Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
December-2019 Volume 44 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2019 Volume 44 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Redd1 protects against post‑infarction cardiac dysfunction by targeting apoptosis and autophagy

  • Authors:
    • Pianpian Huang
    • Jun Fu
    • Long Chen
    • Chenhui Ju
    • Kefei Wu
    • Hongxia Liu
    • Yun Liu
    • Benming Qi
    • Benling Qi
    • Lihua Liu
  • View Affiliations / Copyright

    Affiliations: Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China, Department of Radiology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China, Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China, Department of Otorhinolaryngology, First People's Hospital of Yunnan Province, Kunming, Yunnan 650000, P.R. China
    Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2065-2076
    |
    Published online on: October 4, 2019
       https://doi.org/10.3892/ijmm.2019.4366
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Post‑infarction remodeling is accompanied and influenced by perturbations in the mammalian target of rapamycin (mTOR) signaling. Regulated in development and DNA damage response‑1 (Redd1) has been reported to be involved in DNA repair and modulation of mTOR activity. However, little is known about the role of Redd1 in the heart. In the present study the potential contribution of Redd1 overexpression to the chronic phase of heart failure after myocardial infarction (MI) was explored and the mechanisms underlying Redd1 actions were determined. Redd1 was downregulated in the mouse heart subjected to MI surgery. To determine the role of Redd1 in the process of MI, adeno‑associated virus 9 mediated overexpression of Redd1 was used to enhance Redd1 content in cardiomyocytes. Redd1 overexpression improved left ventricular dysfunction and reduced the expansion index. Additionally, Redd1 overexpression resulted in suppressed myocardial apoptosis and improved autophagy. Furthermore, the studies revealed that Redd1 overexpression could inhibit the phosphorylation of mTOR and its downstream effectors P70/S6 kinase and 4EBP1. In conclusion, this study demonstrated that Redd1 overexpression protects against the development and persistence of heart failure post MI by reducing apoptosis and enhancing autophagy via the mTOR signaling pathway. The present study clearly demonstrated that Redd1 is a therapeutic target in the development of heart failure after MI.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Michaud CM: Murray CJ and Bloom BR: Burden of disease-implications for future research. JAMA. 285:535–539. 2001. View Article : Google Scholar : PubMed/NCBI

2 

Deedwania PC: The key to unraveling the mystery of mortality in heart failure: An integrated approach. Circulation. 107:1719–1721. 2003. View Article : Google Scholar : PubMed/NCBI

3 

White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM and Wild CJ: Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation. 76:44–51. 1987. View Article : Google Scholar : PubMed/NCBI

4 

Gajarsa JJ and Kloner RA: Left ventricular remodeling in the post-infarction heart: A review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail Rev. 16:13–21. 2011. View Article : Google Scholar

5 

Chen J, Hsieh AF, Dharmarajan K, Masoudi FA and Krumholz HM: National trends in heart failure hospitalization after acute myocardial infarction for medicare beneficiaries: 1998-2010. Circulation. 128:2577–2584. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A, Sciarretta S, Del Re DP, Zablocki DK, Hsu CP, et al: Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med. 19:1478–1488. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Konstantinidis K, Whelan RS and Kitsis RN: Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol. 32:1552–1562. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Yan L, Sadoshima J, Vatner DE and Vatner SF: Autophagy: A novel protective mechanism in chronic ischemia. Cell Cycle. 5:1175–1177. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Hou L, Guo J, Xu F, Weng X, Yue W and Ge J: Cardiomyocyte dimethylarginine dimethylaminohydrolase1 attenuates left-ventricular remodeling after acute myocardial infarction: Involvement in oxdative stress and apoptosis. Basic Res Cardiol. 113:282018. View Article : Google Scholar

10 

Liu CY, Zhang YH, Li RB, Zhou LY, An T, Zhang RC, Zhai M, Huang Y, Yan KW, Dong YH, et al: LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun. 9:292018. View Article : Google Scholar : PubMed/NCBI

11 

Betz C and Hall MN: Where is mTOR and what is it doing there? J Cell Biol. 203:563–574. 2013. View Article : Google Scholar :

12 

McMullen JR, Shioi T, Zhang L, Tarnavski O, Sherwood MC, Kang PM and Izumo S: Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci USA. 100:12355–12360. 2003. View Article : Google Scholar : PubMed/NCBI

13 

Boluyt MO, Zheng JS, Younes A, Long X, O'Neill L, Silverman H, Lakatta EG and Crow MT: Rapamycin inhibits alpha 1-adren-ergic receptor-stimulated cardiac myocyte hypertrophy but not activation of hypertrophy-associated genes. Evidence for involvement of p70 S6 kinase Circ Res. 81:176–186. 1997.

14 

Mazelin L, Panthu B, Nicot AS, Belotti E, Tintignac L, Teixeira G, Zhang Q, Risson V, Baas D, Delaune E, et al: mTOR inactivation in myocardium from infant mice rapidly leads to dilated cardio-myopathy due to translation defects and p53/JNK-mediated apoptosis. J Mol Cell Cardiol. 97:213–225. 2016. View Article : Google Scholar : PubMed/NCBI

15 

McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T and Izumo S: Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation. 109:3050–3055. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Yan L, Guo N, Cao Y, Zeng S, Wang J, Lv F, Wang Y and Cao X: miRNA145 inhibits myocardial infarctioninduced apoptosis through autophagy via Akt3/mTOR signaling pathway in vitro and in vivo. Int J Mol Med. 42:1537–1547. 2018.PubMed/NCBI

17 

Buss SJ, Muenz S, Riffel JH, Malekar P, Hagenmueller M, Weiss CS, Bea F, Bekeredjian R, Schinke-Braun M, Izumo S, et al: Beneficial effects of Mammalian target of rapamycin inhibition on left ventricular remodeling after myocardial infarction. J Am Coll Cardiol. 54:2435–2446. 2009. View Article : Google Scholar

18 

Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, Oliner JD, McKeon F and Haber DA: REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell. 10:995–1005. 2002. View Article : Google Scholar : PubMed/NCBI

19 

Tirado-Hurtado I, Fajardo W and Pinto JA: DNA damage inducible transcript 4 Gene: The switch of the metabolism as potential target in cancer. Front Oncol. 8:1062018. View Article : Google Scholar : PubMed/NCBI

20 

Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW and Kaelin WG Jr: Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 18:2893–2904. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Lee DK, Kim JH, Kim J, Choi S, Park M, Park W, Kim S, Lee KS, Kim T, Jung J, et al: REDD-1 aggravates endotoxin-induced inflammation via atypical NF-κB activation. FASEB J. 32:4585–4599. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Qiao S, Dennis M, Song X, Vadysirisack DD, Salunke D, Nash Z, Yang Z, Liesa M, Yoshioka J, Matsuzawa S, et al: A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. Nat Commun. 6:70142015. View Article : Google Scholar : PubMed/NCBI

23 

Canal M, Romani-Aumedes J, Martin-Flores N, Pérez-Fernández V and Malagelada C: RTP801/REDD1: A stress coping regulator that turns into a troublemaker in neurodegen-erative disorders. Front Cell Neurosci. 8:3132014. View Article : Google Scholar

24 

Ben Sahra I, Regazzetti C, Robert G, Laurent K, Le Marchand-Brustel Y, Auberger P, Tanti JF, Giorgetti-Peraldi S and Bost F: Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res. 71:4366–4372. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Hernandez G, Lal H, Fidalgo M, Guerrero A, Zalvide J, Force T and Pombo CM: A novel cardioprotective p38-MAPK/mTOR pathway. Exp Cell Res. 317:2938–2949. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Chen R, Wang B, Chen L, Cai D, Li B, Chen C, Huang E, Liu C, Lin Z, Xie WB and Wang H: DNA damage-inducible transcript 4 (DDIT4) mediates methamphetamine-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes. Toxicol Appl Pharmacol. 295:1–11. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Liu C, Xue R, Wu D, Wu L, Chen C, Tan W, Chen Y and Dong Y: REDD1 attenuates cardiac hypertrophy via enhancing autophagy. Biochem Biophys Res Commun. 454:215–220. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Sciarretta S, Volpe M and Sadoshima J: Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res. 114:549–564. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Volkers M, Konstandin MH, Doroudgar S, Toko H, Quijada P, Din S, Joyo A, Ornelas L, Samse K, Thuerauf DJ, et al: Mechanistic target of rapamycin complex 2 protects the heart from ischemic damage. Circulation. 128:2132–2144. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Zhao Y, Xiong X, Jia L and Sun Y: Targeting Cullin-RING ligases by MLN4924 induces autophagy via modulating the HIF1-REDD1-TSC1-mTORC1-DEPTOR axis. Cell Death Dis. 3:e3862012. View Article : Google Scholar : PubMed/NCBI

31 

Prasad KM, Xu Y, Yang Z, Acton ST and French BA: Robust cardiomyocyte-specific gene expression following systemic injection of AAV: In vivo gene delivery follows a poisson distribution. Gene Ther. 18:43–52. 2011. View Article : Google Scholar

32 

Wang X, Meng H, Chen P, Yang N, Lu X, Wang ZM, Gao W, Zhou N, Zhang M, Xu Z, et al: Beneficial effects of muscone on cardiac remodeling in a mouse model of myocardial infarction. Int J Mol Med. 34:103–111. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Oliveira AC, Melo MB, Motta-Santos D, Peluso AA, Souza-Neto F, da Silva RF, Almeida JFQ, Canta G, Reis AM, Goncalves G, et al: Genetic deletion of the alamandine receptor MRGD leads to dilated cardiomyopathy in mice. Am J Physiol Heart Circ Physiol. 316:H123–H133. 2019. View Article : Google Scholar

34 

Jia LX, Qi GM, Liu O, Li TT, Yang M, Cui W, Zhang WM, Qi YF and Du J: Inhibition of platelet activation by clopidogrel prevents hypertension-induced cardiac inflammation and fibrosis. Cardiovasc Drugs Ther. 27:521–530. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Dai W, Hale SL, Martin BJ, Kuang JQ, Dow JS, Wold LE and Kloner RA: Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: Short- and long-term effects. Circulation. 112:214–223. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Hochman JS and Choo H: Limitation of myocardial infarct expansion by reperfusion independent of myocardial salvage. Circulation. 75:299–306. 1987. View Article : Google Scholar : PubMed/NCBI

37 

Lubbe WF, Peisach M, Pretorius R, Bruyneel KJ and Opie LH: Distribution of myocardial blood flow before and after coronary artery ligation in the baboon. Relation to early ventricular fibrillation. Cardiovasc Res. 8:478–487. 1974. View Article : Google Scholar : PubMed/NCBI

38 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

39 

Lee EJ, Park SJ, Kang SK, Kim GH, Kang HJ, Lee SW, Jeon HB and Kim HS: Spherical bullet formation via E-cadherin promotes therapeutic potency of mesenchymal stem cells derived from human umbilical cord blood for myocardial infarction. Mol Ther. 20:1424–1433. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Li Y, Yang R, Guo B, Zhang H and Liu S: Exosomal miR-301 derived from mesenchymal stem cells protects myocardial infarction by inhibiting myocardial autophagy. Biochem Biophys Res Commun. 514:323–328. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Hochman JS, Reynolds HR, Dzavik V, Buller CE, Ruzyllo W, Sadowski ZP, Maggioni AP, Carvalho AC, Rankin JM, White HD, et al: Long-term effects of percutaneous coronary intervention of the totally occluded infarct-related artery in the subacute phase after myocardial infarction. Circulation. 124:2320–2328. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Park KM, Teoh JP, Wang Y, Broskova Z, Bayoumi AS, Tang Y, Su H, Weintraub NL and Kim IM: Carvedilol-responsive microRNAs, miR-199a-3p and -214 protect cardiomyocytes from simulated ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 311:H371–H383. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Zhou Y, Chen Q, Lew KS, Richards AM and Wang P: Discovery of potential therapeutic miRNA targets in cardiac ischemia-reperfusion injury. J Cardiovasc Pharmacol Ther. 21:296–309. 2016. View Article : Google Scholar

44 

Gao C, Wang R, Li B, Guo Y, Yin T, Xia Y, Zhang F, Lian K, Liu Y, Wang H, et al: TXNIP/Redd1 signalling and excessive autophagy: A novel mechanism of myocardial ischaemia/reper-fusion injury in mice. Cardiovasc Res. Jun 26–2019.Epub ahead of print. View Article : Google Scholar

45 

Hashmi S and Al-Salam S: Acute myocardial infarction and myocardial ischemia-reperfusion injury: A comparison. Int J Clin Exp Pathol. 8:8786–8796. 2015.PubMed/NCBI

46 

Wang X, Guo Z, Ding Z and Mehta JL: Inflammation, autophagy, and apoptosis after myocardial infarction. J Am Heart Assoc. 7:pii: e008024. 2018. View Article : Google Scholar

47 

Creemers EE and Pinto YM: Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res. 89:265–272. 2011. View Article : Google Scholar

48 

Berk BC, Fujiwara K and Lehoux S: ECM remodeling in hypertensive heart disease. J Clin Invest. 117:568–575. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Ren J, Zhang S, Kovacs A, Wang Y and Muslin AJ: Role of p38alpha MAPK in cardiac apoptosis and remodeling after myocardial infarction. J Mol Cell Cardiol. 38:617–623. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Krijnen PA, Nijmeijer R, Meijer CJ, Visser CA, Hack CE and Niessen HW: Apoptosis in myocardial ischaemia and infarction. J Clin Pathol. 55:801–811. 2002. View Article : Google Scholar : PubMed/NCBI

51 

Choi AM, Ryter SW and Levine B: Autophagy in human health and disease. N Engl J Med. 368:1845–1846. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Lekli I, Haines DD, Balla G and Tosaki A: Autophagy: An adaptive physiological countermeasure to cellular senescence and ischaemia/reperfusion-associated cardiac arrhythmias. J Cell Mol Med. 21:1058–1072. 2017. View Article : Google Scholar

53 

Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B and Sadoshima J: Distinct roles of autophagy in the heart during ischemia and reperfusion: Roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 100:914–922. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Wu X, He L, Chen F, He X, Cai Y, Zhang G, Yi Q, He M and Luo J: Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. PLoS One. 9:e1128912014. View Article : Google Scholar : PubMed/NCBI

55 

Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, et al: The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 13:619–624. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Wu P, Yuan X, Li F, Zhang J, Zhu W, Wei M, Li J and Wang X: Myocardial upregulation of cathepsin D by ischemic heart disease promotes autophagic flux and protects against cardiac remodeling and heart failure. Circ Heart Fail. 10:pii: e004044. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Jewell JL and Guan KL: Nutrient signaling to mTOR and cell growth. Trends Biochem Sci. 38:233–242. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Johnson SC, Rabinovitch PS and Kaeberlein M: MTOR is a key modulator of ageing and age-related disease. Nature. 493:338–345. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Land SC, Scott CL and Walker D: MTOR signalling, embryo-genesis and the control of lung development. Semin Cell Dev Biol. 36:68–78. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Sciarretta S, Forte M, Frati G and Sadoshima J: New insights into the role of mTOR signaling in the cardiovascular system. Circ Res. 122:489–505. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang P, Fu J, Chen L, Ju C, Wu K, Liu H, Liu Y, Qi B, Qi B, Liu L, Liu L, et al: Redd1 protects against post‑infarction cardiac dysfunction by targeting apoptosis and autophagy . Int J Mol Med 44: 2065-2076, 2019.
APA
Huang, P., Fu, J., Chen, L., Ju, C., Wu, K., Liu, H. ... Liu, L. (2019). Redd1 protects against post‑infarction cardiac dysfunction by targeting apoptosis and autophagy . International Journal of Molecular Medicine, 44, 2065-2076. https://doi.org/10.3892/ijmm.2019.4366
MLA
Huang, P., Fu, J., Chen, L., Ju, C., Wu, K., Liu, H., Liu, Y., Qi, B., Qi, B., Liu, L."Redd1 protects against post‑infarction cardiac dysfunction by targeting apoptosis and autophagy ". International Journal of Molecular Medicine 44.6 (2019): 2065-2076.
Chicago
Huang, P., Fu, J., Chen, L., Ju, C., Wu, K., Liu, H., Liu, Y., Qi, B., Qi, B., Liu, L."Redd1 protects against post‑infarction cardiac dysfunction by targeting apoptosis and autophagy ". International Journal of Molecular Medicine 44, no. 6 (2019): 2065-2076. https://doi.org/10.3892/ijmm.2019.4366
Copy and paste a formatted citation
x
Spandidos Publications style
Huang P, Fu J, Chen L, Ju C, Wu K, Liu H, Liu Y, Qi B, Qi B, Liu L, Liu L, et al: Redd1 protects against post‑infarction cardiac dysfunction by targeting apoptosis and autophagy . Int J Mol Med 44: 2065-2076, 2019.
APA
Huang, P., Fu, J., Chen, L., Ju, C., Wu, K., Liu, H. ... Liu, L. (2019). Redd1 protects against post‑infarction cardiac dysfunction by targeting apoptosis and autophagy . International Journal of Molecular Medicine, 44, 2065-2076. https://doi.org/10.3892/ijmm.2019.4366
MLA
Huang, P., Fu, J., Chen, L., Ju, C., Wu, K., Liu, H., Liu, Y., Qi, B., Qi, B., Liu, L."Redd1 protects against post‑infarction cardiac dysfunction by targeting apoptosis and autophagy ". International Journal of Molecular Medicine 44.6 (2019): 2065-2076.
Chicago
Huang, P., Fu, J., Chen, L., Ju, C., Wu, K., Liu, H., Liu, Y., Qi, B., Qi, B., Liu, L."Redd1 protects against post‑infarction cardiac dysfunction by targeting apoptosis and autophagy ". International Journal of Molecular Medicine 44, no. 6 (2019): 2065-2076. https://doi.org/10.3892/ijmm.2019.4366
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team