Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
November-2019 Volume 44 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2019 Volume 44 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

MicroRNA-939-5p directly targets IGF-1R to inhibit the aggressive phenotypes of osteosarcoma through deactivating the PI3K/Akt pathway

Retraction in: /10.3892/ijmm.2022.5181
  • Authors:
    • Xiwu Zhao
    • Jian Li
    • Dapeng Yu
  • View Affiliations / Copyright

    Affiliations: Department of Traumatic Orthopedics, Shandong Provincial Western Hospital, Jinan, Shandong 250022, P.R. China, Department of Orthopedics, Jinan Fourth People's Hospital, Jinan, Shandong 250031, P.R. China, Department of Spine Surgery, Shandong Provincial Western Hospital, Jinan, Shandong 250022, P.R. China
    Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1833-1843
    |
    Published online on: September 5, 2019
       https://doi.org/10.3892/ijmm.2019.4333
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The dysregulation of microRNA‑939‑5p (miR‑939) is involved in the development of multiple types of human cancer. However, the expression and roles of miR‑939 in osteosarcoma (OS) have yet to be clarified. The expression level of miR‑939 in OS was measured using reverse transcription quantitative polymerase chain reaction (RT‑qPCR). A Cell Counting Kit‑8 assay, flow cytometry analysis, Transwell migration and invasion assays, and a tumor xenograft assay were employed to explore the effects of miR‑939 in OS cells. Bioinformatics analysis, RT‑qPCR, western blot analysis and luciferase reporter assays were performed to explore its underlying mechanism. Expression of miR‑939 was decreased in both OS tissues and cell lines. The decreased miR‑939 expression was notably correlated with clinical stage and distant metastasis in patients with OS, where low miR‑939 levels were correlated with lower overall survival. miR‑939 overexpression decreased OS cell proliferation, migration and invasion in vitro; induced cell apoptosis, and impaired tumor growth in vivo. Mechanistically, insulin‑like growth factor 1 receptor (IGF‑1R) was characterized as direct target gene of miR‑939 in OS. The tumor‑suppressing effects of miR‑939 in OS cells were imitated by IGF‑1R knockdown. In addition, exogenous IGF‑1R expression abolished the tumor suppressive roles of miR‑939 in OS cells. miR‑939 was implicated in the deactivation of the PI3K/Akt pathway in OS in vitro and in vivo through regulating IGF‑1R expression. The present study demonstrated that miR‑939 exerted tumor‑suppressing roles in the malignancy of OS cells by directly targeting IGF‑1R and inactivating the PI3K/AKT pathway. Therefore, this miRNA may be a promising target for anticancer therapy in patients with OS.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Mirabello L, Troisi RJ and Savage SA: Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the surveillance, epidemiology, and end results Program. Cancer. 115:1531–1543. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Kager L, Zoubek A, Dominkus M, Lang S, Bodmer N, Jundt G, Klingebiel T, Jürgens H and Gadner H: Osteosarcoma in very young children: Experience of the cooperative osteosarcoma study group. Cancer. 116:5316–5324. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Geller DS and Gorlick R: Osteosarcoma: A review of diagnosis, management, and treatment strategies. Clin Adv Hematol Oncol. 8:705–718. 2010.

4 

Sun L, Li Y, Zhang J, Li H, Li B and Ye Z: Prognostic value of pathologic fracture in patients with high grade localized osteo-sarcoma: A systemic review and meta-analysis of cohort studies. J Orthop Res. 33:131–139. 2015. View Article : Google Scholar

5 

Li S, Zhang T, Xu W, Ding J, Yin F, Xu J, Sun W, Wang H, Sun M, Cai Z and Hua Y: Sarcoma-targeting peptide-decorated polypeptide nanogel intracellularly delivers shikonin for upregulated osteosarcoma necroptosis and diminished pulmonary metastasis. Theranostics. 8:1361–1375. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Zhang Y, Wang F, Li M, Yu Z, Qi R, Ding J, Zhang Z and Chen X: Self-stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma. Adv Sci (Weinh). 5:pp. 17008212018, View Article : Google Scholar

7 

Moore DD and Luu HH: Osteosarcoma. Cancer Treat Res. 162:65–92. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Blattmann C, Oertel S, Schulz-Ertner D, Rieken S, Haufe S, Ewerbeck V, Unterberg A, Karapanagiotou-Schenkel I, Combs SE, Nikoghosyan A, et al: Non-randomized therapy trial to determine the safety and efficacy of heavy ion radiotherapy in patients with non-resectable osteosarcoma. BMC Cancer. 10:962010. View Article : Google Scholar : PubMed/NCBI

9 

Errani C, Longhi A, Rossi G, Rimondi E, Biazzo A, Toscano A, Alì N, Ruggieri P, Alberghini M, Picci P, et al: Palliative therapy for osteosarcoma. Expert Rev Anticancer Ther. 11:217–227. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Shukla GC, Singh J and Barik S: MicroRNAs: Processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol. 3:83–92. 2011.PubMed/NCBI

11 

Pasquinelli AE, Hunter S and Bracht J: MicroRNAs: A developing story. Curr Opin Genet Dev. 15:200–205. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Jia F, Zhang Z and Zhang X: MicroRNA-338-3p inhibits tumor growth and metastasis in osteosarcoma cells by targeting RUNX2/CDK4 and inhibition of MAPK pathway. J Cell Biochem. 120:6420–6430. 2019. View Article : Google Scholar

14 

Ma L, Shao Z and Zhao Y: MicroRNA-374a promotes pancreatic cancer cell proliferation and epithelial to mesenchymal transition by targeting SRCIN1. Pathol Res Pract. 215:1523822019. View Article : Google Scholar : PubMed/NCBI

15 

Zhang Z and Dai DQ: MicroRNA-596 acts as a tumor suppressor in gastric cancer and is upregulated by promotor demethylation. World J Gastroenterol. 25:1224–1237. 2019. View Article : Google Scholar : PubMed/NCBI

16 

Tang Z, Fang Y and Du R: MicroRNA-107 induces cell cycle arrests by directly targeting cyclin E1 in ovarian cancer. Biochem Biophys Res Commun. 512:331–337. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Kim YH, Goh TS, Lee CS, Oh SO, Kim JI, Jeung SH and Pak K: Prognostic value of microRNAs in osteosarcoma: A meta-analysis. Oncotarget. 8:8726–8737. 2017.PubMed/NCBI

18 

Kushlinskii NE, Fridman MV and Braga EA: Molecular mechanisms and microRNAs in osteosarcoma pathogenesis. Biochemistry (Mosc). 81:315–328. 2016. View Article : Google Scholar

19 

Ying X, Li-ya Q, Feng Z, Yin W and Ji-hong L: MiR-939 promotes the proliferation of human ovarian cancer cells by repressing APC2 expression. Biomed Pharmacother. 71:64–69. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Fornari F, Ferracin M, Trerè D, Milazzo M, Marinelli S, Galassi M, Venerandi L, Pollutri D, Patrizi C, Borghi A, et al: Circulating microRNAs, miR-939, miR-595, miR-519d and miR-494, identify cirrhotic patients with HCC. PLoS One. 10:pp. e01414482015, View Article : Google Scholar : PubMed/NCBI

21 

Zhang Y, Liu X, Li Q and Zhang Y: lncRNA LINC00460 promoted colorectal cancer cells metastasis via miR-939-5p sponging. Cancer Manag Res. 11:1779–1789. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Chen Y, Guo Y and Yan W: lncRNA RP5-916L7.2 correlates with advanced tumor stage, and promotes cells proliferation while inhibits cells apoptosis through targeting miR-328 and miR-939 in tongue squamous cell carcinoma. Clin Biochem. 67:24–32. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Zhang JX, Xu Y, Gao Y, Chen C, Zheng ZS, Yun M, Weng HW, Xie D and Ye S: Decreased expression of miR-939 contributes to chemoresistance and metastasis of gastric cancer via dysregulation of SLC34A2 and Raf/MEK/ERK pathway. Mol Cancer. 16:182017. View Article : Google Scholar : PubMed/NCBI

24 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

25 

Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. Elife. 4:2015. View Article : Google Scholar

26 

Liu W and Wang X: Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 20:182019. View Article : Google Scholar : PubMed/NCBI

27 

Wang YH, Han XD, Qiu Y, Xiong J, Yu Y, Wang B, Zhu ZZ, Qian BP, Chen YX, Wang SF, et al: Increased expression of insulin-like growth factor-1 receptor is correlated with tumor metastasis and prognosis in patients with osteosarcoma. J Surg Oncol. 105:235–243. 2012. View Article : Google Scholar

28 

Li YS, Liu Q, He HB and Luo W: The possible role of insulin-like growth factor-1 in osteosarcoma. Curr Prob Cancer. 43:228–235. 2019. View Article : Google Scholar

29 

Wang YH, Wang ZX, Qiu Y, Xiong J, Chen YX, Miao DS and De W: Lentivirus-mediated RNAi knockdown of insulin-like growth factor-1 receptor inhibits growth, reduces invasion, and enhances radiosensitivity in human osteosarcoma cells. Mol Cell Biochem. 327:257–266. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Wang YH, Xiong J, Wang SF, Yu Y, Wang B, Chen YX, Shi HF and Qiu Y: Lentivirus-mediated shRNA targeting insulin-like growth factor-1 receptor (IGF-1R) enhances chemosensitivity of osteosarcoma cells in vitro and in vivo. Mol Cell Biochem. 341:225–233. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Chen L, Jiang X, Chen H, Han Q, Liu C and Sun M: MicroRNA-628 inhibits the proliferation of acute myeloid leukemia cells by directly targeting IGF-1R. OncoTargets Ther. 12:907–919. 2019. View Article : Google Scholar

32 

Jiang W, Meng L, Xu G, Lv C, Wang H, Tian H, Chen R, Jiao B, Wang B and Huang C: Wentilactone A induces cell apoptosis by targeting AKR1C1 gene via the IGF-1R/IRS1/PI3K/AKT/ Nrf2/FLIP/Caspase-3 signaling pathway in small cell lung cancer. Oncol Lett. 16:6445–6457. 2018.PubMed/NCBI

33 

Huang YK, Kang WM, Ma ZQ, Liu YQ, Zhou L and Yu JC: NUCKS1 promotes gastric cancer cell aggressiveness by upregulating IGF-1R and subsequently activating the PI3K/Akt/mTOR signaling pathway. Carcinogenesis. 40:370–379. 2019. View Article : Google Scholar

34 

Zhang J, Yan YG, Wang C, Zhang SJ, Yu XH and Wang WJ: MicroRNAs in osteosarcoma. Clin Chim Acta. 444:9–17. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Heng L, Jia Z, Bai J, Zhang K, Zhu Y, Ma J, Zhang J and Duan H: Molecular characterization of metastatic osteosar-coma: Differentially expressed genes, transcription factors and microRNAs. Mol Med Rep. 15:2829–2836. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Gurbuz N and Ozpolat B: MicroRNA-based targeted therapeutics in pancreatic cancer. Anticancer Res. 39:529–532. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Henry JC, Azevedo-Pouly AC and Schmittgen TD: MicroRNA replacement therapy for cancer. Pharm Res. 28:3030–3042. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhao X, Li J and Yu D: MicroRNA-939-5p directly targets IGF-1R to inhibit the aggressive phenotypes of osteosarcoma through deactivating the PI3K/Akt pathway Retraction in /10.3892/ijmm.2022.5181. Int J Mol Med 44: 1833-1843, 2019.
APA
Zhao, X., Li, J., & Yu, D. (2019). MicroRNA-939-5p directly targets IGF-1R to inhibit the aggressive phenotypes of osteosarcoma through deactivating the PI3K/Akt pathway Retraction in /10.3892/ijmm.2022.5181. International Journal of Molecular Medicine, 44, 1833-1843. https://doi.org/10.3892/ijmm.2019.4333
MLA
Zhao, X., Li, J., Yu, D."MicroRNA-939-5p directly targets IGF-1R to inhibit the aggressive phenotypes of osteosarcoma through deactivating the PI3K/Akt pathway Retraction in /10.3892/ijmm.2022.5181". International Journal of Molecular Medicine 44.5 (2019): 1833-1843.
Chicago
Zhao, X., Li, J., Yu, D."MicroRNA-939-5p directly targets IGF-1R to inhibit the aggressive phenotypes of osteosarcoma through deactivating the PI3K/Akt pathway Retraction in /10.3892/ijmm.2022.5181". International Journal of Molecular Medicine 44, no. 5 (2019): 1833-1843. https://doi.org/10.3892/ijmm.2019.4333
Copy and paste a formatted citation
x
Spandidos Publications style
Zhao X, Li J and Yu D: MicroRNA-939-5p directly targets IGF-1R to inhibit the aggressive phenotypes of osteosarcoma through deactivating the PI3K/Akt pathway Retraction in /10.3892/ijmm.2022.5181. Int J Mol Med 44: 1833-1843, 2019.
APA
Zhao, X., Li, J., & Yu, D. (2019). MicroRNA-939-5p directly targets IGF-1R to inhibit the aggressive phenotypes of osteosarcoma through deactivating the PI3K/Akt pathway Retraction in /10.3892/ijmm.2022.5181. International Journal of Molecular Medicine, 44, 1833-1843. https://doi.org/10.3892/ijmm.2019.4333
MLA
Zhao, X., Li, J., Yu, D."MicroRNA-939-5p directly targets IGF-1R to inhibit the aggressive phenotypes of osteosarcoma through deactivating the PI3K/Akt pathway Retraction in /10.3892/ijmm.2022.5181". International Journal of Molecular Medicine 44.5 (2019): 1833-1843.
Chicago
Zhao, X., Li, J., Yu, D."MicroRNA-939-5p directly targets IGF-1R to inhibit the aggressive phenotypes of osteosarcoma through deactivating the PI3K/Akt pathway Retraction in /10.3892/ijmm.2022.5181". International Journal of Molecular Medicine 44, no. 5 (2019): 1833-1843. https://doi.org/10.3892/ijmm.2019.4333
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team