Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
October-2019 Volume 44 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2019 Volume 44 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Next-generation sequencing predicts interaction network between miRNA and target genes in lipoteichoic acid-stimulated human neutrophils

  • Authors:
    • Meng‑Chi Yen
    • I‑Jeng Yeh
    • Kuan‑Ting Liu
    • Shu‑Fang Jian
    • Chia‑Jung Lin
    • Ming‑Ju Tsai
    • Po‑Lin Kuo
  • View Affiliations / Copyright

    Affiliations: Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C., Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.
    Copyright: © Yen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1436-1446
    |
    Published online on: July 31, 2019
       https://doi.org/10.3892/ijmm.2019.4295
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Toll‑like receptors (TLRs), which are a class of pattern‑recognition receptors, can sense specific molecules of pathogens and then activate immune cells, such as neutrophils. The regulation of TLR signaling in immune cells has been investigated by various studies. However, the interaction of TLR signaling‑activated microRNAs (miRNAs) and genes has not been well investigated in a specific type of immune cells. In the present study, neutrophils were isolated from peripheral blood of a healthy donor, and then treated for 16 h with Staphylococcus aureus lipoteichoic acid (LTA), which is an agonist of TLR2. The miRNA and mRNA expression profiles were analyzed via next‑generation sequencing and bioinformatics approaches. A total of 290 differentially expressed genes between LTA‑treated and vehicle‑treated neutrophils were identified. Gene ontology analysis revealed that various biological processes and pathways, including inflammatory responses, defense response, positive regulation of cell migration, motility, and locomotion, and cell surface receptor signaling pathway, were significantly enriched. In addition, 38 differentially expressed miRNAs were identified and predicted to be involved in regulating signal transduction and cell communication. The interaction of 4 miRNAs (hsa‑miR‑34a‑5p, hsa‑miR‑34c‑5p, hsa‑miR‑708‑5p, and hsa‑miR‑1271‑5p) and 5 genes (MET, CACNB3, TNS3, TTYH3, and HBEGF) was proposed to participate in the LTA‑induced signaling network. The present findings may provide novel information for understanding the detailed expression profiles and potential networks between miRNAs and their target genes in LTA‑stimulated healthy neutrophils.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Brubaker SW, Bonham KS, Zanoni I and Kagan JC: Innate immune pattern recognition: A cell biological perspective. Annu Rev Immunol. 33:257–290. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Mogensen TH: Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 22:240–273, Table of Contents, 2009. PubMed/NCBI

3 

Kawasaki T and Kawai T: Toll-like receptor signaling pathways. Front Immunol. 5:4612014. View Article : Google Scholar : PubMed/NCBI

4 

Lu YC, Yeh WC and Ohashi PS: LPS/TLR4 signal transduction pathway. Cytokine. 42:145–151. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Park BS and Lee JO: Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med. 45:e662013. View Article : Google Scholar : PubMed/NCBI

6 

Seo HS, Michalek SM and Nahm MH: Lipoteichoic acid is important in innate immune responses to gram-positive bacteria. Infect Immun. 76:206–213. 2008. View Article : Google Scholar :

7 

Schwandner R, Dziarski R, Wesche H, Rothe M and Kirschning CJ: Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem. 274:17406–17409. 1999. View Article : Google Scholar : PubMed/NCBI

8 

Oliveira-Nascimento L, Massari P and Wetzler LM: The role of TLR2 in infection and immunity. Front Immunol. 3:792012. View Article : Google Scholar : PubMed/NCBI

9 

Kengatharan KM, De Kimpe S, Robson C, Foster SJ and Thiemermann C: Mechanism of gram-positive shock: Identification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock, and multiple organ failure. J Exp Med. 188:305–315. 1998. View Article : Google Scholar : PubMed/NCBI

10 

Kurt-Jones EA, Mandell L, Whitney C, Padgett A, Gosselin K, Newburger PE and Finberg RW: Role of toll-like receptor 2 (TLR2) in neutrophil activation: GM-CSF enhances TLR2 expression and TLR2-mediated interleukin 8 responses in neutrophils. Blood. 100:1860–1868. 2002.PubMed/NCBI

11 

Lotz S, Aga E, Wilde I, van Zandbergen G, Hartung T, Solbach W and Laskay T: Highly purified lipoteichoic acid activates neutrophil granulocytes and delays their spontaneous apoptosis via CD14 and TLR2. J Leukoc Biol. 75:467–477. 2004. View Article : Google Scholar

12 

Ginsburg I: Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis. 2:171–179. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Nathan C: Neutrophils and immunity: Challenges and opportunities. Nat Rev Immunol. 6:173–182. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Hattar K, Grandel U, Moeller A, Fink L, Iglhaut J, Hartung T, Morath S, Seeger W, Grimminger F and Sibelius U: Lipoteichoic acid (LTA) from Staphylococcus aureus stimulates human neutrophil cytokine release by a CD14-dependent, Toll-like-receptor-independent mechanism: Autocrine role of tumor necrosis factor-[alpha] in mediating LTA-induced interleukin-8 generation. Crit Care Med. 34:835–841. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Drury RE, O'Connor D and Pollard AJ: The clinical application of MicroRNAs in infectious disease. Front Immunol. 8:11822017. View Article : Google Scholar : PubMed/NCBI

16 

Liu H, Lei C, He Q, Pan Z, Xiao D and Tao Y: Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol Cancer. 17:642018. View Article : Google Scholar : PubMed/NCBI

17 

Wen Z, Xu L, Chen X, Xu W, Yin Z, Gao X and Xiong S: Autoantibody induction by DNA-containing immune complexes requires HMGB1 with the TLR2/microRNA-155 pathway. J Immunol. 190:5411–5422. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Yao H, Zhang H, Lan K, Wang H, Su Y, Li D, Song Z, Cui F, Yin Y and Zhang X: Purified Streptococcus pneumoniae endo-peptidase O (PepO) enhances particle uptake by macrophages in a toll-like receptor 2- and miR-155-dependent manner. Infect Immun. 85:e01012–e01016. 2017. View Article : Google Scholar :

19 

Xu H, Wu Y, Li L, Yuan W, Zhang D, Yan Q, Guo Z and Huang W: MiR-344b1-3p targets TLR2 and negatively regulates TLR2 signaling pathway. Int J Chron Obstruct Pulmon Dis. 12:627–638. 2017. View Article : Google Scholar :

20 

Landais I, Pelton C, Streblow D, DeFilippis V, McWeeney S and Nelson JA: Human cytomegalovirus miR-UL112-3p targets TLR2 and modulates the TLR2/IRAK1/NFκB signaling pathway. PLoS Pathog. 11:e10048812015. View Article : Google Scholar

21 

Quinn EM, Wang JH, O'Callaghan G and Redmond HP: MicroRNA-146a is upregulated by and negatively regulates TLR2 signaling. PLoS One. 8:e622322013. View Article : Google Scholar : PubMed/NCBI

22 

Bolger AM, Lohse M and Usadel B: Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 30:2114–2120. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Kim D, Langmead B and Salzberg SL: HISAT: A fast spliced aligner with low memory requirements. Nat Methods. 12:357–360. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Friedlander MR, Mackowiak SD, Li N, Chen W and Rajewsky N: miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40:37–52. 2012. View Article : Google Scholar :

25 

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL and Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc. 7:562–578. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

27 

Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Huang da W, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. 2009. View Article : Google Scholar

29 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, et al: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 34:267–273. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Backes C, Khaleeq QT, Meese E and Keller A: miEAA: microRNA enrichment analysis and annotation. Nucleic Acids Res. 44:W110–W116. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, et al: FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics. 15:2597–2601. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Liu W and Wang X: Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 20:182019. View Article : Google Scholar : PubMed/NCBI

34 

Garcia DM, Baek D, Shin C, Bell GW, Grimson A and Bartel DP: Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol. 18:1139–1146. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, et al: miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46:D296–D302. 2018. View Article : Google Scholar :

36 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Doncheva NT, Morris JH, Gorodkin J and Jensen LJ: Cytoscape stringApp: Network analysis and visualization of proteomics data. J Proteome Res. 18:623–632. 2019. View Article : Google Scholar

38 

Finney SJ, Leaver SK, Evans TW and Burke-Gaffney A: Differences in lipopolysaccharide- and lipoteichoic acid-induced cytokine/chemokine expression. Intensive Care Med. 38:324–332. 2012. View Article : Google Scholar :

39 

Schröder NW, Morath S, Alexander C, Hamann L, Hartung T, Zähringer U, Göbel UB, Weber JR and Schumann RR: Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem. 278:15587–15594. 2003. View Article : Google Scholar : PubMed/NCBI

40 

Zeng RZ, Kim HG, Kim NR, Gim MG, Ko MY, Lee SY, Kim CM and Chung DK: Differential gene expression profiles in human THP-1 monocytes treated with Lactobacillus plantarum or Staphylococcus aureus lipoteichoic acid. J Korean Soc Appl Bi. 54:763–770. 2011. View Article : Google Scholar

41 

Sharma S, Davis RE, Srivastva S, Nylen S, Sundar S and Wilson ME: A subset of neutrophils expressing markers of antigen-presenting cells in human visceral leishmaniasis. J Infect Dis. 214:1531–1538. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Chen X, Li SJ, Ojcius DM, Sun AH, Hu WL, Lin X and Yan J: Mononuclear-macrophages but not neutrophils act as major infiltrating anti-leptospiral phagocytes during leptospirosis. PLoS One. 12:e01810142017. View Article : Google Scholar : PubMed/NCBI

43 

Long EM, Millen B, Kubes P and Robbins SM: Lipoteichoic acid induces unique inflammatory responses when compared to other toll-like receptor 2 ligands. PLoS One. 4:e56012009. View Article : Google Scholar : PubMed/NCBI

44 

Hermeking H: The miR-34 family in cancer and apoptosis. Cell Death Differ. 17:193–199. 2010. View Article : Google Scholar

45 

Cai KM, Bao XL, Kong XH, Jinag W, Mao MR, Chu JS, Huang YJ and Zhao XJ: Hsa-miR-34c suppresses growth and invasion of human laryngeal carcinoma cells via targeting c-Met. Int J Mol Med. 25:565–571. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Dong F and Lou D: MicroRNA-34b/c suppresses uveal melanoma cell proliferation and migration through multiple targets. Mol Vis. 18:537–546. 2012.PubMed/NCBI

47 

Hagman Z, Haflidadottir BS, Ansari M, Persson M, Bjartell A, Edsjö A and Ceder Y: The tumour suppressor miR-34c targets MET in prostate cancer cells. Br J Cancer. 109:1271–1278. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Wang F, Lu J, Peng X, Wang J, Liu X, Chen X, Jiang Y, Li X and Zhang B: Integrated analysis of microRNA regulatory network in nasopharyngeal carcinoma with deep sequencing. J Exp Clin Cancer Res. 35:172016. View Article : Google Scholar : PubMed/NCBI

49 

Bavamian S, Mellios N, Lalonde J, Fass DM, Wang J, Sheridan SD, Madison JM, Zhou F, Rueckert EH, Barker D, et al: Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Mol Psychiatry. 20:573–584. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Yan D, Zhou X, Chen X, Hu DN, Dong XD, Wang J, Lu F, Tu L and Qu J: MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met. Invest Ophthalmol Vis Sci. 50:1559–1565. 2009. View Article : Google Scholar

51 

Guessous Li Y, Zhang F, Dipierro Y, Kefas C, Johnson B, Marcinkiewicz E, Jiang L, Yang J, Schmittgen YTD, et al: MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 69:7569–7576. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Yan K, Gao J, Yang T, Ma Q, Qiu X, Fan Q and Ma B: MicroRNA-34a inhibits the proliferation and metastasis of osteosarcoma cells both in vitro and in vivo. PLoS One. 7:e337782012. View Article : Google Scholar : PubMed/NCBI

53 

Percy MG and Grundling A: Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol. 68:81–100. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Standiford TJ, Arenberg DA, Danforth JM, Kunkel SL, VanOtteren GM and Strieter RM: Lipoteichoic acid induces secretion of interleukin-8 from human blood monocytes: A cellular and molecular analysis. Infect Immun. 62:119–125. 1994.PubMed/NCBI

55 

Mattsson E, Verhage L, Rollof J, Fleer A, Verhoef J and van Dijk H: Peptidoglycan and teichoic acid from Staphylococcus epidermidis stimulate human monocytes to release tumour necrosis factor-alpha, interleukin-1 beta and interleukin-6. FEMS Immunol Med Microbiol. 7:281–287. 1993.PubMed/NCBI

56 

Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM and Chilvers ER: Neutrophil kinetics in health and disease. Trends Immunol. 31:318–324. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Durand SH, Flacher V, Roméas A, Carrouel F, Colomb E, Vincent C, Magloire H, Couble ML, Bleicher F, Staquet MJ, et al: Lipoteichoic acid increases TLR and functional chemokine expression while reducing dentin formation in in vitro differentiated human odontoblasts. J Immunol. 176:2880–2887. 2006. View Article : Google Scholar : PubMed/NCBI

58 

Park C, Lee SY, Kim HJ, Park K, Kim JS and Lee SJ: Synergy of TLR2 and H1R on Cox-2 activation in pulpal cells. J Dent Res. 89:180–185. 2010. View Article : Google Scholar

59 

Staquet MJ, Durand SH, Colomb E, Roméas A, Vincent C, Bleicher F, Lebecque S and Farges JC: Different roles of odonto-blasts and fibroblasts in immunity. J Dent Res. 87:256–261. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Sawa Y, Tsuruga E, Iwasawa K, Ishikawa H and Yoshida S: Leukocyte adhesion molecule and chemokine production through lipoteichoic acid recognition by toll-like receptor 2 in cultured human lymphatic endothelium. Cell Tissue Res. 333:237–252. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Xia X, Li Z, Liu K, Wu Y, Jiang D and Lai Y: Staphylococcal LTA-induced miR-143 inhibits propionibacterium acnes-mediated inflammatory response in skin. J Invest Dermatol. 136:621–630. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Hsieh CH, Yang JC, Jeng JC, Chen YC, Lu TH, Tzeng SL, Wu YC, Wu CJ and Rau CS: Circulating microRNA signatures in mice exposed to lipoteichoic acid. J Biomed Sci. 20:22013. View Article : Google Scholar : PubMed/NCBI

63 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yen MC, Yeh IJ, Liu KT, Jian SF, Lin CJ, Tsai MJ and Kuo PL: Next-generation sequencing predicts interaction network between miRNA and target genes in lipoteichoic acid-stimulated human neutrophils. Int J Mol Med 44: 1436-1446, 2019.
APA
Yen, M., Yeh, I., Liu, K., Jian, S., Lin, C., Tsai, M., & Kuo, P. (2019). Next-generation sequencing predicts interaction network between miRNA and target genes in lipoteichoic acid-stimulated human neutrophils. International Journal of Molecular Medicine, 44, 1436-1446. https://doi.org/10.3892/ijmm.2019.4295
MLA
Yen, M., Yeh, I., Liu, K., Jian, S., Lin, C., Tsai, M., Kuo, P."Next-generation sequencing predicts interaction network between miRNA and target genes in lipoteichoic acid-stimulated human neutrophils". International Journal of Molecular Medicine 44.4 (2019): 1436-1446.
Chicago
Yen, M., Yeh, I., Liu, K., Jian, S., Lin, C., Tsai, M., Kuo, P."Next-generation sequencing predicts interaction network between miRNA and target genes in lipoteichoic acid-stimulated human neutrophils". International Journal of Molecular Medicine 44, no. 4 (2019): 1436-1446. https://doi.org/10.3892/ijmm.2019.4295
Copy and paste a formatted citation
x
Spandidos Publications style
Yen MC, Yeh IJ, Liu KT, Jian SF, Lin CJ, Tsai MJ and Kuo PL: Next-generation sequencing predicts interaction network between miRNA and target genes in lipoteichoic acid-stimulated human neutrophils. Int J Mol Med 44: 1436-1446, 2019.
APA
Yen, M., Yeh, I., Liu, K., Jian, S., Lin, C., Tsai, M., & Kuo, P. (2019). Next-generation sequencing predicts interaction network between miRNA and target genes in lipoteichoic acid-stimulated human neutrophils. International Journal of Molecular Medicine, 44, 1436-1446. https://doi.org/10.3892/ijmm.2019.4295
MLA
Yen, M., Yeh, I., Liu, K., Jian, S., Lin, C., Tsai, M., Kuo, P."Next-generation sequencing predicts interaction network between miRNA and target genes in lipoteichoic acid-stimulated human neutrophils". International Journal of Molecular Medicine 44.4 (2019): 1436-1446.
Chicago
Yen, M., Yeh, I., Liu, K., Jian, S., Lin, C., Tsai, M., Kuo, P."Next-generation sequencing predicts interaction network between miRNA and target genes in lipoteichoic acid-stimulated human neutrophils". International Journal of Molecular Medicine 44, no. 4 (2019): 1436-1446. https://doi.org/10.3892/ijmm.2019.4295
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team