|
1
|
Vandenabeele P, Galluzzi L, Vanden Berghe
T and Kroemer G: Molecular mechanisms of necroptosis: An ordered
cellular explosion. Nat Rev Mol Cell Biol. 11:700–714. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Degterev A, Huang Z, Boyce M, Jagtap P,
Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA and Yuan J:
Chemical inhibitor of nonapoptotic cell death with therapeutic
potential for ischemic brain injury. Nat Chem Biol. 1:112–119.
2005. View Article : Google Scholar
|
|
3
|
Christofferson DE and Yuan J: Necroptosis
as an alternative form of programmed cell death. Curr Opin Cell
Biol. 22:263–268. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ashkenazi A and Salvesen G: Regulated cell
death: Signaling and mechanisms. Annu Rev Cell & Dev Biol.
30:337–356. 2014. View Article : Google Scholar
|
|
5
|
Zhang YY and Liu H: Connections between
various trigger factors and the RIP1/RIP3 signaling pathway
involved in necroptosis. Asian Pac J Cancer Prev. 14:7069–7074.
2013. View Article : Google Scholar
|
|
6
|
Mason AR, Elia LP and Finkbeiner S: The
receptor-interacting serine/threonine protein kinase 1 (RIPK1)
regulates progranulin levels. J Biol Chem. 292:3262–3272. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Stanger BZ, Leder P, Lee TH, Kim E and
Seed B: RIP: A novel protein containing a death domain that
interacts with Fas/APO-1 (CD95) in yeast and causes cell death.
Cell. 81:513–523. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sun X, Lee J, Navas T, Baldwin DT, Stewart
TA and Dixit VM: RIP3, a novel apoptosis-inducing kinase. J Biol
Chem. 274:16871–16875. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Newton K: RIPK1 and RIPK3: Critical
regulators of inflammation and cell death. Trends Cell Biol.
25:347–353. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Cho YS, Challa S, Moquin D, Genga R, Ray
TD, Guildford M and Chan FK: Phosphorylation-driven assembly of the
RIP1-RIP3 complex regulates programmed necrosis and virus-induced
inflammation. Cell. 137:1112–1123. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kaiser WJ, Upton JW, Long AB,
Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T and
Mocarski ES: RIP3 mediates the embryonic lethality of
caspase-8-deficient mice. Nature. 471:368–372. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhou W and Yuan J: Necroptosis in health
and diseases. Semin Cell Dev Biol. 35:14–23. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Vandenabeele P, Declercq W, Van Herreweghe
F and Vanden Berghe T: The role of the kinases RIP1 and RIP3 in
TNF-induced necrosis. Sci Signal. 3:pp. re42010, View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wu XN, Yang ZH, Wang XK, Zhang Y, Wan H,
Song Y, Chen X, Shao J and Han J: Distinct roles of RIP1-RIP3
hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis.
Cell Death Differ. 21:1709–1720. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wen L, Zhuang L, Luo X and Wei P:
TL1A-induced NF-kappaB activation and c-IAP2 production prevent
DR3-mediated apoptosis in TF-1 cells. J Biol Chem. 278:39251–39258.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ahmad M, Srinivasula SM, Wang L, Talanian
RV, Litwack G, Fernandes-Alnemri T and Alnemri ES: CRADD, a novel
human apoptotic adaptor molecule for caspase-2, and FasL/tumor
necrosis factor receptor-interacting protein RIP. Cancer Res.
57:615–619. 1997.PubMed/NCBI
|
|
17
|
Festjens N, Vanden BT, Cornelis S and
Vandenabeele P: RIP1, a kinase on the crossroads of a cell's
decision to live or die. Cell Death Differ. 14:400–410. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Newton K, Sun X and Dixit VM: Kinase RIP3
is dispensable for normal NF-kappa Bs, signaling by the B-cell and
T-cell receptors, tumor necrosis factor receptor 1, and Toll-like
receptors 2 and 4. Mol Cell Biol. 24:1464–1469. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sun X, Yin J, Starovasnik MA, Fairbrother
WJ and Dixit VM: Identification of a novel homotypic interaction
motif required for the phosphorylation of receptor-interacting
protein (RIP) by RIP3. J Biol Chem. 277:9505–9511. 2002. View Article : Google Scholar
|
|
20
|
Luedde M, Lutz M, Carter N, Sosna J,
Jacoby C, Vucur M, Gautheron J, Roderburg C, Brg N, Reisinger F, et
al: RIP3, a kinase promoting necroptotic cell death, mediates
adverse remodelling after myocardial infarction. Cardiovasc Res.
103:206–216. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Günther C, Neumann H, Neurath MF and
Becker C: Apoptosis, necrosis and necroptosis: Cell death
regulation in the intestinal epithelium. Gut. 62:1062–1071. 2013.
View Article : Google Scholar
|
|
22
|
Pasparakis M and Vandenabeele P:
Necroptosis and its role in inflammation. Nature. 517:311–320.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Magnusson C and Vaux DL: Signalling by
CD95 and TNF receptors: Not only life and death. Immunol Cell Biol.
77:41–46. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lan YH, Wu YC, Wu KW, Chung JG, Lu CC,
Chen YL, Wu TS and Yang JS: Death receptor 5-mediated TNFR family
signaling pathways modulate γ-humulene-induced apoptosis in human
colorectal cancer HT29 cells. Oncol Rep. 25:419–424. 2011.
|
|
25
|
Pan G, Bauer JH, Haridas V, Wang S, Liu D,
Yu G, Vincenz C, Aggarwal BB, Ni J and Dixit VM: Identification and
functional characterization of DR6, a novel death domain-containing
TNF receptor. FEBS Lett. 431:351–356. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Andera L: Signaling activated by the death
receptors of the TNFR family. Biomed Pap Med Fac Univ Palacky
Olomouc Czech Repub. 153:173–180. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yoshikawa M, Saitoh M, Katoh T, Seki T,
Bigi SV, Shimizu Y, Ishii T, Okai T, Kuno M, Hattori H, et al:
Discovery of 7-Oxo-2,4,5,7-tetrahydro-6 H-pyrazolo[3,4-c]pyridine
derivatives as potent, orally available, and brain-penetrating
receptor interacting protein 1 (RIP1) kinase inhibitors: Analysis
of structure-kinetic relationships. J Med Chem. 61:2384–2409. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Vanlangenakker N, Bertrand MJM, Bogaert P,
Vandenabeele P and Berghe TV: TNF-induced necroptosis in L929 cells
is tightly regulated by multiple TNFR1 complex I and II members.
Cell Death Dis. 2:pp. e2302011, View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Micheau O and Tschopp J: Induction of TNF
receptor I-mediated apoptosis via two sequential signaling
complexes. Cell. 114:181–190. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wong WW, Gentle IE, Nachbur U, Anderton H,
Vaux DL and Silke J: RIPK1 is not essential for TNFR1-induced
activation of NF-kappaB. Cell Death Differ. 17:482–487. 2010.
View Article : Google Scholar
|
|
31
|
Mack C, Sickmann A, Lembo D and Brune W:
Inhibition of proinflammatory and innate immune signaling pathways
by a cytomegalovirus RIP1-interacting protein. Proc Natl Acad Sci
USA. 105:3094–3099. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang L, Du F and Wang X: TNF-alpha induces
two distinct caspase-8 activation pathways. Cell. 133:693–703.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Benetatos CA, Mitsuuchi Y, Burns JM,
Neiman EM, Condon SM, Yu G, Seipel ME, Kapor GS, Laporte MG, Rippin
SR, et al: Birinapant (TL32711), a bivalent SMAC mimetic, targets
TRAF2-associated cIAPs, abrogates TNF-induced NF-κB activation, and
is active in patient-derived xenograft models. Mol Can Ther.
13:867–879. 2014. View Article : Google Scholar
|
|
34
|
Hughes MA, Powley IR, Jukesjones R, Horn
S, Feoktistova M, Fairall L, Schwabe JW, Leverkus M, Cain K,
MacFarlane M, et al: Co-operative and hierarchical binding of
c-FLIP and caspase-8: A unified model defines how c-FLIP isoforms
differentially control cell fate. Mol Cell. 61:834–849. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Oberst A, Dillon CP, Weinlich R, McCormick
LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS and Green DR:
Catalytic activity of the caspase-8-FLIPL complex inhibits
RIPK3-dependent necrosis. Nature. 471:363–367. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ikner A and Ashkenazi A: TWEAK induces
apoptosis through a death-signaling complex comprising
receptor-interacting protein 1 (RIP1), Fas-associated death domain
(FADD), and caspase-8. J Biol Chem. 286:21546–21554. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lin Y, Devin A, Rodriguez Y and Liu Z:
Cleavage of the death domain kinase RIP by Caspase-8 p rompts
TNF-induced apoptosis. Genes Dev. 13:2514–2526. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Vanden BT, Linkermann A, Jouan-Lanhouet S,
Walczak H and Vandenabeele P: Regulated necrosis: The expanding
network of non-apoptotic cell death pathways. Nat Rev Mol Cell
Biol. 15:135–147. 2014. View Article : Google Scholar
|
|
39
|
Li J, Mcquade T, Siemer AB, Napetschnig J,
Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A, et
al: The RIP1/RIP3 necrosome forms a functional amyloid signaling
complex required for programmed necrosis. Cell. 150:339–350. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
He S, Wang L, Miao L, Wang T, Du F, Zhao L
and Wang X: Receptor interacting protein kinase-3 determines
cellular necrotic response to TNF-alpha. Cell. 137:1100–1111. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang Y, Su SS, Zhao S, Yang Z, Zhong CQ,
Chen X, Cai Q, Yang ZH, Huang D, Wu R and Han J: RIP1
autophosphorylation is promoted by mitochondrial ROS and is
essential for RIP3 recruitment into necrosome. Nat Commun.
8:143292017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Moquin DM, Mcquade T and Chan FK: CYLD
deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate
kinase activation and programmed necrosis. PLoS One. 8:pp.
e768412013, View Article : Google Scholar
|
|
43
|
Sun L, Wang H, Wang Z, He S, Chen S, Liao
D, Wang L, Yan J, Liu W, Lei X and Wang X: Mixed lineage kinase
domain-like protein mediates necrosis signaling downstream of RIP3
kinase. Cell. 148:213–227. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Dondelinger Y, Declercq W, Montessuit S,
Roelandt R, Goncalves A, Bruggeman I, Hulpiau P, Weber K, Sehon CA
and Marquis RW: MLKL compromises plasma membrane integrity by
binding to phosphatidylinositol phosphates. Cell Rep. 7:971–981.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wang H, Sun L, Su L, Rizo J, Liu L, Wang
LF, Wang FS and Wang X: Mixed lineage kinase domain-like protein
MLKL causes necrotic membrane disruption upon phosphorylation by
RIP3. Mol Cell. 54:133–146. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kaiser WJ, Sridharan H, Huang C, Mandal P,
Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J and Mocarski ES:
Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J
Biol Chem. 288:31268–31279. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
He S, Liang Y, Shao F and Wang X:
Toll-like receptors activate programmed necrosis in macrophages
through a receptor-interacting kinase-3-mediated pathway. Proc Natl
Acad Sci USA. 108:20054–20059. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lu J: Regulation of necroptosis and
autophagy in T cell homeostasis and function. University of
California; Irvine: 2014
|
|
49
|
Walsh CM: Grand challenges in cell death
and survival: Apoptosis vs. necroptosis. Front Cell Dev Biol.
2:32014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hoshino K, Takeuchi O, Kawai T, Sanjo H,
Ogawa T, Takeda Y, Takeda K and Akira S: Cutting edge: Toll-like
receptor 4 (TLR4)-deficient mice are hyporesponsive to
lipopolysaccharide: Evidence for TLR4 as the Lps gene product. J
Immunol. 162:3749–3752. 1999.PubMed/NCBI
|
|
51
|
Takaki H, Shime H, Matsumoto M and Seya T:
Tumor cell death by pattern-sensing of exogenous RNA: Tumor cell
TLR3 directly induces necroptosis by poly(I:C) in vivo, independent
of immune effector-mediated tumor shrinkage. Oncoimmunology. 6:pp.
e10789682015, View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yamamoto M, Sato S, Hemmi H, Hoshino K,
Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okab M, Takeda K and
Akira S: Role of adaptor TRIF in the MyD88-independent toll-like
receptor signaling pathway. Science. 301:640–643. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kawai T, Adachi O, Ogawa T, Takeda K and
Akira S: Unresponsiveness of MyD88-deficient mice to endotoxin.
Immunity. 11:115–122. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hoebe K, Du X, Georgel P, Janssen E,
Tabeta K, Kim SO, Goode J, Lin P, Mann N and Mudd S: Identification
of Lps2 as a key transducer of MyD88-independent TIR signalling.
Nature. 424:743–748. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Holler N, Zaru R, Micheau O, Thome M,
Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B and Tschopp
J: Fas triggers an alternative, caspase-8-independent cell death
pathway using the kinase RIP as effector molecule. Nature Immunol.
1:489–495. 2000. View
Article : Google Scholar
|
|
56
|
Geserick P, Hupe M, Moulin M, Wong WW,
Feoktistova M, Kellert B, Gollnick H, Silke J and Leverkus M:
Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting
RIP1 kinase recruitment. J Cell Biol. 187:1037–1054. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Robinson N, Mccomb S, Mulligan R, Dudani
R, Krishnan L and Sad S: Type I interferon induces necroptosis in
macrophages during infection with salmonella enterica serovar
typhimurium. Nature Immunol. 13:954–962. 2012. View Article : Google Scholar
|
|
58
|
Kaiser WJ, Upton JW and Mocarski ES: Viral
modulation of programmed necrosis. Curr Opin Virol. 3:296–306.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang Y, Chen X, Gueydan C and Han J:
Plasma membrane changes during programmed cell deaths. Cell Res.
28:9–21. 2018. View Article : Google Scholar :
|
|
60
|
Orozco S, Yatim N, Werner MR, Tran H,
Gunja SY, Tait SW, Albert ML, Green DR and Oberst A: RIPK1 both
positively and negatively regulates RIPK3 oligomerization and
necroptosis. Cell Death Differ. 21:1511–1521. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wajant H and Scheurich P: TNFR1-induced
activation of the classical NF-κB pathway. FEBS J. 278:862–876.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Jaco I, Annibaldi A, Lalaoui N, Wilson R,
Tenev T, Laurien L, Kim C, Jamal K, Wicky John S, Liccardi G, et
al: MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. Mol
Cell. 66:698–710.e5. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kearney CJ, Cullen SP, Danielle C and
Martin SJ: RIPK1 can function as an inhibitor rather than an
initiator of RIPK3-dependent necroptosis. FEBS J. 281:4921–4934.
2015. View Article : Google Scholar
|
|
64
|
Schenk B and Fulda S: Reactive oxygen
species regulate Smac mimetic/TNFα-induced necroptotic signaling
and cell death. Oncogene. 34:5796–5806. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang DW, Shao J, Lin J, Zhang N, Lu BJ,
Lin SC, Dong MQ and Han J: RIP3, an energy metabolism regulator
that switches TNF-induced cell death from apoptosis to necrosis.
Science. 325:332–336. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wen S, Wu X, Gao H, Yu J, Zhao W, Lu JJ,
Wang J, Du G and Chen X: Cytosolic calcium mediates RIP1/RIP3
complex-dependent necroptosis through JNK activation and
mitochondrial ROS production in human colon cancer cells. Free
Radic Biol Med. 108:433–444. 2017. View Article : Google Scholar
|
|
67
|
Kearney CJ and Martin SJ: An inflammatory
perspective on necroptosis. Mol Cell. 65:965–973. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Martin SJ: Cell death and inflammation:
The case for IL-1 family cytokines as the canonical DAMPs of the
immune system. FEBS J. 283:2599–2615. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kono H and Rock KL: How dying cells alert
the immune system to danger. Nat Rev Immunol. 8:279–289. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Fan H, Liu F, Dong G, Ren D, Xu Y, Dou J,
Wang T, Sun L and Hou Y: Activation-induced necroptosis contributes
to B-cell lymphopenia in active systemic lupus erythematosus. Cell
Death Dis. 5:pp. e14162014, View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Siegel RM: Caspases at the crossroads of
immune-cell life and death. Nat Rev Immunol. 6:308–317. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bell BD, Leverrier S, Weist BM, Newton RH,
Arechiga AF, Luhrs KA, Morrissette NS and Walsh CM: FADD and
caspase-8 control the outcome of autophagic signaling in
proliferating T cells. Proc Natl Acad Sci USA. 105:16677–16682.
2009. View Article : Google Scholar
|
|
73
|
Lu JV and Walsh CM: Programmed necrosis
and autophagy in immune function. Immunol Rev. 249:205–217. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
O'Donnell JA, Lehman J, Roderick JE,
Martinez-Marin D, Zelic M, Doran C, Hermance N, Lyle S, Pasparakis
M, Fitzgerald KA, et al: Dendritic cell RIPK1 maintains immune
homeostasis by preventing inflammation and autoimmunity. J Immunol.
200:737–748. 2018. View Article : Google Scholar :
|
|
75
|
Giltiay NV, Chappell CP, Sun X, Kolhatkar
N, Teal TH, Wiedeman AE, Kim J, Tanaka L, Buechler MB, Hamerman JA,
et al: Overexpression of TLR7 promotes cell-intrinsic expansion and
autoantibody production by transitional T1B cells. J Exp Med.
210:2773–2789. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Mina-Osorio P, LaStant J, Keirstead N,
Whittard T, Ayala J, Stefanova S, Garrido R, Dimaano N, Hilton H,
Giron M, et al: Suppression of glomerulonephritis in lupus-prone
NZB x NZW mice by RN486, a selective inhibitor of Bruton's tyrosine
kinase. Arthritis Rheum. 65:2380–2391. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Biton S and Ashkenazi A: NEMO and RIP1
control cell fate in response to extensive DNA damage via TNF-α
feedforward signaling. Cell. 145:92–103. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Xu C, Wu X, Zhang X, Xie Q, Fan C and
Zhang H: Embryonic lethality and host immunity of relA-deficient
mice are mediated by both apoptosis and necroptosis. J Immunol.
200:271–285. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Lu JV, Weist BM, van Raam BJ, Marro BS,
Nguyen LV, Srinivas P, Bell BD, Luhrs KA, Lane TE, Salvesen GS and
Walsh CM: Complementary roles of fas-associated death domain (FADD)
and receptor interacting protein kinase-3 (RIPK3) in T-cell
homeostasis and antiviral immunity. Proc Natl Acad Sci USA.
108:15312–15317. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang H, Zhou X, Mcquade T, Li J, Chan FK
and Zhang J: Functional complementation between FADD and RIP1 in
embryos and lymphocytes. Nature. 471:373–376. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu Y, Fan C, Zhang Y, Yu X, Wu X, Zhang
X, Zhao Q, Zhang H, Xie Q, Li M, et al: RIP1 kinase
activity-dependent roles in embryonic development of fadd-deficient
mice. Cell Death Differ. 24:1459–1469. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Dillon CP, Oberst A, Weinlich R, Janke LJ,
Kang TB, Ben-Moshe T, Mak TW, Wallach D and Green DR: Survival
function of the FADD-CASPASE-8-cFLIP(L) complex. Cell Rep.
1:401–407. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Kaiser WJ, Daleybauer LP, Thapa RJ, Mandal
P, Berger SB, Huang C, Sundararajan A, Guo H, Roback L, Speck SH,
et al: RIP1 suppresses innate immune necrotic as well as apoptotic
cell death during mammalian parturition. Proc Natl Acad Sci USA.
111:7753–7758. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Dillon CP, Weinlich R, Rodriguez DA,
Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F,
Gong YN, et al: RIPK1 blocks early postnatal lethality mediated by
caspase-8 and RIPK3. Cell. 157:1189–1202. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Dowling JP, Nair A and Zhang J: A novel
function of RIP1 in postnatal development and immune homeostasis by
protecting against RIP3-dependent necroptosis and FADD-mediated
apoptosis. Front Cell Dev Biol. 3:122015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Degterev A, Hitomi J, Germscheid M, Ch'en
IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, et al:
Identification of RIP1 kinase as a specific cellular target of
necrostatins. Nat Chem Biol. 4:313–321. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Takahashi N, Duprez L, Grootjans S,
Cauwels A, Nerinckx W, DuHadaway JB, Goossens V, Roelandt R, Van
Hauwermeiren F, Libert C, et al: Necrostatin-1 analogues: Critical
issues on the specificity, activity andin vivouse in experimental
disease models. Cell Death Dis. 3:pp. e4372012, View Article : Google Scholar
|
|
88
|
Harris PA, Berger SB, Jeong JU, Nagilla R,
Bandyopadhyay D, Campobasso N, Capriotti CA, Cox JA, Dare L, Dong
X, et al: Discovery of a first-in-class receptor interacting
protein 1 (RIP1) kinase specific clinical candidate (GSK2982772)
for the treatment of inflammatory diseases. J Med Chem.
60:1247–1261. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ren Y, Su Y, Sun L, He S, Meng L, Liao D,
Liu X, Ma Y, Liu C, Li S, et al: Discovery of a highly potent,
selective, and metabolically stable inhibitor of
receptor-interacting protein 1 (RIP1) for the treatment of systemic
inflammatory response syndrome. J Med Chem. 60:972–986. 2017.
View Article : Google Scholar
|
|
90
|
Martens S, Goossens V, Devisscher L,
Hofmans S, Claeys P, Vuylsteke M, Takahashi N, Augustyns K and
Vandenabeele P: RIPK1-dependent cell death: A novel target of the
Aurora kinase inhibitor Tozasertib (VX-680). Cell Death Dis.
9:2112018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Fauster A, Rebsamen M, Huber KVM,
Bigenzahn JW, Stukalov A, Lardeau CH, Scorzoni S, Bruckner M,
Gridling M, Parapatics K, et al: A cellular screen identifies
ponatinib and pazopanib as inhibitors of necroptosis. Cell Death
Dis. 6:pp. e17672015, View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Alcalá AM and Flaherty KT: BRAF inhibitors
for the treatment of metastatic melanoma: Clinical trials and
mechanisms of resistance. Clin Cancer Res. 18:33–39. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Li JX, Feng JM, Wang Y, Li XH, Chen XX, Su
Y, Shen YY, Chen Y, Xiong B, Yang CH, et al: The B-RafV600E
inhibitor dabrafenib selectivelyinhibits RIP3 and alleviates
acetaminophen-induced liver injury. Cell Death Dis. 5:pp.
e12782014, View Article : Google Scholar
|
|
94
|
Cruz SA, Qin Z, Afr S and Chen HH:
Dabrafenib, an inhibitor of RIP3 kinase-dependent necroptosis,
reduces ischemic brain injury. Neural Regen Res. 13:252–256. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Omoto S, Guo H, Talekar GR, Roback L,
Kaiser WJ and Mocarski ES: Suppression of RIP3-dependent
necroptosis by human cytomegalovirus. J Biol Chem. 290:11635–11648.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Liu J, Mil AV, Vrijsen K, Zhao J, Gao L,
Metz CH, Goumans MJ, Doevendans PA and Sluijter JP: MicroRNA-155
prevents necrotic cell death in human cardiomyocyte progenitor
cells via targeting RIP1. J Cell Mol Med. 15:1474–1482. 2011.
View Article : Google Scholar
|
|
97
|
Dhingra R, Lin J and Kirshenbaum LA:
Disruption of RIP1-FADD complexes by microRNA-103/107 provokes
necrotic cardiac cell death. Circ Res. 117:314–316. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wang JX, Zhang XJ, Li Q, Wang K, Wang Y,
Jiao JQ, Feng C, Teng S, Zhou LY, Gong Y, et al: MicroRNA-103/107
regulate programmed necrosis and myocardial ischemia/reperfusion
injury through targeting FADD. Circ Res. 117:352–363. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wo L, Lu D and Gu X: Knockdown of miR-182
promotes apoptosis via regulating RIP1 deubiquitination in
TNF-α-treated triple-negative breast cancer cells. Tumour Biol.
37:13733–13742. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zheng M, Wu Z, Wu A, Huang Z, He N and Xie
X: MiR-145 promotes TNF-α-induced apoptosis by facilitating the
formation of RIP1-FADDcaspase-8 complex in triple-negative breast
cancer. Tumor Biol. 37:8599–8607. 2016. View Article : Google Scholar
|
|
101
|
Li D, Xu T, Cao Y, Wang H, Li L, Chen S,
Wang X and Shen Z: A cytosolic heat shock protein 90 and
cochaperone CDC37 complex is required for RIP3 activation during
necroptosis. Proc Natl Acad Sci USA. 112:5017–5022. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Li D, Li C, Li L, Chen S, Wang L, Li Q,
Wang X, Lei X and Shen Z: Natural product kongensin a is a
non-canonical HSP90 inhibitor that blocks RIP3-dependent
necroptosis. Cell Chem Biol. 23:257–266. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Jacobsen AV, Lowes KN, Tanzer MC, Lucet
IS, Hildebrand JM, Petrie EJ, van Delft MF, Liu Z, Conos SA, Zhang
JG, et al: HSP90 activity is required for MLKL oligomerisation and
membrane translocation and the induction of necroptotic cell death.
Cell Death Dis. 7:pp. e20512016, View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhao XM, Chen Z, Zhao JB, Zhang PP, Pu YF,
Jiang SH, Hou JJ, Cui YM, Jia XL and Zhang SQ: Hsp90 modulates the
stability of MLKL and is required for TNF-induced necroptosis. Cell
Death Dis. 7:pp. e20892016, View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Park SY, Shim JH, Chae JI and Cho YS: Heat
shock protein 90 inhibitor regulates necroptotic cell death via
down-regulation of receptor interacting proteins. Pharmazie.
70:193–198. 2015.PubMed/NCBI
|
|
106
|
Declercq W, Vanden BT and Vandenabeele P:
RIP kinases at the crossroads of cell death and survival. Cell.
138:229–232. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Chan FK, Luz NF and Moriwaki K: Programmed
necrosis in the cross talk of cell death and inflammation. Annu Rev
Immunol. 33:79–106. 2015. View Article : Google Scholar :
|
|
108
|
Ariana A: Dissection of TLR4-Induced
Necroptosis Using Specific Inhibitors of Endocytosis and P38 MAPK.
Department of Biochemistry, Microbiology and Immunology University
of Ottawa; Ottawa, Canada: 2017
|
|
109
|
Upton JW, Kaiser WJ and Mocarski ES: DAI
complexes with RIP3 to mediate virus-induced programmed necrosis
that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe.
11:290–297. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Gupta K, Phan N, Wang Q and Liu B:
Necroptosis in cardiovascular disease-a new therapeutic target. J
Mol Cell Cardiol. 118:26–35. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Lin J, Li H, Yang M, Ren J, Huang Z, Han
F, Huang J, Ma J, Zhang D, Zhang Z, et al: A role of RIP3-mediated
macrophage necrosis in atherosclerosis development. Cell Rep.
3:200–210. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Meng L, Jin W and Wang X: RIP3-mediated
necrotic cell death accelerates systematic inflammation and
mortality. Proc Natl Acad Sci USA. 112:11007–11012. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Zhang Y, Cheng J, Zhang J, Wu X, Chen F,
Ren X, Wang Y, Li Q and Li Y: Proteasome inhibitor PS-341 limits
macrophage necroptosis by promoting cIAPs-mediated inhibition of
RIP1 and RIP3 activation. Biochem Biophys Res Commun. 477:761–767.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Oerlemans MI, Liu J, Arslan F, den Ouden
K, van Middelaar BJ, Doevendans PA and Sluijter JP: Inhibition of
RIP1-dependent necrosis prevents adverse cardiac remodeling after
myocardial ischemia-reperfusion in vivo. Basic Res Cardiol.
107:2702012. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhu P, Hu S, Jin Q, Li D, Tian F, Toan S,
Li Y, Zhou H and Chen Y: Ripk3 promotes ER stress-induced
necroptosis in cardiac IR injury: A mechanism involving calcium
overload/XO/ROS/mPTP pathway. Redox Biol. 16:157–168. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhao M, Qin Y, Lu L, Tang X, Wu W, Fu H
and Liu X: Preliminary study of necroptosis in cardiac hypertrophy
induced by pressure overload. Sheng Wu Yi Xue Gong Cheng Xue Za
Zhi. 32:618–623. 2015.In Chinese. PubMed/NCBI
|
|
117
|
Zhang L, Feng Q and Wang T: Necrostatin-1
protects against paraquat-induced cardiac contractile dysfunction
via RIP1-RIP3-MLKL-dependent necroptosis pathway. Cardiovasc
Toxicol. 18:346–355. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Meng MB, Wang HH, Cui YL, Wu ZQ, Shi YY,
Zaorsky NG, Deng L, Yuan ZY, Lu Y and Wang P: Necroptosis in
tumori-genesis, activation of anti-tumor immunity, and cancer
therapy. Oncotarget. 7:57391–57413. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Chen D, Yu J and Zhang L: Necroptosis: An
alternative cell death program defending against cancer. Biochim
Biophys Acta. 1865:228–236. 2016.PubMed/NCBI
|
|
120
|
Yang Y, Hu W, Feng S, Ma J and Wu M: RIP3
beta and RIP3 gamma, two novel splice variants of
receptor-interacting protein 3 (RIP3), downregulate RIP3-induced
apoptosis. Biochem Biophys Res Commun. 332:181–187. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kasof GM, Prosser JC, Liu D, Lorenzi MV
and Gomes BC: The RIP-like kinase, RIP3, induces apoptosis and
NF-kappaB nuclear translocation and localizes to mitochondria. FEBS
Lett. 473:285–291. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Wu W, Liu P and Li J: Necroptosis: An
emerging form of programmed cell death. Crit Rev Oncol Hematol.
82:249–258. 2012. View Article : Google Scholar
|
|
123
|
Cabal-Hierro L and O'Dwyer PJ: TNF
signaling through RIP1 kinase enhances SN38-induced death in colon
adenocarcinoma. Mol Cancer Res. 15:395–404. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Xin J, You D, Breslin P, Li J, Zhang J,
Wei W, Cannova J, Volk A, Gutierrez R, Xiao Y, et al: Sensitizing
acute myeloid leukemia cells to induced differentiation by
inhibiting the RIP1/RIP3 pathway. Leukemia. 124:1154–1165. 2017.
View Article : Google Scholar
|
|
125
|
Li Y, Liu X, Gong P and Tian X: Bufalin
inhibits human breast cancer tumorigenesis by inducing cell death
through the ROS-Mediated RIP1/RIP3/PARP-1 pathways. Carcinogenesis.
39:700–707. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Larocca TJ, Sosunov SA, Shakerley NL, Ten
VS and Ratner AJ: Hyperglycemic conditions prime cells for
RIP1-dependent necroptosis. J Biol Chem. 291:13753–13761. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Mccaig WD, Patel PS, Sosunov SA, Shakerley
NL, Smiraglia TA, Craft MM, Walker KM, Deragon MA, Ten VS and
LaRocca TJ: Hyperglycemia potentiates a shift from apoptosis to
RIP1-dependent necroptosis. Cell Death Discov. 4:552018. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Wang K, Hu L and Chen JK: RIP3-deficience
attenuates potassium oxonate-induced hyperuricemia and kidney
injury. Biomed Pharmacother. 101:617–626. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Dara L, Liu ZX and Kaplowitz N: Questions
and controversies: The role of necroptosis in liver disease. Cell
Death Discov. 2:160892016. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Deutsch M, Graffeo CS, Rokosh R, Pansari
M, Ochi A, Levie EM, Van Heerden E, Tippens DM, Tippens DM, Greco
S, et al: Divergent effects of RIP1 or RIP3 blockade in murine
models of acute liver injury. Cell Death Dis. 6:pp. e17592015,
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Zhang YF, He W, Zhang C, Liu XJ, Lu Y,
Wang H, Zhang ZH, Chen X and Xu DX: Role of receptor interacting
protein (RIP)1 on apoptosis-inducing factor-mediated necroptosis
during acetaminophen-evoked acute liver failure in mice. Toxicol
Lett. 225:445–453. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Ramachandran A, McGill MR, Xie Y, Ni HM,
Ding WX and Jaeschke H: Receptor interacting protein kinase 3 is a
critical early mediator of acetaminophen-induced hepatocyte
necrosis in mice. Hepatology. 58:2099–2108. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Roychowdhury S, McMullen MR, Pisano SG,
Liu X and Nagy LE: Absence of receptor interacting protein kinase 3
prevents ethanol-induced liver injury. Hepatology. 57:1773–1783.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Wang S, Ni HM, Dorko K, Kumer SC, Schmitt
TM, Nawabi A, Komatsu M, Huang H and Ding WX: Increased hepatic
receptor interacting protein kinase 3 expression due to impaired
protea-somal functions contributes to alcohol-induced steatosis and
liver injury. Oncotarget. 7:17681–17698. 2016.PubMed/NCBI
|
|
135
|
Afonso MB, Rodrigues PM, Carvalho T,
Caridade M, Borralho P, Cortez-Pinto H, Castro RE and Rodrigues CM:
Necroptosis is a key pathogenic event in human and experimental
murine models of non-alcoholic steatohepatitis. Clin Sci (Lond).
129:pp. 721–739. 2015, View Article : Google Scholar
|
|
136
|
Choi HS, Kang JW and Lee SM: Melatonin
attenuates carbon tetrachloride-induced liver fibrosis via
inhibition of necroptosis. Transl Res. 166:292–303. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Linkermann A, Brasen JH, Himmerkus N, Liu
S, Huber TB, Kunzendorf U and Krautwald S: Rip1
(receptor-interacting protein kinase 1) mediates necroptosis and
contributes to renal ischemia/reperfusion injury. Kidney Int.
81:751–761. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Linkermann A, Brasen JH, Darding M, Jin
MK, Sanz AB, Heller JO, De Zen F, Weinlich R, Ortiz A, Walczak H,
et al: Two independent pathways of regulated necrosis mediate
ischemia-reperfusion injury. Proc Natl Acad Sci USA.
110:12024–12029. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Xu Y, Ma H, Shao J, Wu J, Zhou L, Zhang Z,
Wang Y, Huang Z, Ren J, Liu S, et al: A role for tubular
necroptosis in cisplatin-induced AKI. J Am Soc Nephrol.
26:2647–2658. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Xiao X, Du C, Yan Z, Shi Y, Duan H and Ren
Y: Inhibition of necroptosis attenuates kidney inflammation and
interstitial fibrosis induced by unilateral ureteral obstruction.
Am J Nephrol. 46:131–138. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Murakami Y, Trichonas G, Thanos A,
Mantopulos D, Morizane Y, Kayama M, Hisatomi T, Miller J and Vavvas
D: The role of RIP-mediated necrosis and autophagy in photoreceptor
death after retinal detachment. Invest Ophthalmol Vis Sci.
52:65882011.
|
|
142
|
Trichonas G, Murakami Y, Thanos A,
Morizane Y, Kayama M, Debouck CM, Hisatomi T, Miller JW and Vavvas
DG: Receptor interacting protein kinases mediate retinal
detachment-induced photoreceptor necrosis and compensate for
inhibition of apoptosis. Proc Natl Acad Sci USA. 107:21695–21700.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Murakami Y, Ikeda Y, Nakatake S, Miller
JW, Vavvas DG, Sonoda KH and Ishibashi T: Necrotic cone
photoreceptor cell death in retinitis pigmentosa. Cell Death Dis.
6:pp. e20382015, View Article : Google Scholar
|
|
144
|
Murakami Y, Matsumoto H, Roh M, Suzuki J,
Hisatomi T, Ikeda Y, Miller JW and Vavvas DG: Receptor interacting
protein kinase mediates necrotic cone but not rod cell death in a
mouse model of inherited degeneration. Proc Natl Acad Sci USA.
109:14598–14603. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Sato K, Li S, Gordon WC, He J, Liou GI,
Hill JM, Travis GH, Bazan NG and Jin M: Receptor interacting
protein kinase-mediated necrosis contributes to cone and rod
photoreceptor degeneration in the retina lacking interphotoreceptor
retinoid-binding protein. J Neurosci. 33:17458–17468. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Kataoka K, Matsumoto H, Kaneko H, Notomi
S, Takeuchi K, Sweigard JH, Atik A, Murakami Y, Connor KM, Terasaki
H, et al: Macrophage- and RIP3-dependent inflammasome activation
exacerbates retinal detachment-induced photoreceptor cell death.
Cell Death Dis. 6:pp. e17312015, View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Ito Y, Ofengeim D, Najafov A, Das S,
Saberi S, Li Y, Hitomi J, Zhu H, Chen H, Mayo L, et al: RIPK1
mediates axonal degeneration by promoting inflammation and
necroptosis in ALS. Science. 353:603–608. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Hébert MJ and Jevnikar AM: The impact of
regulated cell death pathways on alloimmune responses and graft
injury. Curr Transpl Rep. 2:242–258. 2015. View Article : Google Scholar
|
|
149
|
Lau A, Wang S, Jiang J, Haig A, Pavlosky
A, Linkermann A, Zhang ZX and Jevnikar AM: RIPK3-mediated
necroptosis promotes donor kidney inflammatory injury and reduces
allograft survival. Am J Transplant. 13:2805–2818. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Becker DS: Toxic epidermal necrolysis.
Lancet. 351:1417–1420. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Kim SK, Kim WJ, Yoon JH, Ji JH, Morgan MJ,
Cho H, Kim YC and Kim YS: Upregulated RIP3 expression potentiates
MLKL phosphorylation-mediated programmed necrosis in toxic
epidermal necrolysis. J Investi Dermatol. 135:2021–2030. 2015.
View Article : Google Scholar
|