Open Access

Ubiquitin‑proteasomes are the dominant mediators of the regulatory effect of microRNA‑1 on cardiac remodeling after myocardial infarction

  • Authors:
    • Liping Wei
    • Yufan Zhang
    • Xin Qi
    • Xuseng Sun
    • Yuanyang Li
    • Yue Xu
  • View Affiliations

  • Published online on: September 4, 2019     https://doi.org/10.3892/ijmm.2019.4330
  • Pages: 1899-1907
  • Copyright: © Wei et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Patients with ischemic hearts who have refused coronary vascular reconstruction may exhibit dynamic myocardial remodeling and cardiac dysfunction. In the present study, the role of miRNA‑1 and its association with the ubiquitin‑proteasome system (UPS) in regulating myocardial remodeling was investigated. A myocardial infarction (MI) model was constructed and the hearts were treated with miRNA‑1 antagomir, miRNA‑1 lentiviral vectors and the UPS proteasome blocker bortezomib. The expression levels of miRNA‑1 were evaluated using reverse transcription PCR and the abundance of the ubiquitin‑proteasome protein and caspase‑3 were evaluated via western blot analysis. Furthermore, the collagen volume fraction was calculated using Masson's trichrome staining, and the apoptosis index was detected via terminal deoxynucleotidyl transferase dUTP‑biotin nick end labeling staining. Transforming growth factor (TGF)‑β expression was assessed via immunohistochemical staining. Echocardiographic characteristics and myocardial infarct size were analyzed. miRNA‑1 expression levels were found to be increased following MI. miRNA‑1 antagomir administration clearly inhibited miRNA‑1 expression, whereas the miRNA‑1 lentiviral vector exerted the opposite effect. The levels of 19s proteasome, 20S proteasome and ubiquitin ligase E3 were decreased in the miRNA‑1 antagomir group, but were significantly increased in the miRNA‑1 lentiviral group; however, only 20S proteasome expression was decreased in the bortezomib group. Collagen hyperplasia and TGF‑β expression were decreased in both the miRNA‑1 antagomir and bortezomib groups, although the effects of the miRNA‑1 antagomir were more noticeable. The miRNA‑1 antagomir and the UPS proteasome blocker both alleviated the ultrastructural impairments, demonstrated by a decreased left ventricular (LV) end‑diastolic diameter and LV mass, but the miRNA‑1 antagomir was also able to increase LV ejection fraction and LV fractional shortening. miRNA‑1 regulated UPS‑associated mRNA expression and affected the majority of the UPS components in the myocardium, thereby leading to increased myocardial cell apoptosis, myocardial fibrosis and remodeling. The miRNA‑1 antagomir exerted a more prominent cardioprotective effect compared with the UPS proteasome blocker bortezomib.
View Figures
View References

Related Articles

Journal Cover

November-2019
Volume 44 Issue 5

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Wei L, Zhang Y, Qi X, Sun X, Li Y and Xu Y: Ubiquitin‑proteasomes are the dominant mediators of the regulatory effect of microRNA‑1 on cardiac remodeling after myocardial infarction. Int J Mol Med 44: 1899-1907, 2019
APA
Wei, L., Zhang, Y., Qi, X., Sun, X., Li, Y., & Xu, Y. (2019). Ubiquitin‑proteasomes are the dominant mediators of the regulatory effect of microRNA‑1 on cardiac remodeling after myocardial infarction. International Journal of Molecular Medicine, 44, 1899-1907. https://doi.org/10.3892/ijmm.2019.4330
MLA
Wei, L., Zhang, Y., Qi, X., Sun, X., Li, Y., Xu, Y."Ubiquitin‑proteasomes are the dominant mediators of the regulatory effect of microRNA‑1 on cardiac remodeling after myocardial infarction". International Journal of Molecular Medicine 44.5 (2019): 1899-1907.
Chicago
Wei, L., Zhang, Y., Qi, X., Sun, X., Li, Y., Xu, Y."Ubiquitin‑proteasomes are the dominant mediators of the regulatory effect of microRNA‑1 on cardiac remodeling after myocardial infarction". International Journal of Molecular Medicine 44, no. 5 (2019): 1899-1907. https://doi.org/10.3892/ijmm.2019.4330