP4 are increased in aqueous
humor from primary open angle glaucoma patients. Mol Vis.
21:1162–1172. 2015.
|
|
114
|
Filla MS, Dimeo KD, Tong T and Peters DM:
Disruption of fibronectin matrix affects type IV collagen fibrillin
and laminin deposition into extracellular matrix of human
trabecular meshwork (HTM) cells. Exp Eye Res. 165:7–19. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zode GS, Sharma AB, Lin X, Searby CC,
Bugge K, Kim GH, Clark AF and Sheffield VC: Ocular-specific ER
stress reduction rescues glaucoma in murine glucocorticoid-induced
glaucoma. J Clin Invest. 124:1956–1965. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ho H, Htoon HM, Yam GH, Toh LZ, Lwin NC,
Chu S, Lee YS, Wong TT and Seet LF: Altered anterior segment
biometric parameters in mice deficient in SPARC. Invest Ophthalmol
Vis Sci. 58:386–393. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Hill SE, Nguyen E, Donegan RK,
Patterson-Orazem AC, Hazel A, Gumbart JC and Lieberman RL:
Structure and misfolding of the flexible tripartite coiled-coil
domain of glaucoma-associated myocilin. Structure. 25:1697–1707.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Burns JN, Turnage KC, Walker CA and
Lieberman RL: The stability of myocilin olfactomedin domain
variants provides new insight into glaucoma as a protein misfolding
disorder. Biochemistry. 50:5824–5833. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Burns JN, Orwig SD, Harris JL, Watkins JD,
Vollrath D and Lieberman RL: Rescue of glaucoma-causing mutant
myocilin thermal stability by chemical chaperones. ACS Chem Biol.
5:477–487. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Honda R: Role of the disulfide bond in
prion protein amyloid formation: A thermodynamic and kinetic
analysis. Biophys J. 114:885–892. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Fingert JH, Héon E, Liebmann JM, Yamamoto
T, Craig JE, Rait J, Kawase K, Hoh ST, Buys YM, Dickinson J, et al:
Analysis of myocilin mutations in 1703 glaucoma patients from five
different populations. Hum Mol Genet. 8:899–905. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Shimizu S, Lichter PR, Johnson AT, Zhou Z,
Higashi M, Gottfredsdottir M, Othman M, Moroi SE, Rozsa FW,
Schertzer RM, et al: Age-dependent prevalence of mutations at the
GLC1A locus in primary open-angle glaucoma. Am J Ophthalmol.
130:165–177. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Millá E, Mañé B, Duch S, Hernan I, Borràs
E, Planas E, Dias Mde S, Carballo M and Gamundi MJ; Spanish
Multicenter Glaucoma Group-Estudio Multicéntrico Español de
Investigación Genética del Glaucoma, EMEIGG: Survey of familial
glaucoma shows a high incidence of cytochrome P450 family 1
subfamily B polypeptide 1 (CYP1B1) mutations in non-consanguineous
congenital forms in a Spanish population. Mol Vis. 19:1707–1722.
2013.
|