You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Mitchell P: Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature. 191:144–148. 1961. View Article : Google Scholar : PubMed/NCBI | |
|
Guo R, Zong S, Wu M, Gu J and Yang M: Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell. 170:1247–1257.e1212. 2017. View Article : Google Scholar | |
|
Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S and Jap BK: Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science. 281:64–71. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Sazanov LA and Hinchliffe P: Structure of the hydrophilic domain of respiratory complex I from thermus thermophilus. Science. 311:1430–1436. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Efremov RG and Sazanov LA: Structure of the membrane domain of respiratory complex I. Nature. 476:414–420. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Jones AJ, Blaza JN, Varghese F and Hirst J: Respiratory complex I in Bos taurus and paracoccus denitrificans pumps four protons across the membrane for every NADH Oxidized. J Biol Chem. 292:4987–4995. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J and Walker JE: Bovine complex I is a complex of 45 different subunits. J Biol Chem. 281:32724–32727. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Vinothkumar KR, Zhu J and Hirst J: Architecture of mammalian respiratory complex I. Nature. 515:80–84. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ohnishi ST, Shinzawa-Itoh K, Ohta K, Yoshikawa S and Ohnishi T: New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): The significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals. Biochim Biophys Acta. 1797:1901–1909. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Gai Z, Matsuno A, Kato K, Kato S, Khan MRI, Shimizu T, Yoshioka T, Kato Y, Kishimura H, Kanno G, et al: Crystal structure of the 3.8-MDa respiratory supermolecule hemocyanin at 3.0 A resolution. Structure. 23:2204–2212. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hunte C, Zickermann V and Brandt U: Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science. 329:448–451. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Formosa LE, Dibley MG, Stroud DA and Ryan MT: Building a complex complex: Assembly of mitochondrial respiratory chain complex I. Semin Cell Dev Biol. 76:154–162. 2018. View Article : Google Scholar | |
|
Berrisford JM and Sazanov LA: Structural basis for the mechanism of respiratory complex I. J Biol Chem. 284:29773–29783. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Tan P, Feng Z, Zhang L, Hou T and Li Y: The mechanism of proton translocation in respiratory complex I from molecular dynamics. J Recept Signal Transduct Res. 35:170–179. 2015. View Article : Google Scholar | |
|
Wikstrom M and Hummer G: Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. Proc Natl Acad Sci USA. 109:4431–4436. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Chance B and Williams GR: Respiratory enzymes in oxidative phosphorylation. IV. The respiratory chain. J Biol Chem. 217:429–438. 1955.PubMed/NCBI | |
|
Stoner CD: Determination of the P/2e-stoichiometries at the individual coupling sites in mitochondrial oxidative phosphorylation. Evidence for maximum values of 1.0, 0.5, and 1.0 at sites 1, 2, and 3. J Biol Chem. 262:10445–10453. 1987.PubMed/NCBI | |
|
Ohnishi T: Structural biology: Piston drives a proton pump. Nature. 465:428–429. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Cecchini G: Function and structure of complex II of the respiratory chain. Annu Rev Biochem. 72:77–109. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M and Rao Z: Crystal structure of mitochondrial respiratory membrane protein complex II. Cell. 121:1043–1057. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Bezawork-Geleta A, Rohlena J, Dong L, Pacak K and Neuzil J: Mitochondrial complex II: At the crossroads. Trends Biochem Sci. 42:312–325. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Iverson TM: Catalytic mechanisms of complex II enzymes: A structural perspective. Biochim Biophys Acta. 1827:648–657. 2013. View Article : Google Scholar | |
|
Schagger H, Link TA, Engel WD and von Jagow G: Isolation of the eleven protein subunits of the bc1 complex from beef heart. Methods Enzymol. 126:224–237. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Yang XH and Trumpower BL: Purification of a three-subunit ubiquinol-cytochrome c oxidoreductase complex from paracoccus denitrificans. J Biol Chem. 261:12282–12289. 1986.PubMed/NCBI | |
|
Gao X, Wen X, Esser L, Quinn B, Yu L, Yu CA and Xia D: Structural basis for the quinone reduction in the bc1 complex: A comparative analysis of crystal structures of mitochondrial cytochrome bc1 with bound substrate and inhibitors at the Qi site. Biochemistry. 42:9067–9080. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Mitchell P: Chemiosmotic coupling in energy transduction: A logical development of biochemical knowledge. J Bioenerg. 3:5–24. 1972. View Article : Google Scholar : PubMed/NCBI | |
|
Mitchell P: Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol. 62:327–367. 1976. View Article : Google Scholar : PubMed/NCBI | |
|
Trumpower BL: A concerted, alternating sites mechanism of ubiquinol oxidation by the dimeric cytochrome bc(1) complex. Biochim Biophys Acta. 1555:166–173. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Kadenbach B and Hüttemann M: The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion. 24:64–76. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R and Yoshikawa S: The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science. 272:1136–1144. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Konstantinov AA: Cytochrome c oxidase: Intermediates of the catalytic cycle and their energy-coupled interconversion. FEBS Lett. 586:630–639. 2012. View Article : Google Scholar | |
|
Sharma V and Wikstrom M: The role of the K-channel and the active-site tyrosine in the catalytic mechanism of cytochrome c oxidase. Biochim Biophys Acta. 1857:1111–1115. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Varanasi L and Hosler JP: Subunit III-depleted cytochrome c oxidase provides insight into the process of proton uptake by proteins. Biochim Biophys Acta. 1817:545–551. 2012. View Article : Google Scholar : | |
|
Alnajjar KS, Hosler J and Prochaska L: Role of the N-terminus of subunit III in proton uptake in cytochrome c oxidase of Rhodobacter sphaeroides. Biochemistry. 53:496–504. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Arnold S and Kadenbach B: Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome-c oxidase. Eur J Biochem. 249:350–354. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Arnold S and Kadenbach B: The intramitochondrial ATP/ADP-ratio controls cytochrome c oxidase activity allosteri-cally. FEBS Lett. 443:105–108. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Arnold S, Goglia F and Kadenbach B: 3,5-Diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur J Biochem. 252:325–330. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Follmann K, Arnold S, Ferguson-Miller S and Kadenbach B: Cytochrome c oxidase from eucaryotes but not from procaryotes is allosterically inhibited by ATP. Biochem Mol Biol Int. 45:1047–1055. 1998.PubMed/NCBI | |
|
Shimada S, Shinzawa-Itoh K, Baba J, Aoe S, Shimada A, Yamashita E, Kang J, Tateno M, Yoshikawa S and Tsukihara T: Complex structure of cytochrome c-cytochrome c oxidase reveals a novel protein-protein interaction mode. EMBO J. 36:291–300. 2017. View Article : Google Scholar | |
|
Wikstrom MK: Proton pump coupled to cytochrome c oxidase in mitochondria. Nature. 266:271–273. 1977. View Article : Google Scholar : PubMed/NCBI | |
|
Jonckheere AI, Smeitink JA and Rodenburg RJ: Mitochondrial ATP synthase: Architecture, function and pathology. J Inherit Metab Dis. 35:211–225. 2012. View Article : Google Scholar : | |
|
Dickson VK, Silvester JA, Fearnley IM, Leslie AG and Walker JE: On the structure of the stator of the mitochondrial ATP synthase. EMBO J. 25:2911–2918. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Watt IN, Montgomery MG, Runswick MJ, Leslie AG and Walker JE: Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci USA. 107:16823–16827. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Pecina P, Nůsková H, Karbanová V, Kaplanová V, Mráček T and Houštěk J: Role of the mitochondrial ATP synthase central stalk subunits γ and δ in the activity and assembly of the mammalian enzyme. Biochim Biophys Acta Bioenerg. 1859:374–381. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Guo R, Gu J, Zong S, Wu M and Yang M: Structure and mechanism of mitochondrial electron transport chain. Biomed J. 41:9–20. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Fiedorczuk K, Letts JA, Degliesposti G, Kaszuba K, Skehel M and Sazanov LA: Atomic structure of the entire mammalian mitochondrial complex I. Nature. 538:406–410. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hahn A, Parey K, Bublitz M, Mills DJ, Zickermann V, Vonck J, Kühlbrandt W and Meier T: Structure of a complete ATP synthase dimer reveals the molecular basis of inner mitochondrial membrane morphology. Mol Cell. 63:445–456. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Turrens JF: Mitochondrial formation of reactive oxygen species. J Physiol. 552:335–344. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Cadenas E and Davies KJ: Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 29:222–230. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Brand MD: Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med. 100:14–31. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kowaltowski AJ, de Souza-Pinto NC, Castilho RF and Vercesi AE: Mitochondria and reactive oxygen species. Free Radic Biol Med. 47:333–343. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Brand MD: The sites and topology of mitochondrial superoxide production. Exp Gerontol. 45:466–472. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Hernansanz-Agustin P, Ramos E, Navarro E, Parada E, Sánchez-López N, Peláez-Aguado L, Cabrera-García JD, Tello D, Buendia I, Marina A, et al: Mitochondrial complex I deactivation is related to superoxide production in acute hypoxia. Redox Biol. 12:1040–1051. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hoekstra AS and Bayley JP: The role of complex II in disease. Biochim Biophys Acta. 1827:543–551. 2013. View Article : Google Scholar | |
|
Cecchini G: Respiratory complex II: Role in cellular physiology and disease. Biochim Biophys Acta. 1827:541–542. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA and Brand MD: Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem. 287:27255–27264. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ackrell BA, Kearney EB and Singer TP: Mammalian succinate dehydrogenase. Methods Enzymol. 53:466–483. 1978. View Article : Google Scholar : PubMed/NCBI | |
|
Turrens JF, Alexandre A and Lehninger AL: Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys. 237:408–414. 1985. View Article : Google Scholar : PubMed/NCBI | |
|
Richter C, Gogvadze V, Laffranchi R, Schlapbach R, Schweizer M, Suter M, Walter P and Yaffee M: Oxidants in mitochondria: From physiology to diseases. Biochim Biophys Acta. 1271:67–74. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Muller FL, Liu Y and Van Remmen H: Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 279:49064–49073. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
D'Autreaux B and Toledano MB: ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 8:813–824. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Bedard K and Krause KH: The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol Rev. 87:245–313. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Treberg JR, Quinlan CL and Brand MD: Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production-a correction using glutathione depletion. FEBS J. 277:2766–2778. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Quinlan CL, Gerencser AA, Treberg JR and Brand MD: The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J Biol Chem. 286:31361–31372. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Erecinska M and Wilson DF: The effect of antimycin A on cytochromes b561, b566, and their relationship to ubiquinone and the iron-sulfer centers S-1 (+N-2) and S-3. Arch Biochem Biophys. 174:143–157. 1976. View Article : Google Scholar : PubMed/NCBI | |
|
Orr AL, Vargas L, Turk CN, Baaten JE, Matzen JT, Dardov VJ, Attle SJ, Li J, Quackenbush DC, Goncalves RL, et al: Suppressors of superoxide production from mitochondrial complex III. Nat Chem Biol. 11:834–836. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Muramoto K, Ohta K, Shinzawa-Itoh K, Kanda K, Taniguchi M, Nabekura H, Yamashita E, Tsukihara T and Yoshikawa S: Bovine cytochrome c oxidase structures enable O2 reduction with minimization of reactive oxygens and provide a proton-pumping gate. Proc Natl Acad Sci USA. 107:7740–7745. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
De Giusti VC, Caldiz CI, Ennis IL, Perez NG, Cingolani HE and Aiello EA: Mitochondrial reactive oxygen species (ROS) as signaling molecules of intracellular pathways triggered by the cardiac renin-angiotensin II-aldosterone system (RAAS). Front Physiol. 4:1262013. View Article : Google Scholar : PubMed/NCBI | |
|
Diebold L and Chandel NS: Mitochondrial ROS regulation of proliferating cells. Free Radic Biol Med. 100:86–93. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kaminskyy VO and Zhivotovsky B: Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Signal. 21:86–102. 2014. View Article : Google Scholar | |
|
Emerling BM, Weinberg F, Snyder C, Burgess Z, Mutlu GM, Viollet B, Budinger GR and Chandel NS: Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med. 46:1386–1391. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Betzen C, White R, Zehendner CM, Pietrowski E, Bender B, Luhmann HJ and Kuhlmann CR: Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium. Free Radic Biol Med. 47:1212–1220. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Huddleston AT, Tang W, Takeshima H, Hamilton SL and Klann E: Superoxide-induced potentiation in the hippocampus requires activation of ryanodine receptor type 3 and ERK. J Neurophysiol. 99:1565–1571. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Hidalgo C and Arias-Cavieres A: Calcium, reactive oxygen species, and synaptic plasticity. Physiology (Bethesda). 31:201–215. 2016. | |
|
Shetty PK, Huang FL and Huang KP: Ischemia-elicited oxidative modulation of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 283:5389–5401. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kemmerling U, Munoz P, Muller M, Sánchez G, Aylwin ML, Klann E, Carrasco MA and Hidalgo C: Calcium release by ryanodine receptors mediates hydrogen peroxide-induced activation of ERK and CREB phosphorylation in N2a cells and hippocampal neurons. Cell Calcium. 41:491–502. 2007. View Article : Google Scholar | |
|
Massaad CA and Klann E: Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal. 14:2013–2054. 2011. View Article : Google Scholar : | |
|
Beckhauser TF, Francis-Oliveira J and De Pasquale R: Reactive oxygen species: Physiological and physiopathological effects on synaptic plasticity. J Exp Neurosci. 10(Suppl 1): S23–S48. 2016. | |
|
Gasperini RJ, Pavez M, Thompson AC, Mitchell CB, Hardy H, Young KM, Chilton JK and Foa L: How does calcium interact with the cytoskeleton to regulate growth cone motility during axon pathfinding? Mol Cell Neurosci. 84:29–35. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Oswald MCW, Garnham N, Sweeney ST and Landgraf M: Regulation of neuronal development and function by ROS. FEBS Lett. 592:679–691. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hongpaisan J, Winters CA and Andrews SB: Calcium-dependent mitochondrial superoxide modulates nuclear CREB phosphorylation in hippocampal neurons. Mol Cell Neurosci. 24:1103–1115. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Orrenius S, Gogvadze V and Zhivotovsky B: Mitochondrial oxidative stress: Implications for cell death. Annu Rev Pharmacol Toxicol. 47:143–183. 2007. View Article : Google Scholar | |
|
Cingolani HE, Perez NG, Aiello EA, Ennis IL, Garciarena CD, Villa-Abrille MC, Dulce RA, Caldiz CI, Yeves AM, Correa MV, et al: Early signals after stretch leading to cardiac hypertrophy. Key role of NHE-1. Front Biosci. 13:7096–7114. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Palomeque J, Rueda OV, Sapia L, Valverde CA, Salas M, Petroff MV and Mattiazzi A: Angiotensin II-induced oxidative stress resets the Ca2+ dependence of Ca2+-calmodulin protein kinase II and promotes a death pathway conserved across different species. Circ Res. 105:1204–1212. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H and Patterson C: Roles of reactive oxygen species in physiology and pathology. John Wiley & Sons, Inc; Hoboken, NJ: pp. 379–392. 2015 | |
|
Robin E, Guzy RD, Loor G, Iwase H, Waypa GB, Marks JD, Hoek TL and Schumacker PT: Oxidant stress during simulated ischemia primes cardiomyocytes for cell death during reperfusion. J Biol Chem. 282:19133–19143. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Azad N, Kongkaneramit L, Chen F, Lu Y, Jiang BH and Rojanasakul Y: The Fas death signaling pathway connecting reactive oxygen species generation and FLICE inhibitory protein down-regulation. J Immunol. 180:3072–3080. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Circu ML and Aw TY: Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 48:749–762. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Deng Y, Ren X, Yang L, Lin Y and Wu X: A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell. 115:61–70. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Hattori K, Naguro I, Runchel C and Ichijo H: The roles of ASK family proteins in stress responses and diseases. Cell Commun Signal. 7:92009. View Article : Google Scholar : PubMed/NCBI | |
|
Sinha K, Das J, Pal PB and Sil PC: Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 87:1157–1180. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Shen C, Cai GQ, Peng JP and Chen XD: Autophagy protects chondrocytes from glucocorticoids-induced apoptosis via ROS/Akt/FOXO3 signaling. Osteoarthritis Cartilage. 23:2279–2287. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Shah SZA, Zhao D, Hussain T, Sabir N, Mangi MH and Yang L: p62-Keap1-NRF2-ARE pathway: A contentious player for selective targeting of autophagy, oxidative stress and mitochondrial dysfunction in prion diseases. Front Mol Neurosci. 11:3102018. View Article : Google Scholar : PubMed/NCBI | |
|
Wu H, Huang S, Chen Z, Liu W, Zhou X and Zhang D: Hypoxia-induced autophagy contributes to the invasion of salivary adenoid cystic carcinoma through the HIF-1α/BNIP3 signaling pathway. Mol Med Rep. 12:6467–6474. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bensaad K, Cheung EC and Vousden KH: Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J. 28:3015–3026. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Gurusamy N and Das DK: Autophagy, redox signaling, and ventricular remodeling. Antioxid Redox Signal. 11:1975–1988. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Li R, Zhou P, Guo Y, Lee JS and Zhou B: Tris (1, 3-dichloro-2-propyl) phosphate induces apoptosis and autophagy in SH-SY5Y cells: Involvement of ROS-mediated AMPK/mTOR/ULK1 pathways. Food Chem Toxicol. 100:183–196. 2017. View Article : Google Scholar | |
|
Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H and Vandenabeele P: Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 15:135–147. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Schenk B and Fulda S: Reactive oxygen species regulate Smac mimetic/TNFα-induced necroptotic signaling and cell death. Oncogene. 34:5796–5806. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Morgan MJ and Liu ZG: Reactive oxygen species in TNFalpha-induced signaling and cell death. Mol Cells. 30:1–12. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ying Y, Kim J, Westphal SN, Long KE and Padanilam BJ: Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury. J Am Soc Nephrol. 25:2707–2716. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Heid ME, Keyel PA, Kamga C, Shiva S, Watkins SC and Salter RD: Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J Immunol. 191:5230–5238. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou R, Tardivel A, Thorens B, Choi I and Tschopp J: Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 11:136–140. 2010. View Article : Google Scholar | |
|
Scholl FA, Dumesic PA, Barragan DI, Harada K, Bissonauth V, Charron J and Khavari PA: Mek1/2 MAPK kinases are essential for mammalian development, homeostasis, and raf-induced hyperplasia. Dev Cell. 12:615–629. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hulsmans M, Van Dooren E and Holvoet P: Mitochondrial reactive oxygen species and risk of atherosclerosis. Curr Atheroscler Rep. 14:264–276. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kattoor AJ, Pothineni NVK, Palagiri D and Mehta JL: Oxidative stress in atherosclerosis. Curr Atheroscler Rep. 19:422017. View Article : Google Scholar : PubMed/NCBI | |
|
Montezano AC, Dulak-Lis M, Tsiropoulou S, Harvey A, Briones AM and Touyz RM: Oxidative stress and human hypertension: Vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol. 31:631–641. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sanderson TH, Reynolds CA, Kumar R, Przyklenk K and Huttemann M: Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 47:9–23. 2013. View Article : Google Scholar : | |
|
Chouchani ET, Pell VR, James AM, Work LM, Saeb-Parsy K, Frezza C, Krieg T and Murphy MP: A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab. 23:254–263. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lorenzo O, Ramirez E, Picatoste B, Egido J and Tunon J: Alteration of energy substrates and ROS production in diabetic cardiomyopathy. Mediators Inflamm. 2013:4619672013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao MX, Zhou B, Ling L, Xiong XQ, Zhang F, Chen Q, Li YH, Kang YM and Zhu GQ: Salusin-beta contributes to oxidative stress and inflammation in diabetic cardiomyopathy. Cell Death Dis. 8:e26902017. View Article : Google Scholar | |
|
Jaitovich A and Jourd'Heuil D: A brief overview of nitric oxide and reactive oxygen species signaling in hypoxia-induced pulmonary hypertension. Adv Exp Med Biol. 967:71–81. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Fulton DJR, Li X, Bordan Z, Haigh S, Bentley A, Chen F and Barman SA: Reactive oxygen and nitrogen species in the development of pulmonary hypertension. Antioxidants (Basel). 6:E542017. View Article : Google Scholar | |
|
Allaire J, Maltais F, LeBlanc P, Simard PM, Whittom F, Doyon JF, Simard C and Jobin J: Lipofuscin accumulation in the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Muscle Nerve. 25:383–389. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Dekhuijzen PN, Aben KK, Dekker I, Aarts LP, Wielders PL, van Herwaarden CL and Bast A: Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 154:813–816. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Montuschi P, Collins JV, Ciabattoni G, Lazzeri N, Corradi M, Kharitonov SA and Barnes PJ: Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am J Respir Crit Care Med. 162:1175–1177. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Sabharwal SS and Schumacker PT: Mitochondrial ROS in cancer: Initiators, amplifiers or an achilles' heel? Nat Rev Cancer. 14:709–721. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sosa V, Moline T, Somoza R, Paciucci R, Kondoh H and Lleonart ME: Oxidative stress and cancer: An overview. Ageing Res Rev. 12:376–390. 2013. View Article : Google Scholar | |
|
Ahmad W, Ijaz B, Shabbiri K, Ahmed F and Rehman S: Oxidative toxicity in diabetes and Alzheimer's disease: Mechanisms behind ROS/RNS generation. J Biomed Sci. 24:762017. View Article : Google Scholar | |
|
Rehman K and Akash MSH: Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: How are they interlinked? J Cell Biochem. 118:3577–3585. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Spahis S, Delvin E, Borys JM and Levy E: Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis. Antioxid Redox Signal. 26:519–541. 2017. View Article : Google Scholar | |
|
Rolo AP, Teodoro JS and Palmeira CM: Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med. 52:59–69. 2012. View Article : Google Scholar | |
|
de la Monte SM and Wands JR: Molecular indices of oxidative stress and mitochondrial dysfunction occur early and oftenprogresswith severity of Alzheimer's disease. J Alzheimers Dis. 9:167–181. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Dias V, Junn E and Mouradian MM: The role of oxidative stress in Parkinson's disease. J Parkinsons Dis. 3:461–491. 2013.PubMed/NCBI | |
|
Nagano T, Mizuno M, Morita K and Nawa H: Pathological implications of oxidative stress in patients and animal models with schizophrenia: The role of epidermal growth factor receptor signaling. Curr Top Behav Neurosci. 29:429–446. 2016. View Article : Google Scholar | |
|
Mahadik SP, Pillai A, Joshi S and Foster A: Prevention of oxidative stress-mediated neuropathology and improved clinical outcome by adjunctive use of a combination of antioxidants and omega-3 fatty acids in schizophrenia. Int Rev Psychiatry. 18:119–131. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kwon DN, Park WJ, Choi YJ, Gurunathan S and Kim JH: Oxidative stress and ROS metabolism via down-regulation of sirtuin 3 expression in Cmahnull mice affect hearing loss. Aging (Albany NY). 7:579–594. 2015. View Article : Google Scholar | |
|
Kamogashira T, Fujimoto C and Yamasoba T: Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss. Biomed Res Int. 2015:6172072015. View Article : Google Scholar : PubMed/NCBI | |
|
Marazita MC, Dugour A, Marquioni-Ramella MD, Figueroa JM and Suburo AM: Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for age-related macular degeneration. Redox Biol. 7:78–87. 2016. View Article : Google Scholar : | |
|
Nita M and Grzybowski A: The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev. 2016:31647342016. View Article : Google Scholar : PubMed/NCBI | |
|
Ghosh S, Sulistyoningrum DC, Glier MB, Verchere CB and Devlin AM: Altered glutathione homeostasis in heart augments cardiac lipotoxicity associated with diet-induced obesity in mice. J Biol Chem. 286:42483–42493. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Mandas A, Iorio EL, Congiu MG, Balestrieri C, Mereu A, Cau D, Dessì S and Curreli N: Oxidative imbalance in HIV-1 infected patients treated with antiretroviral therapy. J Biomed Biotechnol. 2009:7495752009. View Article : Google Scholar : PubMed/NCBI | |
|
Shin DH, Martinez SS, Parsons M, Jayaweera DT, Campa A and Baum MK: Relationship of oxidative stress with HIV disease progression in HIV/HCV Co-infected and HIV mono-infected adults in miami. Int J Biosci Biochem Bioinforma. 2:217–223. 2012.PubMed/NCBI | |
|
Haycock JW, MacNeil S, Jones P, Harris JB and Mantle D: Oxidative damage to muscle protein in Duchenne muscular dystrophy. Neuroreport. 8:357–361. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Austin L, de Niese M, McGregor A, Arthur H, Gurusinghe A and Gould MK: Potential oxyradical damage and energy status in individual muscle fibres from degenerating muscle diseases. Neuromuscul Disord. 2:27–33. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Lee G, Kim HJ and Kim HM: RhoA-JNK regulates the E-cadherin junctions of human gingival epithelial cells. J Dent Res. 95:284–291. 2016. View Article : Google Scholar | |
|
Nobes CD, Brown GC, Olive PN and Brand MD: Nonohmic proton conductance of the mitochondrial inner membrane in hepatocytes. J Biol Chem. 265:12903–12909. 1990.PubMed/NCBI | |
|
Brand MD, Turner N, Ocloo A, Else PL and Hulbert AJ: Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds. Biochem J. 376:741–748. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Porter RK and Brand MD: Body mass dependence of H+ leak in mitochondria and its relevance to metabolic rate. Nature. 362:628–630. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Brookes PS, Rolfe DF and Brand MD: The proton permeability of liposomes made from mitochondrial inner membrane phospholipids: Comparison with isolated mitochondria. J Membr Biol. 155:167–174. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC, Brookes PS and Cornwall EJ: The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J. 392:353–362. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Parker N, Crichton PG, Vidal-Puig AJ and Brand MD: Uncoupling protein-1 (UCP1) contributes to the basal proton conductance of brown adipose tissue mitochondria. J Bioenerg Biomembr. 41:335–342. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Shabalina IG, Ost M, Petrovic N, Vrbacky M, Nedergaard J and Cannon B: Uncoupling protein-1 is not leaky. Biochim Biophys Acta. 1797:773–784. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Roussel D, Harding M, Runswick MJ, Walker JE and Brand MD: Does any yeast mitochondrial carrier have a native uncoupling protein function? J Bioenerg Biomembr. 34:165–176. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Krauss S, Zhang CY and Lowell BB: The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol. 6:248–261. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Huang SG and Klingenberg M: Fluorescent nucleotide derivatives as specific probes for the uncoupling protein: Thermodynamics and kinetics of binding and the control by pH. Biochemistry. 34:349–360. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Xia C, Liu JZ and Xu Y: Effects of GDP on the activity and expression of mitochondrial uncoupling proteins in rat brain in vitro. Sheng Li Xue Bao. 60:492–496. 2008.In Chinese. PubMed/NCBI | |
|
Ramsden DB, Ho PW, Ho JW, Liu HF, So DH, Tse HM, Chan KH and Ho SL: Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): Structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction. Brain Behav. 2:468–478. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hoang T, Smith MD and Jelokhani-Niaraki M: Toward understanding the mechanism of ion transport activity of neuronal uncoupling proteins UCP2, UCP4, and UCP5. Biochemistry. 51:4004–4014. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Andrews ZB, Diano S and Horvath TL: Mitochondrial uncoupling proteins in the cns: In support of function and survival. Nat Rev Neurosci. 6:829–840. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Nicholls DG and Locke RM: Thermogenic mechanisms in brown fat. Physiol Rev. 64:1–64. 1984. View Article : Google Scholar : PubMed/NCBI | |
|
Shabalina IG, Petrovic N, de Jong JM, Kalinovich AV, Cannon B and Nedergaard J: UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep. 5:1196–1203. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Golozoubova V, Hohtola E, Matthias A, Jacobsson A, Cannon B and Nedergaard J: Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J. 15:2048–2050. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME and Kozak LP: Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 387:90–94. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Divakaruni AS and Brand MD: The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda). 26:192–205. 2011. | |
|
Granneman JG, Burnazi M, Zhu Z and Schwamb LA: White adipose tissue contributes to UCP1-independent thermogenesis. Am J Physiol Endocrinol Metab. 285:E1230–E1236. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Adams AE, Kelly OM and Porter RK: Absence of mitochondrial uncoupling protein 1 affects apoptosis in thymocytes, thymocyte/T-cell profile and peripheral T-cell number. Biochim Biophys Acta. 1797:807–816. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Adams AE, Hanrahan O, Nolan DN, Voorheis HP, Fallon P and Porter RK: Images of mitochondrial UCP 1 in mouse thymocytes using confocal microscopy. Biochim Biophys Acta. 1777:115–117. 2008. View Article : Google Scholar | |
|
Adams AE, Carroll AM, Fallon PG and Porter RK: Mitochondrial uncoupling protein 1 expression in thymocytes. Biochim Biophys Acta. 1777:772–776. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Sale MM, Hsu FC, Palmer ND, Gordon CJ, Keene KL, Borgerink HM, Sharma AJ, Bergman RN, Taylor KD, Saad MF and Norris JM: The uncoupling protein 1 gene, UCP1, is expressed in mammalian islet cells and associated with acute insulin response to glucose in african american families from the IRAS family study. BMC Endocr Disord. 7:12007. View Article : Google Scholar : PubMed/NCBI | |
|
Shabalina IG, Jacobsson A, Cannon B and Nedergaard J: Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids. J Biol Chem. 279:38236–38248. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Breen EP, Gouin SG, Murphy AF, Haines LR, Jackson AM, Pearson TW, Murphy PV and Porter RK: On the mechanism of mitochondrial uncoupling protein 1 function. J Biol Chem. 281:2114–2119. 2006. View Article : Google Scholar | |
|
Rial E, Aguirregoitia E, Jimenez-Jimenez J and Ledesma A: Alkylsulfonates activate the uncoupling protein UCP1: Implications for the transport mechanism. Biochim Biophys Acta. 1608:122–130. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Klingenberg M and Huang SG: Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta. 1415:271–296. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Garlid KD, Jaburek M and Jezek P: The mechanism of proton transport mediated by mitochondrial uncoupling proteins. FEBS Lett. 438:10–14. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Garlid KD, Orosz DE, Modriansky M, Vassanelli S and Jezek P: On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein. J Biol Chem. 271:2615–2620. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Winkler E and Klingenberg M: Effect of fatty acids on H+ transport activity of the reconstituted uncoupling protein. J Biol Chem. 269:2508–2515. 1994.PubMed/NCBI | |
|
Skulachev VP: Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett. 294:158–162. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Klingenberg M and Winkler E: The reconstituted isolated uncoupling protein is a membrane potential driven H+ translocator. EMBO J. 4:3087–3092. 1985. View Article : Google Scholar : PubMed/NCBI | |
|
Azzu V and Brand MD: The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem Sci. 35:298–307. 2010. View Article : Google Scholar | |
|
Ricquier D and Bouillaud F: The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J. 345(Pt 2): 161–179. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Friederich M, Fasching A, Hansell P, Nordquist L and Palm F: Diabetes-induced up-regulation of uncoupling protein-2 results in increased mitochondrial uncoupling in kidney proximal tubular cells. Biochim Biophys Acta. 1777:935–940. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Flachs P, Sponarova J, Kopecky P, Horvath O, Sediva A, Nibbelink M, Casteilla L, Medrikova D, Neckar J, Kolar F and Kopecky J: Mitochondrial uncoupling protein 2 gene transcript levels are elevated in maturating erythroid cells. FEBS Lett. 581:1093–1097. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Affourtit C and Brand MD: On the role of uncoupling protein-2 in pancreatic beta cells. Biochim Biophys Acta. 1777:973–979. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Cadenas S: Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg. 1859:940–950. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Teshima Y, Akao M, Jones SP and Marban E: Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res. 93:192–200. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Vidal-Puig A, Solanes G, Grujic D, Flier JS and Lowell BB: UCP3: An uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem Biophys Res Commun. 235:79–82. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Aguirre E and Cadenas S: GDP and carboxyatractylate inhibit 4-hydroxynonenal-activated proton conductance to differing degrees in mitochondria from skeletal muscle and heart. Biochim Biophys Acta. 1797:1716–1726. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Kelly OM and Porter RK: Absence of mitochondrial uncoupling protein 3: Effect on thymus and spleen in the fed and fasted mice. Biochim Biophys Acta. 1807:1064–1074. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Mori S, Yoshizuka N, Takizawa M, Takema Y, Murase T, Tokimitsu I and Saito M: Expression of uncoupling proteins in human skin and skin-derived cells. J Invest Dermatol. 128:1894–1900. 2008. View Article : Google Scholar | |
|
Harper ME and Himms-Hagen J: Mitochondrial efficiency: Lessons learned from transgenic mice. Biochim Biophys Acta. 1504:159–172. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Negre-Salvayre A, Hirtz C, Carrera G, Cazenave R, Troly M, Salvayre R, Pénicaud L and Casteilla L: A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J. 11:809–815. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J and Wieckowski MR: Relation between mitochondrial membrane potential and ROS formation. Methods Mol Biol. 810:183–205. 2012. View Article : Google Scholar | |
|
Pi J, Bai Y, Daniel KW, Liu D, Lyght O, Edelstein D, Brownlee M, Corkey BE and Collins S: Persistent oxidative stress due to absence of uncoupling protein 2 associated with impaired pancreatic beta-cell function. Endocrinology. 150:3040–3048. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Vidal-Puig AJ, Grujic D, Zhang CY, Hagen T, Boss O, Ido Y, Szczepanik A, Wade J, Mootha V, Cortright R, et al: Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem. 275:16258–16266. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Brand MD, Pamplona R, Portero-Otin M, Requena JR, Roebuck SJ, Buckingham JA, Clapham JC and Cadenas S: Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice underexpressing or overexpressing uncoupling protein 3. Biochem J. 368:597–603. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Brand MD: Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol. 35:811–820. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Dlaskova A, Clarke KJ and Porter RK: The role of UCP 1 in production of reactive oxygen species by mitochondria isolated from brown adipose tissue. Biochim Biophys Acta. 1797:1470–1476. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Shabalina IG, Vrbacky M, Pecinova A, Kalinovich AV, Drahota Z, Houštěk J, Mráček T, Cannon B and Nedergaard J: ROS production in brown adipose tissue mitochondria: The question of UCP1-dependence. Biochim Biophys Acta. 1837:2017–2030. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Skulachev VP: Anion carriers in fatty acid-mediated physiological uncoupling. J Bioenerg Biomembr. 31:431–445. 1999. View Article : Google Scholar | |
|
Schrauwen P and Hesselink MK: The role of uncoupling protein 3 in fatty acid metabolism: Protection against lipotoxicity? Proc Nutr Soc. 63:287–292. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Bouillaud F, Couplan E, Pecqueur C and Ricquier D: Homologues of the uncoupling protein from brown adipose tissue (UCP1): UCP2, UCP3, BMCP1 and UCP4. Biochim Biophys Acta. 1504:107–119. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Mao W, Yu XX, Zhong A, Li W, Brush J, Sherwood SW, Adams SH and Pan G: UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett. 443:326–330. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Sanchis D, Fleury C, Chomiki N, Goubern M, Huang Q, Neverova M, Grégoire F, Easlick J, Raimbault S, Lévi-Meyrueis C, et al: BMCP1, a novel mitochondrial carrier with high expression in the central nervous system of humans and rodents, and respiration uncoupling activity in recombinant yeast. J Biol Chem. 273:34611–34615. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Wang B, Ni YH, Liu F, Fei L, Pan XQ, Guo M, Chen RH and Guo XR: Overexpression of uncoupling protein 4 promotes proliferation and inhibits apoptosis and differentiation of preadipocytes. Life Sci. 79:1428–1435. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Slocinska M, Barylski J and Jarmuszkiewicz W: Uncoupling proteins of invertebrates: A review. IUBMB Life. 68:691–699. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ivanova MV, Hoang T, McSorley FR, Krnac G, Smith MD and Jelokhani-Niaraki M: A comparative study on conformation and ligand binding of the neuronal uncoupling proteins. Biochemistry. 49:512–521. 2010. View Article : Google Scholar | |
|
Kwok KH, Ho PW, Chu AC, Ho JW, Liu HF, Yiu DC, Chan KH, Kung MH, Ramsden DB and Ho SL: Mitochondrial UCP5 is neuroprotective by preserving mitochondrial membrane potential, ATP levels, and reducing oxidative stress in MPP+ and dopamine toxicity. Free Radic Biol Med. 49:1023–1035. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Emerit J, Edeas M and Bricaire F: Neurodegenerative diseases and oxidative stress. Biomed Pharmacother. 58:39–46. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Kim-Han JS and Dugan LL: Mitochondrial uncoupling proteins in the central nervous system. Antioxid Redox Signal. 7:1173–1181. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Ho PW, Ho JW, Tse HM, So DH, Yiu DC, Liu HF, Chan KH, Kung MH, Ramsden DB and Ho SL: Uncoupling protein-4 (UCP4) increases ATP supply by interacting with mitochondrial complex II in neuroblastoma cells. PLoS One. 7:e328102012. View Article : Google Scholar : PubMed/NCBI | |
|
Pfeiffer M, Kayzer EB, Yang X, Abramson E, Kenaston MA, Lago CU, Lo HH, Sedensky MM, Lunceford A, Clarke CF, et al: Caenorhabditis elegans UCP4 protein controls complex II-mediated oxidative phosphorylation through succinate transport. J Biol Chem. 286:37712–37720. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chan SL, Liu D, Kyriazis GA, Bagsiyao P, Ouyang X and Mattson MP: Mitochondrial uncoupling protein-4 regulates calcium homeostasis and sensitivity to store depletion-induced apoptosis in neural cells. J Biol Chem. 281:37391–37403. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Walder K, Norman RA, Hanson RL, Schrauwen P, Neverova M, Jenkinson CP, Easlick J, Warden CH, Pecqueur C, Raimbault S, et al: Association between uncoupling protein polymorphisms (UCP2UCP3) and energy metabolism/obesity in pima indians. Hum Mol Genet. 7:1431–1435. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Pheiffer C, Jacobs C, Patel O, Ghoor S, Muller C and Louw J: Expression of UCP2 in wistar rats varies according to age and the severity of obesity. J Physiol Biochem. 72:25–32. 2016. View Article : Google Scholar | |
|
Millet L, Vidal H, Andreelli F, Larrouy D, Riou JP, Ricquier D, Laville M and Langin D: Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans. J Clin Invest. 100:2665–2670. 1997. View Article : Google Scholar | |
|
Robson-Doucette CA, Sultan S, Allister EM, Wikstrom JD, Koshkin V, Bhattacharjee A, Prentice KJ, Sereda SB, Shirihai OS and Wheeler MB: Beta-cell uncoupling protein 2 regulates reactive oxygen species production, which influences both insulin and glucagon secretion. Diabetes. 60:2710–2719. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Gonzalez-Barroso MM, Giurgea I, Bouillaud F, Anedda A, Bellanné-Chantelot C, Hubert L, de Keyzer Y, de Lonlay P and Ricquier D: Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion. PLoS One. 3:e38502008. View Article : Google Scholar : PubMed/NCBI | |
|
Lameloise N, Muzzin P, Prentki M and Assimacopoulos-Jeannet F: Uncoupling protein 2: A possible link between fatty acid excess and impaired glucose-induced insulin secretion? Diabetes. 50:803–809. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Patane G, Anello M, Piro S, Vigneri R, Purrello F and Rabuazzo AM: Role of ATP production and uncoupling protein-2 in the insulin secretory defect induced by chronic exposure to high glucose or free fatty acids and effects of peroxisome proliferator-activated receptor-gamma inhibition. Diabetes. 51:2749–2756. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Nichols K, Nathan CA and Zhao Y: Mitochondrial uncoupling protein 2 is up-regulated in human head and neck, skin, pancreatic, and prostate tumors. Cancer Biomark. 13:377–383. 2013. View Article : Google Scholar | |
|
Derdak Z, Mark NM, Beldi G, Robson SC, Wands JR and Baffy G: The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Res. 68:2813–2819. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Pons DG, Nadal-Serrano M, Torrens-Mas M, Valle A, Oliver J and Roca P: UCP2 inhibition sensitizes breast cancer cells to therapeutic agents by increasing oxidative stress. Free Radic Biol Med. 86:67–77. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kawanishi M, Fukuda T, Shimomura M, Inoue Y, Wada T, Tasaka R, Yasui T and Sumi T: Expression of UCP2 is associated with sensitivity to platinum-based chemotherapy for ovarian serous carcinoma. Oncol Lett. 15:9923–9928. 2018.PubMed/NCBI | |
|
Franssen FM, Wouters EF, Baarends EM, Akkermans MA and Schols AM: Arm mechanical efficiency and arm exercise capacity are relatively preserved in chronic obstructive pulmonary disease. Med Sci Sports Exerc. 34:1570–1576. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Gosker HR, Schrauwen P, Broekhuizen R, Hesselink MK, Moonen-Kornips E, Ward KA, Franssen FM, Wouters EF and Schols AM: Exercise training restores uncoupling protein-3 content in limb muscles of patients with chronic obstructive pulmonary disease. Am J Physiol. Endocrinol Metab. 290:E976–E981. 2006. | |
|
Patti ME and Corvera S: The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev. 31:364–395. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Schrauwen P, Hesselink MK, Blaak EE, Borghouts LB, Schaart G, Saris WH and Keizer HA: Uncoupling protein 3 content is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes. 50:2870–2873. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Yasuno K, Ando S, Misumi S, Makino S, Kulski JK, Muratake T, Kaneko N, Amagane H, Someya T, Inoko H, et al: Synergistic association of mitochondrial uncoupling protein (UCP) genes with schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 144B:250–253. 2007. View Article : Google Scholar | |
|
Gigante AD, Andreazza AC, Lafer B, Yatham LN, Beasley CL and Young LT: Decreased mRNA expression of uncoupling protein 2, a mitochondrial proton transporter, in post-mortem prefrontal cortex from patients with bipolar disorder and schizophrenia. Neurosci Lett. 505:47–51. 2011. View Article : Google Scholar : PubMed/NCBI |