|
1
|
Goldhaber SZ and Elliott CG: Acute
pulmonary embolism: Part I: Epidemiology, pathophysiology, and
diagnosis. Circulation. 108:2726–2729. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Goldhaber SZ, Visani L and De Rosa M:
Acute pulmonary embolism: Clinical outcomes in the international
cooperative pulmonary embolism registry (ICOPER). Lancet.
353:1386–1389. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kasper W, Konstantinides S, Geibel A,
Olschewski M, Heinrich F, Grosser KD, Rauber K, Iversen S, Redecker
M and Kienast J: Management strategies and determinants of outcome
in acute major pulmonary embolism: Results of a multicenter
registry. J Am Coll Cardiol. 30:1165–1171. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kasper W, Konstantinides S, Geibel A,
Tiede N, Krause T and Just H: Prognostic significance of right
ventricular afterload stress detected by echocardiography in
patients with clinically suspected pulmonary embolism. Heart.
77:346–349. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Konstantinides S, Geibel A, Olschewski M,
Heinrich F, Grosser K, Rauber K, Iversen S, Redecker M, Kienast J,
Just H and Kasper W: Association between thrombolytic treatment and
the prognosis of hemodynamically stable patients with major
pulmonary embolism: Results of a multicenter registry. Circulation.
96:882–888. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kline JA, Hernandez-Nino J, Rose GA,
Norton HJ and Camargo CA Jr: Surrogate markers for adverse outcomes
in normotensive patients with pulmonary embolism. Crit Care Med.
34:2773–2780. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Stevinson BG, Hernandez-Nino J, Rose G and
Kline JA: Echocardiographic and functional cardiopulmonary problems
6 months after first-time pulmonary embolism in previously healthy
patients. Eur Heart J. 28:2517–2524. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Watts JA, Gellar MA, Obraztsova M, Kline
JA and Zagorski J: Role of inflammation in right ventricular damage
and repair following experimental pulmonary embolism in rats. Int J
Exp Pathol. 89:389–399. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Takahashi M: NLRP3 inflammasome as a novel
player in myocardial infarction. Int Heart J. 55:101–105. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
de la Lastra CA and Villegas I:
Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and
clinical implications. Biochem Soc Trans. 35:1156–1160. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Olas B and Wachowicz B: Resveratrol, a
phenolic antioxidant with effects on blood platelet functions.
Platelets. 16:251–260. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Athar M, Back JH, Tang X, Kim KH,
Kopelovich L, Bickers DR and Kim AL: Resveratrol: A review of
preclinical studies for human cancer prevention. Toxicol Appl
Pharmacol. 224:274–283. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ji Q, Liu X, Fu X, Zhang L, Sui H, Zhou L,
Sun J, Cai J, Qin J, Ren J and Li Q: Resveratrol inhibits invasion
and metastasis of colorectal cancer cells via MALAT1 mediated
Wnt/β-catenin signal pathway. PLoS One. 8:e787002013. View Article : Google Scholar
|
|
14
|
Wang W, Zhu Y, Li S, Chen X, Jiang G, Shen
Z, Qiao Y, Wang L, Zheng P and Zhang Y: Long noncoding RNA MALAT1
promotes malignant development of esophageal squamous cell
carcinoma by targeting β-catenin via Ezh2. Oncotarget.
7:25668–25682. 2016.PubMed/NCBI
|
|
15
|
Iyer MK, Niknafs YS, Malik R, Singhal U,
Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, et
al: The landscape of long noncoding RNAs in the human
transcriptome. Nat Genet. 47:199–208. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Derrien T, Johnson R, Bussotti G, Tanzer
A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG,
et al: The GENCODE v7 catalog of human long noncoding RNAs:
Analysis of their gene structure, evolution, and expression. Genome
Res. 22:1775–1789. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Banfai B, Jia H, Khatun J, Wood E, Risk B,
Gundling WE Jr, Kundaje A, Gunawardena HP, Yu Y, Xie L, et al: Long
noncoding RNAs are rarely translated in two human cell lines.
Genome Res. 22:1646–1657. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Guttman M, Russell P, Ingolia NT, Weissman
JS and Lander ES: Ribosome profiling provides evidence that large
noncoding RNAs do not encode proteins. Cell. 154:240–251. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cabili MN, Trapnell C, Goff L, Koziol M,
Tazon-Vega B, Regev A and Rinn JL: Integrative annotation of human
large intergenic noncoding RNAs reveals global properties and
specific subclasses. Genes Dev. 25:1915–1927. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hezroni H, Koppstein D, Schwartz MG,
Avrutin A, Bartel DP and Ulitsky I: Principles of long noncoding
RNA evolution derived from direct comparison of transcriptomes in
17 species. Cell Rep. 11:1110–1122. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Quinn JJ, Zhang QC, Georgiev P, Ilik IA,
Akhtar A and Chang HY: Rapid evolutionary turnover underlies
conserved lncRNA-genome interactions. Genes Dev. 30:191–207. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ulitsky I, Shkumatava A, Jan CH, Sive H
and Bartel DP: Conserved function of lincRNAs in vertebrate
embryonic development despite rapid sequence evolution. Cell.
147:1537–1550. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Tang Y, Jin X, Xiang Y, Chen Y, Shen CX,
Zhang YC and Li YG: The lncRNA MALAT1 protects the endothelium
against ox-LDL-induced dysfunction via upregulating the expression
of the miR-22-3p target genes CXCR2 and AKT. FEBS Lett.
589:3189–3196. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kobayashi M, Usui-Kawanishi F, Karasawa T,
Kimura H, Watanabe S, Mise N, Kayama F, Kasahara T, Hasebe N and
Takahashi M: The cardiac glycoside ouabain activates NLRP3
inflammasomes and promotes cardiac inflammation and dysfunction.
PLoS One. 12:e01766762017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Jiang L, Zhang L, Kang K, Fei D, Gong R,
Cao Y, Pan S and Zhao M: Resveratrol ameliorates LPS-induced acute
lung injury via NLRP3 inflammasome modulation. Biomed Pharmacother.
84:130–138. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Dong W, Yang R, Yang J, Ding J, Wu H and
Zhang J: Resveratrol pretreatment protects rat hearts from
ischemia/reperfusion injury partly via a NALP3 inflammasome
pathway. Int J Clin Exp Pathol. 8:8731–8741. 2015.PubMed/NCBI
|
|
27
|
Livak KG and Schmittgen TD: Analysis of
real-time quantitative PCR data and the 2(-Delta Delta C(T))
method. Methods. 25:402–408. 2001. View Article : Google Scholar
|
|
28
|
Kucher N, Rossi E, De Rosa M and Goldhaber
SZ: Prognostic role of echocardiography among patients with acute
pulmonary embolism and a systolic arterial pressure of 90 mm Hg or
higher. Arch Intern Med. 165:1777–1781. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
McIntyre KM and Sasahara AA: Hemodynamic
and ventricular responses to pulmonary embolism. Prog Cardiovasc
Dis. 17:175–190. 1974. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hull RD, Raskob GE, Coates G, Panju AA and
Gill GJ: A new noninvasive management strategy for patients with
suspected pulmonary embolism. Arch Intern Med. 149:2549–2555. 1989.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kasper W, Geibel A, Tiede N, Bassenge D,
Kauder E, Konstantinides S, Meinertz T and Just H: Distinguishing
between acute and subacute massive pulmonary embolism by
conventional and Doppler echocardiography. Br Heart J. 70:352–356.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Alpert JS, Smith R, Carlson J, Ockene IS,
Dexter L and Dalen JE: Mortality in patients treated for pulmonary
embolism. JAMA. 236:1477–1480. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hall RJ, Sutton GC and Kerr IH: Long-term
prognosis of treated acute massive pulmonary embolism. Br Heart J.
39:1128–1134. 1977. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ignatowicz E and Baer-Dubowska W:
Resveratrol, a natural chemopreventive agent against degenerative
diseases. Pol J Pharmacol. 53:557–569. 2001.
|
|
35
|
Soleas GJ, Yan J and Goldberg DM:
Measurement of trans-resveratrol, (+)-catechin, and quercetin in
rat and human blood and urine by gas chromatography with mass
selective detection. Methods Enzymol. 335:130–145. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Pervaiz S: Resveratrol: From grapevines to
mammalian biology. FASEB J. 17:1975–1985. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sui DM, Xie Q, Yi WJ, Gupta S, Yu XY, Li
JB, Wang J, Wang JF and Deng XM: Resveratrol protects against
sepsis-associated encephalopathy and inhibits the NLRP3/IL-1β Axis
in microglia. Mediators Inflamm. 2016:10456572016. View Article : Google Scholar
|
|
38
|
Fu Y, Wang Y, Du L, Xu C, Cao J, Fan T,
Liu J, Su X, Fan S, Liu Q and Fan F: Resveratrol inhibits ionising
irradiation-induced inflammation in MSCs by activating SIRT1 and
limiting NLRP-3 inflammasome activation. Int J Mol Sci.
14:14105–14118. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Garcia JA, Volt H, Venegas C, Doerrier C,
Escames G, López LC and Acuña-Castroviejo D: Disruption of the
NF-κB/NLRP3 connection by melatonin requires retinoid-related
orphan receptor-α and blocks the septic response in mice. FASEB J.
29:3863–3875. 2015. View Article : Google Scholar
|
|
40
|
de Selincourt K: A breach of trust? Nurs
Times. 88:191992.PubMed/NCBI
|
|
41
|
Lin R, Maeda S, Liu C, Karin M and
Edgington TS: A large noncoding RNA is a marker for murine
hepatocellular carcinomas and a spectrum of human carcinomas.
Oncogene. 26:851–858. 2007. View Article : Google Scholar
|
|
42
|
Guo F, Li Y, Liu Y, Wang J and Li G:
Inhibition of metastasis-associated lung adenocarcinoma transcript
1 in CaSki human cervical cancer cells suppresses cell
proliferation and invasion. Acta Biochim Biophys Sin (Shanghai).
42:224–229. 2010. View Article : Google Scholar
|
|
43
|
Xu C, Yang M, Tian J, Wang X and Li Z:
MALAT-1: A long non-coding RNA and its important 3′ end functional
motif in colorectal cancer metastasis. Int J Oncol. 39:169–175.
2011.PubMed/NCBI
|
|
44
|
Gutschner T, Hammerle M and Diederichs S:
MALAT1-a paradigm for long noncoding RNA function in cancer. J Mol
Med (Berl). 91:791–801. 2013. View Article : Google Scholar
|
|
45
|
Zhao G, Su Z, Song D, Mao Y and Mao X: The
long noncoding RNA MALAT1 regulates the lipopolysaccharide-induced
inflammatory response through its interaction with NF-κB. FEBS
Lett. 590:2884–2895. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Martinon F, Petrilli V, Mayor A, Tardivel
A and Tschopp J: Gout-associated uric acid crystals activate the
NALP3 inflam-masome. Nature. 440:237–241. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Pazar B, Ea HK, Narayan S, Kolly L,
Bagnoud N, Chobaz V, Roger T, Liote F, So A and Busso N: Basic
calcium phosphate crystals induce monocyte/macrophage IL-1β
secretion through the NLRP3 inflammasome in vitro. J Immunol.
186:2495–2502. 2011. View Article : Google Scholar
|
|
48
|
Duewell P, Kono H, Rayner KJ, Sirois CM,
Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nunez G, Schnurr
M, et al: LRP3 inflammasomes are required for atherogenesis and
activated by cholesterol crystals. Nature. 464:1357–1361. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Rajamaki K, Lappalainen J, Oorni K,
Valimaki E, Matikainen S, Kovanen PT and Eklund KK: Cholesterol
crystals activate the NLRP3 inflammasome in human macrophages: A
novel link between cholesterol metabolism and inflammation. PLoS
One. 5:e117652010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Halle A, Hornung V, Petzold GC, Stewart
CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ and
Golenbock DT: The NALP3 inflammasome is involved in the innate
immune response to amyloid-beta. Nat Immunol. 9:857–865. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yamasaki K, Muto J, Taylor KR, Cogen AL,
Audish D, Bertin J, Grant EP, Coyle AJ, Misaghi A, Hoffman HM and
Gallo RL: NLRP3/cryopyrin is necessary for interleukin-1beta
(IL-1beta) release in response to hyaluronan, an endogenous trigger
of inflammation in response to injury. J Biol Chem.
284:12762–12771. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Masters SL, Dunne A, Subramanian SL, Hull
RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen
Z, et al: Activation of the NLRP3 inflammasome by islet amyloid
polypeptide provides a mechanism for enhanced IL-1β in type 2
diabetes. Nat Immunol. 11:897–904. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Dostert C, Pétrilli V, Van Bruggen R,
Steele C, Mossman BT and Tschopp J: Innate immune activation
through Nalp3 inflammasome sensing of asbestos and silica. Science.
320:674–677. 2008. View Article : Google Scholar : PubMed/NCBI
|