Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2019 Volume 43 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2019 Volume 43 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review)

  • Authors:
    • Yarely M. Salinas‑Vera
    • Laurence A. Marchat
    • Dolores Gallardo‑Rincón
    • Erika Ruiz‑García
    • Horacio Astudillo-De La Vega
    • Raquel Echavarría‑Zepeda
    • César López‑Camarillo
  • View Affiliations / Copyright

    Affiliations: Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico, Ciudad de Mexico 03100, Mexico, Programa en Biomedicina Molecular y Red de Biotecnologia, Instituto Politecnico Nacional, Ciudad de Mexico 07320, Mexico, Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, Ciudad de Mexico 14080, Mexico, Laboratorio de Investigacion Translacional en Cáncer y Terapia Celular, Hospital de Oncologia, Centro Médico Nacional Siglo XXI, Ciudad de Mexico 06720, Mexico , Catedratico CONACYT, Instituto Politécnico Nacional, Ciudad de Mexico 11350, Mexico
  • Pages: 657-670
    |
    Published online on: November 27, 2018
       https://doi.org/10.3892/ijmm.2018.4003
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Angiogenesis is an important hallmark of cancer serving a key role in tumor growth and metastasis. Therefore, tumor angiogenesis has become an attractive target for development of novel drug therapies. An increased amount of anti‑angiogenic compounds is currently in preclinical and clinical development for personalized therapies. However, resistance to current angiogenesis inhibitors is emerging, indicating that there is a need to identify novel anti‑angiogenic agents. In the last decade, the field of microRNA biology has exploded revealing unsuspected functions in tumor angiogenesis. These small non‑coding RNAs, which have been dubbed as angiomiRs, may target regulatory molecules driving angiogenesis, such as cytokines, metalloproteinases and growth factors, including vascular endothelial growth factor, platelet‑derived growth factor, fibroblast growth factor, epidermal growth factor, hypoxia inducible factor‑1, as well as mitogen‑activated protein kinase, phosphoinositide 3‑kinase and transforming growth factor signaling pathways. The present review discusses the current progress towards understanding the functions of miRNAs in tumor angiogenesis regulation in diverse types of human cancer. Furthermore, the potential clinical application of angiomiRs towards anti‑angiogenic tumor therapy was explored.
View Figures

Figure 1

Figure 2

View References

1 

Weis SM and Cheresh DA: Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat Med. 17:1359–1370. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS and Hendrix MJ: Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. Am J Pathol. 155:739–752. 1999. View Article : Google Scholar : PubMed/NCBI

3 

Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 3:721–732. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Cai X, Hagedorn CH and Cullen BR: Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 10:1957–1966. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Han J, Lee Y, Yeom KH, Kim YK, Jin H and Kim VN: The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18:3016–3027. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Ruby JG, Jan CH and Bartel DP: Intronic microRNA precursors that bypass Drosha processing. Nature. 448:83–86. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K and Shiekhattar R: TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 436:740–744. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Vasudevan S, Tong Y and Steitz JA: Switching from repression to activation: microRNAs can up-regulate translation. Science. 318:1931–1934. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Sen GL and Blau HM: Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol. 7:633–636. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Bertoli G, Cava C and Castiglioni I: MicroRNAs: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 5:1122–1143. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Vecchione A, Belletti B, Lovat F, Volinia S, Chiappetta G, Giglio S, Sonego M, Cirombella R, Onesti EC, Pellegrini P, et al: A microRNA signature defines chemoresistance in ovarian cancer through modulation of angiogenesis. Proc Natl Acad Sci USA. 110:9845–9850. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Borges NM, do Vale Elias M, Fook-Alves VL, Andrade TA, de Conti ML, Macedo MP, Begnami MD, Campos AH, Etto LY, Bortoluzzo AB, et al: Angiomirs expression profiling in diffuse large B-Cell lymphoma. Oncotarget. 7:4806–4816. 2016. View Article : Google Scholar :

13 

Suárez Y and Sessa WC: MicroRNAs as novel regulators of angiogenesis. Circ Res. 104:442–454. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Suzuki HI, Katsura A, Matsuyama H and Miyazono K: MicroRNA regulons in tumor microenvironment. Oncogene. 34:3085–3094. 2015. View Article : Google Scholar

15 

Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV and Hannon G: Dicer is essential for mouse development. Nat Genet. 35:215–217. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q and Zhao G: Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem. 280:9330–9335. 2005. View Article : Google Scholar

17 

Suárez Y, Fernández-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, Iruela-Arispe ML, Merkenschlager M and Sessa WC: Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci USA. 105:14082–14087. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Kuehbacher A, Urbich C, Zeiher AM and Dimmeler S: Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 101:59–68. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Suárez Y, Fernández-Hernando C, Pober JS and Sessa WC: Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 100:1164–1173. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S and Rainaldi G: MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 108:3068–3071. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Heusschen R, van Gink M, Griffioen AW and Thijssen VL: MicroRNAs in the tumor endothelium: Novel controls on the angioregulatory switchboard. Biochim Biophys Acta. 1805:87–96. 2010.

22 

McCall M, Kent O, Yu J, Fox-Talbot K, Zaiman A and Halushka M: MicroRNA profiling of diverse endothelial cell types. BMC Med Genomics. 4:782011. View Article : Google Scholar : PubMed/NCBI

23 

Shen G, Li X, Jia Y, Piazza G and Xi Y: Hypoxia-regulated microRNAs in human cancer. Acta Pharmacol Sin. 34:336–341. 2013. View Article : Google Scholar : PubMed/NCBI

24 

van Beijnum J, Giovannetti E, Poel D, Nowak-Sliwinska P and Griffioe A: miRNAs: micro-managers of anticancer combination therapies. Angiogenesis. 20:269–285. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Siegel R, Miller K and Jemal A: Cancer statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Parker L, Schmidt M, Jin S, Gray A, Beis D, Pham T, Frantz G, Palmieri S, Hillan K, Stainier D, et al: The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature. 428:754–758. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Meister J and Schmidt M: miR-126 and miR-126*: New players in cancer. ScientificWorld J. 10:2090–2100. 2010. View Article : Google Scholar

28 

Zhu N, Zhang D, Xie H, Zhou Z, Chen H, Hu T, Bai Y, Shen Y, Yuan W, Jing Q and Qin Y: Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2. Mol Cell Biochem. 351:57–164. 2011. View Article : Google Scholar

29 

Lu YY, Sweredoski MJ, Huss D, Lansford R, Hess S and Tirrell DA: Prometastatic GPCR CD97 is a direct target of tumor suppressor microRNA-126. ACS Chem Biol. 9:334–338. 2014. View Article : Google Scholar

30 

Zhang Y, Yang P, Sun T, Li D, Xu X, Rui Y, Li C, Chong M, Ibrahim T, Mercatali L, et al: miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol. 15:284–294. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Png KJ, Halberg N, Yoshida M and Tavazoie SF: A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature. 481:190–194. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Wu Z, Cai X, Huang C, Xu J and Liu A: miR-497 suppresses angiogenesis in breast carcinoma by targeting HIF-1α. Oncol Rep. 35:1696–1702. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Tu Y, Liu L, Zhao D, Liu Y, Ma X, Fan Y, Wan L, Huang T, Cheng Z and Shen B: Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2. Sci Rep. 5:138272015. View Article : Google Scholar : PubMed/NCBI

34 

Fox S, Generali D and Harris A: Breast tumour angiogenesis. Breast Cancer Res. 9:2162017. View Article : Google Scholar

35 

Chang S, Wang R, Akagi K, Kim K, Martin B, Cavallone L; Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab); Haines DC, Basik M, Mai P, et al: Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat Med. 17:1275–1282. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Danza K, De Summa S, Pinto R, Pilato B, Palumbo O, Merla G, Simone G and Tommasi S: MiR-578 and miR-573 as potential players in BRCA-related breast cancer angiogenesis. Oncotarget. 6:471–483. 2015. View Article : Google Scholar :

37 

Kong W, He L, Coppola M, Guo J, Esposito NN, Coppola D and Cheng JQ: MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem. 285:17869–17879. 2016. View Article : Google Scholar

38 

Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J, Lancaster JM, Coppola D, Sellers TA, Djeu JY and Cheng JQ: Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 33:679–689. 2014. View Article : Google Scholar :

39 

Foekens J, Sieuwerts A, Smid M, Look M, de Weerd V, Boersma A, Klijn J, Wiemer E and Martens J: Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci USA. 105:13021–13026. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX and Shao JY: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 14:2348–2360. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Zhao D, Tu Y, Wan L, Bu L, Huang T, Sun X, Wang K and Shen B: In vivo monitoring of angiogenesis inhibition via down-regulation of mir-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging. PLoS One. 8:e714722013. View Article : Google Scholar : PubMed/NCBI

42 

Mathsyaraja H, Thies K, Taffany D, Deighan C, Liu T, Yu L, Fernandez S, Shapiro C, Otero J, Timmers C, et al: CSF1-ETS2-induced microRNA in myeloid cells promote metastatic tumor growth. Oncogene. 34:3651–3661. 2015. View Article : Google Scholar

43 

He T, Qi F, Jia L, Wang S, Song N, Guo L, Fu Y and Luo Y: MicroRNA-5423 pinhibits tumour angiogenesis by targeting angiopoietin-2. J Pathol. 232:499–508. 2014. View Article : Google Scholar : PubMed/NCBI

44 

He T, Qi F, Jia L, Wang S, Wang C, Song N, Fu Y, Li L and Luo Y: Tumor cell-secreted angiogenin induces angiogenic activity of endothelial cells by suppressing miR-542-3p. Cancer Lett. 368:115–125. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Leidner RS, Li L and Thompson CL: Dampening enthusiasm for circulating microRNA in breast cancer. PLoS One. 8:e578412013. View Article : Google Scholar : PubMed/NCBI

46 

Li JT, Wang LF, Zhao YL, Yang T, Li W, Zhao J, Yu F, Wang L, Meng YL, Liu NN, et al: Nuclear factor of activated T cells 5 maintained by Hotair suppression of miR-568 upregulates S100 calcium binding protein A4 to promote breast cancer metastasis. Breast Cancer Res. 16:4542014. View Article : Google Scholar : PubMed/NCBI

47 

Flores-Pérez A, Marchat L, Rodríguez-Cuevas S, Bautista-Piña V, Hidalgo-Miranda A, Ocampo E, Martínez M, Palma-Flores C, Fonseca-Sánchez M, Astudillo-de la Vega H, et al: Dual targeting of ANGPT1 and TGFBR2 genes by miR-204 controls angiogenesis in breast cancer. Sci Rep. 6:345042016. View Article : Google Scholar : PubMed/NCBI

48 

Kirschmann DA, Seftor EA, Hardy KM, Seftor RE and Hendrix MJ: Molecular pathways: Vasculogenic mimicry in tumor cells: Diagnostic and therapeutic implications. Clin Cancer Res. 18:2726–3272. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Salinas-Vera YM, Marchat LA, García-Vázquez R, González de la Rosa CH, Castañeda-Saucedo E, Tito NN, Flores CP, Pérez-Plasencia C, Cruz-Colin JL, Carlos-Reyes Á, et al: Cooperative multi-targeting of signaling networks by angiomiR-204 inhibits vasculogenic mimicry in breast cancer cells. Cancer Lett. 432:17–27. 2018. View Article : Google Scholar : PubMed/NCBI

50 

American Cancer Society: Cancer facts and figures 2015. Atlanta: American Cancer Society; pp. 1–52. 2015

51 

Abramson MA, Jazag A, van der Zee JA and Whang EE: The molecular biology of pancreatic cancer. Gastrointest Cancer Res. 1(4 Suppl 2): S7–S12. 2007.PubMed/NCBI

52 

Carr RM and Fernandez-Zapico ME: Pancreatic cancer microenvironment, to target or not to target? EMBO Mol Med. 8:80–82. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Khan S, Ansarullah, Kumar D, Jaggi M and Chauhan SC: Targeting microRNAs in pancreatic cancer: Microplayers in the big game. Cancer Res. 73:6541–6547. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Mace TA, Collins AL, Wojcik SE, Croce CM, Lesinski GB and Bloomston M: Hypoxia induces the overexpression of microRNA-21 in pancreatic cancer cells. J Surg Res. 184:855–860. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Volinia S, Calin G, Liu C, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, et al: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 103:2257–2261. 2006. View Article : Google Scholar : PubMed/NCBI

56 

Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, Brackett DJ and Schmittgen TD: Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer. 120:1046–1054. 2007. View Article : Google Scholar

57 

Moriyama T, Ohuchida K, Mizumoto K, Yu J, Sato N, Nabae T, Takahata S, Toma H, Nagai E and Tanaka M: MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol Cancer Ther. 8:1067–1074. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Bao B, Ali S, Kong D, Sarkar S, Wang Z, Banerjee S, Aboukameel A, Padhye S, Philip P and Sarkar F: Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One. 6:e178502011. View Article : Google Scholar : PubMed/NCBI

59 

Kadera BE, Li L, Toste PA, Wu N, Adams C, Dawson DW and Donahue TR: MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-associated fibroblasts promotes metastasis. PLoS One. 8:e719782013. View Article : Google Scholar : PubMed/NCBI

60 

Hoffmann A, Mori R, Vallbohmer D, Brabender J, Klein E, Drebber U, Baldus S, Cooc J, Azuma M, Metzger R, et al: High expression of HIF1a is a predictor of clinical outcome in patients with pancreatic ductal adenocarcinomas and correlated to PDGFA, VEGF, and bFGF. Neoplasia. 10:674–679. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Wang X, Ren H, Zhao T, Ma W, Dong J, Zhang S, Xin W, Yang S, Jia L and Hao J: Single nucleotide polymorphism in the microRNA-199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes. Oncotarget. 7:13717–1329. 2016.PubMed/NCBI

62 

Chan YC, Roy S, Huang Y, Khanna S and Sen C: The microRNA miR-199a-5p down-regulation switches on wound angiogenesis by derepressing the v-ets erythroblastosis virus E26 oncogene homolog 1-matrix metalloproteinase-1 pathway. J Biol Chem. 287:41032–41043. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Morton J, Timpson P, Karim S, Ridgway R, Athineos D, Doyle B, Jamieson N, Oien K, Lowy A, Brunton V, et al: Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA. 107:246–251. 2010. View Article : Google Scholar

64 

Frampton A, Krell J, Jamieson N, Gall T, Giovannetti E, Funel N, Mato Prado M, Krell D, Habib N, Castellano L, et al: microRNAs with prognostic significance in pancreatic ductal adenocarcinoma: A meta-analysis. Eur J Cancer. 51:1389–1404. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Alemar B, Izetti P, Gregório C, Macedo GS, Castro MA, Osvaldt AB, Matte U and Ashton-Prolla P: miRNA-21 and miRNA-34a are potential minimally invasive biomarkers for the diagnosis of pancreatic ductal adenocarcinoma. Pancreas. 45:84–92. 2016. View Article : Google Scholar

66 

Chang T, Wentzel E, Kent O, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein C, et al: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 26:745–752. 2007. View Article : Google Scholar : PubMed/NCBI

67 

Vogt M, Munding J, Grüner M, Liffers ST, Verdoodt B, Hauk J, Steinstraesser L, Tannapfel A and Hermeking H: Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch. 458:313–322. 2011. View Article : Google Scholar

68 

Zhao T, Li J and Chen AF: MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am J Physiol Endocrinol Metab. 299:E110–E116. 2010. View Article : Google Scholar : PubMed/NCBI

69 

Dela Cruz CS, Tanoue LT and Matthay RA: Lung cancer: Epidemiology, etiology, and prevention. Clin Chest Med. 32:605–644. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Bremnes RM, Camps C and Sirera R: Angiogenesis in non-small cell lung cancer: The prognostic impact of neoangiogenesis and the cytokines VEGF and bFGF in tumours and blood. Lung Cancer. 51:143–158. 2006. View Article : Google Scholar

71 

Korpanty G, Smyth E and Carney D: Update on anti-angiogenic therapy in non-small cell lung cancer: Are we making progress? J Thorac Dis. 3:19–29. 2011.

72 

Al Farsi A and Ellis P: Anti-angiogenic therapy in advanced non-small cell lung carcinoma (NSCLC): Is there a role in subsequent lines of therapy? J Thorac Dis. 7:214–216. 2015.PubMed/NCBI

73 

Chen S, Xue Y, Wu X, Le C, Bhutkar A, Bell L, Zhang F, Langer R and Sharp PA: Global microRNA depletion suppresses tumor angiogenesis. Genes Dev. 28:1054–1067. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Donnem T, Fenton CG, Lonvik K, Berg T, Eklo K, Andersen S, Stenvold H, Al-Shibli K, Al-Saad S, Bremnes RM and Busund LT: MicroRNA signatures in tumor tissue related to angiogenesis in non-small cell lung cancer. PLoS One. 7:e296712012. View Article : Google Scholar : PubMed/NCBI

75 

Liu B, Peng XC, Zheng XL, Wang J and Qin YW: MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer. 66:169–175. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Donnem T, Lonvik K, Eklo K, Berg T, Sorbye SW, Al-Shibli K, Al-Saad S, Andersen S, Stenvold H, Bremnes RM and Busund LT: Independent and tissue-specific prognostic impact of miR-126 in nonsmall cell lung cancer: Coexpression with vascular endothelial growth factor-A predicts poor survival. Cancer. 117:3193–3200. 2011. View Article : Google Scholar

77 

Jusufović E, Rijavec M, Keser D, Korošec P, Sodja E, Iljazović E, Radojević Z and Košnik M: le7 and miR-126 are down-regulated in tumor tissue and correlate with microvessel density and survival outcomes in non-small-cell lung cancer. PLoS One. 7:e455772012. View Article : Google Scholar

78 

Chen Z, Lai TC, Jan YH, Lin FM, Wang WC, Xiao H, Wang YT, Sun W, Cui X, Li YS, et al: Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis. J Clin Invest. 123:1057–1067. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, et al: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64:3753–3756. 2004. View Article : Google Scholar : PubMed/NCBI

80 

Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens M, Okamoto A, Yokota J, Tanaka T, et al: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 9:189–198. 2006. View Article : Google Scholar : PubMed/NCBI

81 

Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, Fu S, Zhang Y, Feng K and Feng Y: microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 50:2336–2350. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Tejero R, Navarro A, Campayo M, Viñolas N, Marrades M, Cordeiro A, Ruíz-Martínez M, Santasusagna S, Molins L, Ramirez J and Monzó M: miR-141 and miR-200c as markers of overall survival in early stage non-small cell lung cancer adenocarcinoma. PLoS One. 9:e1018992014. View Article : Google Scholar :

83 

Owen S and Souhami L: The management of brain metastases in non-small cell lung cancer. Front Oncol. 4:2482014. View Article : Google Scholar : PubMed/NCBI

84 

Chen LT, Xu SD, Xu H, Zhang JF, Ning JF and Wang SF: MicroRNA-378 is associated with non-small cell lung cancer brain metastasis by promoting cell migration, invasion and tumor angiogenesis. Med Oncol. 9:1673–1680. 2012. View Article : Google Scholar

85 

Skrzypek K, Tertil M, Golda S, Ciesl M, Weglarczyk K, Collet G, Guichard A, Kozakowska M, Boczkowski J, Was H, et al: Interplay between heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization, and metastasis. Antioxid Redox Signal. 9:644–660. 2013. View Article : Google Scholar

86 

Mao G, Liu Y, Fang X, Liu Y, Fang L, Lin L, Liu X and Wang N: Tumor-derived microRNA-494 promotes angiogenesis in non-small cell lung cancer. Angiogenesis. 18:373–382. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Zhao WY, Wang Y, An ZJ, Shi CG, Zhu GA, Wang B, Lu MY, Pan CK and Chen P: Downregulation of miR-497 promotes tumor growth and angiogenesis by targeting HDGF in non-small cell lung cancer. Biochem Biophys Res Commun. 435:466–447. 2013. View Article : Google Scholar

88 

Kumarswamy R, Volkmann I, Beermann J, Napp LC, Jabs O, Bhayadia R, Melk A, Ucar A, Chowdhury K, Lorenzen JM, et al: Vascular importance of the miR-212/132 cluster. Eur Heart J. 35:3224–3231. 2014. View Article : Google Scholar : PubMed/NCBI

89 

You J, Li Y, Fang N, Liu B, Zu L, Chang R, Li X and Zhou Q: MiR-132 suppresses the migration and invasion of lung cancer cells via targeting the EMT regulator ZEB2. PLoS One. 9:e918272014. View Article : Google Scholar

90 

Incoronato M, Urso L, Portela A, Laukkanen MO, Soini Y, Quintavalle C, Keller S, Esteller M and Condorelli G: Epigenetic regulation of miR-212 expression in lung cancer. PLoS One. 6:e277222011. View Article : Google Scholar : PubMed/NCBI

91 

Luo J, Meng C, Tang Y, Zhang S, Wan M, Bi Y and Zhou X: miR-132/212 cluster inhibits the growth of lung cancer xenografts in nude mice. Int J Clin Exp Med. 7:4115–4122. 2014.

92 

Cui H, Seubert B, Stahl E, Dietz H, Reuning U, Moreno-Leon L, Ilie M, Hofman P, Nagase H, Mari B and Krüger A: Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene. 34:3640–3650. 2015. View Article : Google Scholar

93 

Pesta M, Kulda V, Kucera R, Pesek M, Vrzalova J, Liska V, Pecen L, Treska V, Safranek J, Prazakova M, et al: Prognostic significance of TIMP-1 in non-small cell lung cancer. Anticancer Res. 31:4031–4038. 2011.PubMed/NCBI

94 

American Cancer Society: Cancer facts and figures 2016. Atlanta, Ga: American Cancer Society; 2016

95 

Hur K, Toiyama Y, Schetter AJ, Okugawa Y, Harris CC, Boland CR and Goel A: Identification of a metastasis-specific MicroRNA signature in human colorectal cancer. J Natl Cancer Inst. 107:dju4922015. View Article : Google Scholar : PubMed/NCBI

96 

Yamaguchi T, Iijima T, Wakaume R, Takahashi K, Matsumoto H, Nakano D, Nakayama, Y Mori T, Horiguchi S and Miyaki M: Underexpression of miR-126 and miR-20b in hereditary and nonhereditary colorectal tumors. Oncology. 87:58–66. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Zhang Y, Wang X, Xu B, Wang B, Wang Z, Liang Y, Zhou J, Hu J and Jiang B: Epigenetic silencing of miR-126 contributes to tumor invasion and angiogenesis in colorectal cancer. Oncol Rep. 30:1976–1984. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Hansen TF, Andersen CL, Nielsen BS, Spindler KL, Sørensen FB, Lindebjerg J, Brandslund I and Jakobsen A: Elevated microRNA-126 is associated with high vascular endothelial growth factor receptor 2 expression levels and high microvessel density in colorectal cancer. Oncol Lett. 2:1101–1106. 2011. View Article : Google Scholar

99 

Hansen TF, Christensen Rd, Andersen RF, Sørensen FB, Johnsson A and Jakobsen A: MicroRNA-126 and epidermal growth factor-like domain 7-an angiogenic couple of importance in metastatic colorectal cancer. Results from the Nordic ACT trial Br J Cancer. 109:1243–1251. 2013.

100 

Yu W, Wang Z, Shen LI and Wei Q: Circulating microRNA-21 as a potential diagnostic marker for colorectal cancer: A meta-analysis. Mol Clin Oncol. 4:237–244. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R and Vyzula R: Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinico-pathologic features of colorectal cancer. Oncology. 72:397–402. 2007. View Article : Google Scholar

102 

Nielsen S, Jørgensen S, Fog JU, Søkilde R, Christensen IJ, Hansen U, Brünner N, Baker A, Møller S and Nielsen HJ: High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis. 28:27–38. 2011. View Article : Google Scholar :

103 

Nagao Y, Hisaoka M, Matsuyama A, Kanemitsu S, Hamada T, Fukuyama T, Nakano R, Uchiyama A, Kawamoto M, Yamaguchi K and Hashimoto H: Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Mod Pathol. 25:112–121. 2012. View Article : Google Scholar

104 

Song MS and Rossi JJ: The anti-miR21 antagomir, a therapeutic tool for colorectal cancer, has a potential synergistic effect by perturbing an angiogenesis-associated miR30. Front Genet. 4:3012014. View Article : Google Scholar : PubMed/NCBI

105 

Bridge G, Monteiro R, Henderson S, Emuss V, Lagos D, Georgopoulou D, Patient R and Boshoff C: The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood. 120:5063–5072. 2012. View Article : Google Scholar : PubMed/NCBI

106 

Hellström M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, et al: Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature. 445:776–780. 2007. View Article : Google Scholar : PubMed/NCBI

107 

Miyanaga K, Kato Y, Nakamura T, Matsumura M, Amaya H, Horiuchi T, Chiba Y and Tanaka K: Expression and role of thrombospondin-1 in colorectal cancer. Anticancer Res. 22:3941–3948. 2002.

108 

Diosdado B, van de Wiel A, Terhaar Sive Droste S, Mongera S, Postma C, Meijerink WJ, Carvalho B and Meijer GA: MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br J Cancer. 101:707–714. 2009. View Article : Google Scholar : PubMed/NCBI

109 

Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth E, Lee M, Enders H, Mendell T and Thomas-Tikhonenko A: Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet. 38:1060–1065. 2006. View Article : Google Scholar : PubMed/NCBI

110 

Amodeo V, Bazan V, Fanale D, Insalaco L, Caruso S, Cicero G, Bronte G, Rolfo C, Santini D and Russo A: Effects of anti-miR-182 on TSP-1 expression in human colon cancer cells: There is a sense in antisense? Expert Opin Ther Targets. 17:1249–1261. 2013. View Article : Google Scholar : PubMed/NCBI

111 

Liang Y, Ridzon D, Wong L and Chen C: Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 8:1662007. View Article : Google Scholar : PubMed/NCBI

112 

Sundaram P, Hultine S, Smith LM, Dews M, Fox JL, Biyashev D, Schelter JM, Huang Q, Cleary MA, Volpert OV and Thomas-Tikhonenko A: p53-responsive miR-194 inhibits thrombospondin-1 and promotes angiogenesis in colon cancers. Cancer Res. 71:7490–7501. 2011. View Article : Google Scholar : PubMed/NCBI

113 

Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T, Ørntoft TF, Andersen CL and Dobbelstein M: p53-responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res. 68:10094–10104. 2008. View Article : Google Scholar : PubMed/NCBI

114 

Xue G, Yan HL, Zhang Y, Hao LQ, Zhu XT, Mei Q and Sun SH: c-Myc-mediated repression of miR-15-16 in hypoxia is induced by increased HIF-2α and promotes tumor angiogenesis and metastasis by upregulating FGF2. Oncogene. 34:1393–1406. 2015. View Article : Google Scholar

115 

Dai L, Wang W, Zhang S, Jiang Q, Wang R, Dai L, Cheng L, Yang Y, Wei YQ and Deng HX: Vector-based miR-15a/16-1 plasmid inhibits colon cancer growth in vivo. Cell Biol Int. 36:765–770. 2012. View Article : Google Scholar : PubMed/NCBI

116 

Fang Y, Liang X, Jiang W, Li J, Xu J and Cai X: Cyclin b1 suppresses colorectal cancer invasion and metastasis by regulating e-cadherin. PLoS One. 10:e01268752015. View Article : Google Scholar : PubMed/NCBI

117 

Planutis K, Planutiene M and Holcombe F: A novel signaling pathway regulates colon cancer angiogenesis through Norrin. Sci Rep. 4:56302014. View Article : Google Scholar : PubMed/NCBI

118 

Wang B, Li W, Liu H, Yang L, Liao Q, Cui S, Wang H and Zhao L: miR-29b suppresses tumor growth and metastasis in colorectal cancer via downregulating Tiam1 expression and inhibiting epithelial-mesenchymal transition. Cell Death Dis. 17:e13352014. View Article : Google Scholar

119 

Subramanian M, Rao SR, Thacker P, Chatterjee S and Karunagaran D: MiR-29b downregulates canonical Wnt signaling by suppressing coactivators of β-catenin in human colorectal cancer cells. J Cell Biochem. 115:1974–1984. 2014.PubMed/NCBI

120 

Ding Q, Chang CJ, Xie X, Xia W, Yang Y, Wang SC, Wang Y, Xia J, Chen L, Cai C, et al: APOBEC3G promotes liver metastasis in an orthotopic mouse model of colorectal cancer and predicts human hepatic metastasis. J Clin Invest. 121:4526–4536. 2011. View Article : Google Scholar : PubMed/NCBI

121 

Colangelo T, Fucci A, Votino C, Sabatino L, Pancione M, Laudanna C, Binaschi M, Bigioni M, Maggi A, Parente D, et al: MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer. Neoplasia. 15:1086–1099. 2013. View Article : Google Scholar : PubMed/NCBI

122 

Panigrahy D, Singer S, Shen LQ, Butterfield CE, Freedman DA, Chen EJ, Moses MA, Kilroy S, Duensing S, Fletcher C, et al: PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest. 110:923–932. 2002. View Article : Google Scholar : PubMed/NCBI

123 

Urbich C, Kaluza D, Frömel T, Knau A, Bennewitz K, Boon RA, Bonauer A, Doebele C, Boeckel JN, Hergenreider E, et al: MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood. 119:1607–1616. 2012. View Article : Google Scholar

124 

Veliceasa D, Biyashev D, Qin G, Misener S, Mackie AR, Kishore R and Volpert OV: Therapeutic manipulation of angiogenesis with miR-27b. Vasc Cell. 24:62015. View Article : Google Scholar

125 

Chintharlapalli S, Papineni S, Abdelrahim M, Abudayyeh A, Jutooru I, Chadalapaka G, Wu F, Mertens-Talcott S, Vanderlaag K, Cho D, et al: Oncogenic microRNA-27a is a target for anticancer agent methyl 2-cyano-3,11-dioxo-18beta-olean-1,12-dien-30-oate in colon cancer cells. Int J Cancer. 125:1965–1974. 2009. View Article : Google Scholar : PubMed/NCBI

126 

Pathi S, Jutooru I, Chadalapaka G, Sreevalsan S, Anand S, Thatcher GR and Safe S: GT-094, a NO-NSAID, inhibits colon cancer cell growth by activation of a reactive oxygen species-microRNA-27a: ZBTB10-specificity protein pathway. Mol Cancer Res. 9:195–202. 2011. View Article : Google Scholar

127 

Colangelo T, Polcaro G, Ziccardi P, Pucci B, Muccillo L, Galgani M, Fucci A, Milone MR, Budillon A, Santopaolo M, et al: Proteomic screening identifies calreticulin as a miR-27a direct target repressing MHC class I cell surface exposure in colorectal cancer. Cell Death Dis. 25:e21202016. View Article : Google Scholar

128 

Bao Y, Chen Z, Guo Y, Feng Y, Li Z, Han W, Wang J, Zhao W, Jiao Y, Li K, et al: Tumor suppressor microRNA-27a in colorectal carcinogenesis and progression by targeting SGPP1 and Smad2. PLoS One. 9:e1059912014. View Article : Google Scholar : PubMed/NCBI

129 

Ye J, Wu X, Wu D, Wu P, Ni C, Zhang Z, Chen Z, Qiu F, Xu J and Huang J: miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS One. 8:e606872013. View Article : Google Scholar : PubMed/NCBI

130 

Geng L, Chaudhuri A, Talmon G, Wisecarver JL, Are C, Brattain M and Wang J: MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene. 33:5332–5340. 2014. View Article : Google Scholar :

131 

Yin Y, Yan ZP, Lu NN, Xu Q, He J, Qian X, Yu J, Guan X, Jiang BH and Liu LZ: Downregulation of miR-145 associated with cancer progression and VEGF transcriptional activation by targeting N-RAS and IRS1. Biochim Biophys Acta. 1829:239–247. 2013. View Article : Google Scholar

132 

Xu Q, Liu LZ, Qian X, Chen Q, Jiang Y, Li D, Lai L and Jiang BH: MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res. 40:761–774. 2012. View Article : Google Scholar :

133 

Bustin SA, Dorudi S, Phillips SM, Feakins RM and Jenkins PJ: Local expression of insulin-like growth factor-I affects angiogenesis in colorectal cancer. Tumour Biol. 23:130–138. 2002. View Article : Google Scholar

134 

Qian X, Yu J, Yin Y, He J, Wang L, Li Q, Zhang LQ, Li CY, Shi ZM, Xu Q, et al: MicroRNA-143 inhibits tumor growth and angiogenesis and sensitizes chemosensitivity to oxaliplatin in colorectal cancers. Cell Cycle. 12:1385–1394. 2013. View Article : Google Scholar : PubMed/NCBI

135 

Zhang H, Hao Y, Yang J, Zhou Y, Li J, Yin S, Sun C, Ma M, Huang Y and Xi JJ: Genome-wide functional screening of miR-23b as a pleiotropic modulator suppressing cancer metastasis. Nat Commun. 2:5542011. View Article : Google Scholar : PubMed/NCBI

136 

Lin RL and Zhao LJ: Mechanistic basis and clinical relevance of the role of transforming growth factor-β in cancer. Cancer Biol Med. 12:385–393. 2015.

137 

Xiao F, Qiu H, Cui H, Ni X, Li J, Liao W, Lu L and Ding K: MicroRNA-885-3p inhibits the growth of HT-29 colon cancer cell xenografts by disrupting angiogenesis via targeting BMPR1A and blocking BMP/Smad/Id1 signaling. Oncogene. 34:1968–1978. 2015. View Article : Google Scholar

138 

Yamada N, Tsujimura N, Kumazaki M, Shinohara H, Taniguchi K, Nakagawa Y, Naoe T and Akao Y: Colorectal cancer cell-derived microvesicles containing microRNA-1246 promote angiogenesis by activating Smad 1/5/8 signaling elicited by PML down-regulation in endothelial cells. Biochim Biophys Acta. 1839:1256–1272. 2014. View Article : Google Scholar : PubMed/NCBI

139 

Wang Y, Kim S and Kim IM: Regulation of metastasis by microRNAs in ovarian cancer. Front Oncol. 4:1432014. View Article : Google Scholar : PubMed/NCBI

140 

Dwivedi SK, Mustafi SB, Mangala LS, Jiang D, Pradeep S, Rodriguez-Aguayo C, Ling H, Ivan C, Mukherjee P, Calin GA, et al: Therapeutic evaluation of microRNA-15a and microRNA-16 in ovarian cancer. Oncotarget. 7:15093–15104. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Nusrat O, Belotte J, Fletcher NM, Memaj I, Saed MG, Diamond MP and Saed GM: The role of angiogenesis in the persistence of chemoresistance in epithelial ovarian cancer. Reprod Sci. 23:1484–1492. 2016. View Article : Google Scholar : PubMed/NCBI

142 

He J, Jing Y, Li W, Qian X, Xu Q, Li FS, Liu LZ, Jiang BH and Jiang Y: Roles and mechanism of miR-199a and miR-125b in tumor angiogenesis. PLoS One. 8:e566472013. View Article : Google Scholar : PubMed/NCBI

143 

Wang W, Ren F, Wu Q, Jiang D, Li H and Shi H: MicroRNA-497 suppresses angiogenesis by targeting vascular endothelial growth factor a through the PI3K/AKT and MAPK/ERK pathways in ovarian cancer. Oncol Rep. 32:2127–2133. 2014. View Article : Google Scholar : PubMed/NCBI

144 

Chan JK, Kiet TK, Blansit K, Ramasubbaiah R, Hilton JF, Kapp DS and Matei D: MiR-378 as a biomarker for response to anti-angiogenic treatment in ovarian cancer. Gynecol Oncol. 133:568–574. 2014. View Article : Google Scholar : PubMed/NCBI

145 

Lai Y, Zhang X, Zhang Z, Shu Y, Luo X, Yang Y, Wang X, Yang G, Li L and Feng Y: The microRNA-27a: ZBTB10-specificity protein pathway is involved in follicle stimulating hormone-induced VEGF, Cox2 and survivin expression in ovarian epithelial cancer cells. Int J Oncol. 42:776–784. 2013. View Article : Google Scholar

146 

Korpal M and Kang Y: The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 5:115–119. 2008. View Article : Google Scholar

147 

Pecot C, Rupaimoole R, Yang D, Akbani R, Ivan C, Lum C, Wu S, Han HD, Shah MY, Rodriguez-Aguayo C, et al: Tumour angiogenesis regulation by the miR-200 family. Nat Commun. 4:24272013. View Article : Google Scholar : PubMed/NCBI

148 

Imam JS, Plyler JR, Bansal H, Prajapati S, Bansal S, Rebeles J, Chen HI, Chang YF, Panneerdoss S, Zoghi B, et al: Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization. PLoS One. 7:e523972012. View Article : Google Scholar

149 

Zhu AX, Duda DG, Sahani DV and Jain RK: HCC and angiogenesis: Possible targets and future directions. Nat Rev Clin Oncol. 8:292–301. 2011. View Article : Google Scholar : PubMed/NCBI

150 

Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, et al: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 137:1005–1017. 2009. View Article : Google Scholar : PubMed/NCBI

151 

van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, Huynh Y, Chrzanowska A, Fulham MJ, Bailey DL, et al: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 18:1386–1396. 2017. View Article : Google Scholar : PubMed/NCBI

152 

Kumar B, Yadav A, Lang J, Teknos TN and Kumar P: Dysregulation of microRNA-34a expression in head and neck squamous cell carcinoma promotes tumor growth and tumor angiogenesis. PLoS One. 7:e376012012. View Article : Google Scholar : PubMed/NCBI

153 

Yu G, Yao W, Xiao W, Li H, Xu H and Lang B: MicroRNA-34a functions as an anti-metastatic microRNA and suppresses angiogenesis in bladder cancer by directly targeting CD44. J Exp Clin Cancer Res. 33:7792014. View Article : Google Scholar

154 

Arunachalam G, Lakshmanan AP, Samuel SM, Triggle CR and Ding H: Molecular interplay between microRNA-34a and Sirtuin1 in hyperglycemia-mediated impaired angiogenesis in endothelial cells: Effects of metformin. J Pharmacol Exp Ther. 356:314–323. 2016. View Article : Google Scholar

155 

Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, Smith S, Bader AG, Kim S and Hong DS: Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs. 35:180–188. 2017. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Salinas‑Vera YM, Marchat LA, Gallardo‑Rincón D, Ruiz‑García E, Astudillo-De La Vega H, Echavarría‑Zepeda R and López‑Camarillo C: AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review). Int J Mol Med 43: 657-670, 2019.
APA
Salinas‑Vera, Y.M., Marchat, L.A., Gallardo‑Rincón, D., Ruiz‑García, E., Astudillo-De La Vega, H., Echavarría‑Zepeda, R., & López‑Camarillo, C. (2019). AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review). International Journal of Molecular Medicine, 43, 657-670. https://doi.org/10.3892/ijmm.2018.4003
MLA
Salinas‑Vera, Y. M., Marchat, L. A., Gallardo‑Rincón, D., Ruiz‑García, E., Astudillo-De La Vega, H., Echavarría‑Zepeda, R., López‑Camarillo, C."AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review)". International Journal of Molecular Medicine 43.2 (2019): 657-670.
Chicago
Salinas‑Vera, Y. M., Marchat, L. A., Gallardo‑Rincón, D., Ruiz‑García, E., Astudillo-De La Vega, H., Echavarría‑Zepeda, R., López‑Camarillo, C."AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review)". International Journal of Molecular Medicine 43, no. 2 (2019): 657-670. https://doi.org/10.3892/ijmm.2018.4003
Copy and paste a formatted citation
x
Spandidos Publications style
Salinas‑Vera YM, Marchat LA, Gallardo‑Rincón D, Ruiz‑García E, Astudillo-De La Vega H, Echavarría‑Zepeda R and López‑Camarillo C: AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review). Int J Mol Med 43: 657-670, 2019.
APA
Salinas‑Vera, Y.M., Marchat, L.A., Gallardo‑Rincón, D., Ruiz‑García, E., Astudillo-De La Vega, H., Echavarría‑Zepeda, R., & López‑Camarillo, C. (2019). AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review). International Journal of Molecular Medicine, 43, 657-670. https://doi.org/10.3892/ijmm.2018.4003
MLA
Salinas‑Vera, Y. M., Marchat, L. A., Gallardo‑Rincón, D., Ruiz‑García, E., Astudillo-De La Vega, H., Echavarría‑Zepeda, R., López‑Camarillo, C."AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review)". International Journal of Molecular Medicine 43.2 (2019): 657-670.
Chicago
Salinas‑Vera, Y. M., Marchat, L. A., Gallardo‑Rincón, D., Ruiz‑García, E., Astudillo-De La Vega, H., Echavarría‑Zepeda, R., López‑Camarillo, C."AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review)". International Journal of Molecular Medicine 43, no. 2 (2019): 657-670. https://doi.org/10.3892/ijmm.2018.4003
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team