Precision medicine for human cancers with Notch signaling dysregulation (Review)
- Authors:
- Masuko Katoh
- Masaru Katoh
-
Affiliations: M & M PrecMed, Tokyo 113‑0033, National Cancer Center, Tokyo 104‑0045, Japan, Department of Omics Network, National Cancer Center, Tokyo 104‑0045, Japan - Published online on: December 4, 2019 https://doi.org/10.3892/ijmm.2019.4418
- Pages: 279-297
-
Copyright: © Katoh et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Guruharsha KG, Kankel MW and Artavanis-Tsakonas S: The Notch signalling system: Recent insights into the complexity of a conserved pathway. Nat Rev Genet. 13:654–666. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bray SJ: Notch signalling in context. Nat Rev Mol Cell Biol. 17:722–735. 2016. View Article : Google Scholar : PubMed/NCBI | |
Meurette O and Mehlen P: Notch signaling in the tumor micro-environment. Cancer Cell. 34:536–548. 2018. View Article : Google Scholar : PubMed/NCBI | |
Siebel C and Lendahl U: Notch signaling in development, tissue homeostasis, and disease. Physiol Rev. 97:1235–1294. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wimmer RA, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, Taubenschmid J, Hämmerle M, Esk C, Bagley JA, et al: Human blood vessel organoids as a model of diabetic vasculopathy. Nature. 565:505–510. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ranganathan P, Weaver KL and Capobianco AJ: Notch signalling in solid tumours: A little bit of everything but not all the time. Nat Rev Cancer. 11:338–351. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ntziachristos P, Lim JS, Sage J and Aifantis I: From fly wings to targeted cancer therapies: A centennial for notch signaling. Cancer Cell. 25:318–334. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aster JC, Pear WS and Blacklow SC: The varied roles of Notch in cancer. Annu Rev Pathol. 12:245–275. 2017. View Article : Google Scholar | |
Nowell CS and Radtke F: Notch as a tumour suppressor. Nat Rev Cancer. 17:145–159. 2017. View Article : Google Scholar : PubMed/NCBI | |
Espinoza I and Miele L: Notch inhibitors for cancer treatment. Pharmacol Ther. 139:95–110. 2013. View Article : Google Scholar : PubMed/NCBI | |
Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX and Ivy SP: Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update. Nat Rev Clin Oncol. 12:445–464. 2015. View Article : Google Scholar : PubMed/NCBI | |
Owen DH, Giffin MJ, Bailis JM, Smit MD, Carbone DP and He K: DLL3: An emerging target in small cell lung cancer. J Hematol Oncol. 12:612019. View Article : Google Scholar : PubMed/NCBI | |
D'Souza B, Miyamoto A and Weinmaster G: The many facets of Notch ligands. Oncogene. 27:5148–5167. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kangsamaksin T, Murtomaki A, Kofler NM, Cuervo H, Chaudhri RA, Tattersall IW, Rosenstiel PE, Shawber C and Kitajewski J: NOTCH decoys that selectively block DLL/NOTCH or JAG/NOTCH disrupt angiogenesis by unique mechanisms to inhibit tumor growth. Cancer Discov. 5:182–197. 2015. View Article : Google Scholar | |
Kakuda S and Haltiwanger RS: Deciphering the Fringe-mediated Notch code: Identification of activating and inhibiting sites allowing discrimination between ligands. Dev Cell. 40:193–201. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nandagopal N, Santat LA, LeBon L, Sprinzak D, Bronner ME and Elowitz MB: Dynamic ligand discrimination in the Notch signaling pathway. Cell. 172:869–880.e19. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sjöqvist M and Andersson ER: Do as I say, Not(ch) as I do: Lateral control of cell fate. Dev Biol. 447:58–70. 2019. View Article : Google Scholar | |
Lambrecht BN, Vanderkerken M and Hammad H: The emerging role of ADAM metalloproteinases in immunity. Nat Rev Immunol. 18:745–758. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Zhou R, Zhou Q, Guo X, Yan C, Ke M, Lei J and Shi Y: Structural basis of Notch recognition by human γ-secretase. Nature. 565:192–197. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kopan R and Ilagan MX: The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell. 137:216–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F, Thompson B, Spaulding C, Macaroun S, Alegre ML, et al: Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med. 13:70–77. 2007. View Article : Google Scholar | |
Vermezovic J, Adamowicz M, Santarpia L, Rustighi A, Forcato M, Lucano C, Massimiliano L, Costanzo V, Bicciato S, Del Sal G and d'Adda di Fagagna F: Notch is a direct negative regulator of the DNA-damage response. Nat Struct Mol Biol. 22:417–424. 2015. View Article : Google Scholar : PubMed/NCBI | |
Polacheck WJ, Kutys ML, Yang J, Eyckmans J, Wu Y, Vasavada H, Hirschi KK and Chen CS: A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature. 552:258–262. 2017. View Article : Google Scholar : PubMed/NCBI | |
O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, Hardwick J, Welcker M, Meijerink JP, Pieters R, et al: FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J Exp Med. 204:1813–1824. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Liu P, Inuzuka H and Wei W: Roles of F-box proteins in cancer. Nat Rev Cancer. 14:233–247. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shan H, Li X, Xiao X, Dai Y, Huang J, Song J, Liu M, Yang L, Lei H, Tong Y, et al: USP7 deubiquitinates and stabilizes NOTCH1 in T-cell acute lymphoblastic leukemia. Signal Transduct Target Ther. 3:292018. View Article : Google Scholar : PubMed/NCBI | |
LaFoya B, Munroe JA, Pu X and Albig AR: Src kinase phosphorylates Notch1 to inhibit MAML binding. Sci Rep. 8:155152018. View Article : Google Scholar : PubMed/NCBI | |
Ramakrishnan G, Davaakhuu G, Chung WC, Zhu H, Rana A, Filipovic A, Green AR, Atfi A, Pannuti A, Miele L and Tzivion G: AKT and 143-3 regulate Notch4 nuclear localization. Sci Rep. 5:87822015. View Article : Google Scholar | |
Sun Y, Klauzinska M, Lake RJ, Lee JM, Santopietro S, Raafat A, Salomon D, Callahan R and Artavanis-Tsakonas S: Trp53 regulates Notch 4 signaling through Mdm2. J Cell Sci. 124:1067–1076. 2011. View Article : Google Scholar : PubMed/NCBI | |
McGill MA and McGlade CJ: Mammalian Numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem. 278:23196–23203. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pettersson S, Sczaniecka M, McLaren L, Russell F, Gladstone K, Hupp T and Wallace M: Non-degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway. Biochem J. 450:523–536. 2013. View Article : Google Scholar | |
Bhardwaj A, Yang Y, Ueberheide B and Smith S: Whole proteome analysis of human tankyrase knockout cells reveals targets of tankyrase-mediated degradation. Nat Commun. 8:22142017. View Article : Google Scholar : PubMed/NCBI | |
Schaller MA, Logue H, Mukherjee S, Lindell DM, Coelho AL, Lincoln P, Carson WF IV, Ito T, Cavassani KA, Chensue SW, et al: Delta-like 4 differentially regulates murine CD4 T cell expansion via BMI1. PLoS One. 5:e121722010. View Article : Google Scholar : PubMed/NCBI | |
López-Arribillaga E, Rodilla V, Pellegrinet L, Guiu J, Iglesias M, Roman AC, Gutarra S, González S, Muñoz-Cánoves P, Fernández- Salguero P, et al: Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch. Development. 142:41–50. 2015. View Article : Google Scholar | |
Ronchini C and Capobianco AJ: Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): Implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol. 21:5925–5934. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tanis KQ, Podtelezhnikov AA, Blackman SC, Hing J, Railkar RA, Lunceford J, Klappenbach JA, Wei B, Harman A, Camargo LM, et al: An accessible pharmacodynamic transcriptional biomarker for Notch target engagement. Clin Pharmacol Ther. 99:370–380. 2016. View Article : Google Scholar : PubMed/NCBI | |
García-Peydró M, Fuentes P, Mosquera M, García-León MJ, Alcain J, Rodríguez A, García de Miguel P, Menéndez P, Weijer K, Spits H, et al: The NOTCH1/CD44 axis drives pathogenesis in a T cell acute lymphoblastic leukemia model. J Clin Invest. 128:2802–2818. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster JC, Krishna S, Metzger D, Chambon P, et al: Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 20:3427–3436. 2001. View Article : Google Scholar : PubMed/NCBI | |
Procopio MG, Laszlo C, Al Labban D, Kim DE, Bordignon P, Jo SH, Goruppi S, Menietti E, Ostano P, Ala U, et al: Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nat Cell Biol. 17:1193–1204. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jarriault S, Le Bail O, Hirsinger E, Pourquié O, Logeat F, Strong CF, Brou C, Seidah NG and Isra l A: Delta-1 activation of Notch-1 signaling results in HES-1 transactivation. Mol Cell Biol. 18:7423–7431. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lim JS, Ibaseta A, Fischer MM, Cancilla B, O'Young G, Cristea S, Luca VC, Yang D, Jahchan NS, Hamard C, et al: Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature. 545:360–364. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stoeck A, Lejnine S, Truong A, Pan L, Wang H, Zang C, Yuan J, Ware C, MacLean J, Garrett-Engele PW, et al: Discovery of biomarkers predictive of GSI response in triple-negative breast cancer and adenoid cystic carcinoma. Cancer Discov. 4:1154–1167. 2014. View Article : Google Scholar : PubMed/NCBI | |
Maier MM and Gessler M: Comparative analysis of the human and mouse Hey1 promoter: Hey genes are new Notch target genes. Biochem Biophys Res Commun. 275:652–660. 2000. View Article : Google Scholar : PubMed/NCBI | |
Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, Del Bianco C, Rodriguez CG, Sai H, Tobias J, et al: c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20:2096–2109. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gekas C, D'Altri T, Aligué R, González J, Espinosa L and Bigas A: β-Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia. 30:2002–2010. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tottone L, Zhdanovskaya N, Carmona Pestaña Á, Zampieri M, Simeoni F, Lazzari S, Ruocco V, Pelullo M, Caiafa P, Felli MP, et al: Histone modifications drive aberrant Notch3 expression/activity and growth in T-ALL. Front Oncol. 9:1982019. View Article : Google Scholar : PubMed/NCBI | |
Pirot P, van Grunsven LA, Marine JC, Huylebroeck D and Bellefroid EJ: Direct regulation of the Nrarp gene promoter by the Notch signaling pathway. Biochem Biophys Res Commun. 322:526–534. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wakabayashi N, Skoko JJ, Chartoumpekis DV, Kimura S, Slocum SL, Noda K, Palliyaguru DL, Fujimuro M, Boley PA, Tanaka Y, et al: Notch-Nrf2 axis: Regulation of Nrf2 gene expression and cytoprotection by Notch signaling. Mol Cell Biol. 34:653–663. 2014. View Article : Google Scholar : | |
VanDussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST, Tran IT, Maillard I, Siebel C, Kolterud Å, et al: Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development. 139:488–497. 2012. View Article : Google Scholar : | |
Weber BN, Chi AW, Chavez A, Yashiro-Ohtani Y, Yang Q, Shestova O and Bhandoola A: A critical role for TCF-1 in T-lineage specification and differentiation. Nature. 476:63–68. 2011. View Article : Google Scholar : PubMed/NCBI | |
Germar K, Dose M, Konstantinou T, Zhang J, Wang H, Lobry C, Arnett KL, Blacklow SC, Aifantis I, Aster JC and Gounari F: T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling. Proc Natl Acad Sci USA. 108:20060–20065. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bray SJ and Gomez-Lamarca M: Notch after cleavage. Curr Opin Cell Biol. 51:103–109. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Jiang L, Zhong ML, Li JF, Li BS, Peng LJ, Dai YT, Cui BW, Yan TQ, Zhang WN, et al: Identification of fusion genes and characterization of transcriptome features in T-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 115:373–378. 2018. View Article : Google Scholar | |
Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S, et al: Oncogenic signaling pathways in The Cancer Genome Atlas. Cell. 173:321–337.e10. 2018. View Article : Google Scholar : PubMed/NCBI | |
Weng AP, Ferrando AA, Lee W, Morris JP IV, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT and Aster JC: Activating mutations of NOTCH1 in human T cell acute lympho-blastic leukemia. Science. 306:269–271. 2004. View Article : Google Scholar : PubMed/NCBI | |
Palomero T, Barnes KC, Real PJ, Glade Bender JL, Sulis ML, Murty VV, Colovai AI, Balbin M and Ferrando AA: CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to gamma-secretase inhibitors. Leukemia. 20:1279–1287. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bie De J, Demeyer S, Alberti-Servera L, Geerdens E, Segers H, Broux M, De Keersmaecker K, Michaux L, Vandenberghe P, Voet T, et al: Single-cell sequencing reveals the origin and the order of mutation acquisition in T-cell acute lymphoblastic leukemia. Leukemia. 32:1358–1369. 2018. View Article : Google Scholar | |
Puente XS, Pinyol M, Quesada V, Conde L, Ordóñez GR, Villamor N, Escaramis G, Jares P, Beà S, González-Díaz M, et al: Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 475:101–105. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fabbri G and Dalla-Favera R: The molecular pathogenesis of chronic lymphocytic leukaemia. Nat Rev Cancer. 16:145–162. 2016. View Article : Google Scholar : PubMed/NCBI | |
Karube K, Enjuanes A, Dlouhy I, Jares P, Martin-Garcia D, Nadeu F, Ordóñez GR, Rovira J, Clot G, Royo C, et al: Integrating genomic alterations in diffuse large B-cell lymphoma identifies new relevant pathways and potential therapeutic targets. Leukemia. 32:675–684. 2018. View Article : Google Scholar : | |
González-Rincón J, Méndez M, Gómez S, García JF, Martín P, Bellas C, Pedrosa L, Rodríguez-Pinilla SM, Camacho FI, Quero C, et al: Unraveling transformation of follicular lymphoma to diffuse large B-cell lymphoma. PLoS One. 14:e02128132019. View Article : Google Scholar : PubMed/NCBI | |
Kridel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock B, Gunawardana J, Jenkins C, Cochrane C, Ben-Neriah S, et al: Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood. 119:1963–1971. 2012. View Article : Google Scholar : PubMed/NCBI | |
Robinson DR, Kalyana-Sundaram S, Wu YM, Shankar S, Cao X, Ateeq B, Asangani IA, Iyer M, Maher CA, Grasso CS, et al: Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med. 17:1646–1651. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Zhang Q, Li D, Ching K, Zhang C, Zheng X, Ozeck M, Shi S, Li X, Wang H, et al: PEST domain mutations in Notch receptors comprise an oncogenic driver segment in triple-negative breast cancer sensitive to a γ-secretase inhibitor. Clin Cancer Res. 21:1487–1496. 2015. View Article : Google Scholar : PubMed/NCBI | |
Robinson DR, Wu YM, Lonigro RJ, Vats P, Cobain E, Everett J, Cao X, Rabban E, Kumar-Sinha C, Raymond V, et al: Integrative clinical genomics of metastatic cancer. Nature. 548:297–303. 2017. View Article : Google Scholar : PubMed/NCBI | |
Westhoff B, Colaluca IN, D'Ario G, Donzelli M, Tosoni D, Volorio S, Pelosi G, Spaggiari L, Mazzarol G, Viale G, et al: Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci USA. 106:22293–22298. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang NJ, Sanborn Z, Arnett KL, Bayston LJ, Liao W, Proby CM, Leigh IM, Collisson EA, Gordon PB, Jakkula L, et al: Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci USA. 108:17761–17766. 2011. View Article : Google Scholar : PubMed/NCBI | |
Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, Fakhry C, Xie TX, Zhang J, Wang J, et al: Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 333:1154–1157. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A, et al: The mutational landscape of head and neck squamous cell carcinoma. Science. 333:1157–1160. 2011. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Li L, Ou Y, Gao Z, Li E, Li X, Zhang W, Wang J, Xu L, Zhou Y, et al: Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 509:91–95. 2014. View Article : Google Scholar : PubMed/NCBI | |
Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, Hall MWJ, Cagan A, Murai K, Mahbubani K, Stratton MR, et al: Somatic mutant clones colonize the human esophagus with age. Science. 362:911–917. 2018. View Article : Google Scholar : PubMed/NCBI | |
George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, Leenders F, Lu X, Fernández-Cuesta L, Bosco G, et al: Comprehensive genomic profiles of small cell lung cancer. Nature. 524:47–53. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ali SA, Justilien V, Jamieson L, Murray NR and Fields AP: Protein kinase Cι drives a NOTCH3-dependent stem-like phenotype in mutant KRAS lung adenocarcinoma. Cancer Cell. 29:367–378. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bhagat TD, Zou Y, Huang S, Park J, Palmer MB, Hu C, Li W, Shenoy N, Giricz O, Choudhary G, et al: Notch pathway is activated via genetic and epigenetic alterations and is a therapeutic target in clear cell renal cancer. J Biol Chem. 292:837–846. 2017. View Article : Google Scholar : | |
van Groningen T, Akogul N, Westerhout EM, Chan A, Hasselt NE, Zwijnenburg DA, Broekmans M, Stroeken P, Haneveld F, Hooijer GKJ, et al: A NOTCH feed-forward loop drives reprogramming from adrenergic to mesenchymal state in neuroblastoma. Nat Commun. 10:15302019. View Article : Google Scholar : PubMed/NCBI | |
Ban J, Bennani-Baiti IM, Kauer M, Schaefer KL, Poremba C, Jug G, Schwentner R, Smrzka O, Muehlbacher K, Aryee DN and Kovar H: EWS-FLI1 suppresses NOTCH-activated p53 in Ewing's sarcoma. Cancer Res. 68:7100–7109. 2008. View Article : Google Scholar : PubMed/NCBI | |
Augert A, Eastwood E, Ibrahim AH, Wu N, Grunblatt E, Basom R, Liggitt D, Eaton KD, Martins R, Poirier JT, et al: Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition. Sci Signal. 12:pii: eaau2922. 2019. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Zhang Y, Jiang H, Zhu Y, Liu L, Feng W, Yang L, Wang Y and Li M: Activation of Notch3 promotes pulmonary arterial smooth muscle cells proliferation via Hes1/p27Kip1 signaling pathway. FEBS Open Bio. 5:656–660. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maraver A, Fernández-Marcos PJ, Herranz D, Muñoz-Martin M, Gomez-Lopez G, Cañamero M, Mulero F, Megías D, Sanchez-Carbayo M, Shen J, et al: Therapeutic effect of γ-secretase inhibition in KrasG12V-driven non-small cell lung carcinoma by derepression of DUSP1 and inhibition of ERK. Cancer Cell. 22:222–234. 2012. View Article : Google Scholar : PubMed/NCBI | |
Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins SL, et al: Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 13:1203–1210. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Smith AJ, Waterhouse A, Blin G, Malaguti M, Lin CY, Osorno R, Chambers I and Lowell S: Hes1 desynchronizes differentiation of pluripotent cells by modulating STAT3 activity. Stem Cells. 31:1511–1122. 2013. View Article : Google Scholar : PubMed/NCBI | |
Weng MT, Tsao PN, Lin HL, Tung CC, Change MC, Chang YT, Wong JM and Wei SC: Hes1 increases the invasion ability of colorectal cancer cells via the STAT3-MMP14 pathway. PLoS One. 10:e01443222015. View Article : Google Scholar : PubMed/NCBI | |
Jin S, Mutvei AP, Chivukula IV, Andersson ER, Ramsköld D, Sandberg R, Lee KL, Kronqvist P, Mamaeva V, Ostling P, et al: Non-canonical Notch signaling activates IL-6/JAK/STAT signaling in breast tumor cells and is controlled by p53 and IKKα/IKKβ. Oncogene. 32:4892–4902. 2013. View Article : Google Scholar | |
Schreck KC, Taylor P, Marchionni L, Gopalakrishnan V, Bar EE, Gaiano N and Eberhart CG: The Notch target Hes1 directly modulates Gli1 expression and Hedgehog signaling: A potential mechanism of therapeutic resistance. Clin Cancer Res. 16:6060–6070. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bonyadi Rad E, Hammerlindl H, Wels C, Popper U, Ravindran Menon D, Breiteneder H, Kitzwoegerer M, Hafner C, Herlyn M, Bergler H and Schaider H: Notch4 signaling induces a mesenchymal-epithelial-like transition in melanoma cells to suppress malignant behaviors. Cancer Res. 76:1690–1697. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Xu J, Liu B, He X, Zhou L, Hu X, Qiao F, Zhang A, Xu X, Zhang H, et al: IL6 blockade potentiates the anti-tumor effects of γ-secretase inhibitors in Notch3-expressing breast cancer. Cell Death Differ. 25:330–339. 2018. View Article : Google Scholar | |
Hartman BH, Reh TA and Bermingham-McDonogh O: Notch signaling specifies prosensory domains via lateral induction in the developing mammalian inner ear. Proc Natl Acad Sci USA. 107:15792–15797. 2010. View Article : Google Scholar : PubMed/NCBI | |
Petrovic J, Formosa-Jordan P, Luna-Escalante JC, Abelló G, Ibañes M, Neves J and Giraldez F: Ligand-dependent Notch signaling strength orchestrates lateral induction and lateral inhibition in the developing inner ear. Development. 141:2313–2324. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Gaykalova DA, Ochs MF, Mambo E, Arnaoutakis D, Liu Y, Loyo M, Agrawal N, Howard J, Li R, et al: Activation of the NOTCH pathway in head and neck cancer. Cancer Res. 74:1091–1104. 2014. View Article : Google Scholar : | |
Turley SJ, Cremasco V and Astarita JL: Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 15:669–682. 2015. View Article : Google Scholar : PubMed/NCBI | |
Valkenburg KC, de Groot AE and Pienta KJ: Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol. 15:366–381. 2018. View Article : Google Scholar : PubMed/NCBI | |
Östman A and Corvigno S: Microvascular mural cells in cancer. Trends Cancer. 4:838–848. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, Bassez A, Decaluwé H, Pircher A, Van den Eynde K, et al: Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 24:1277–1289. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bartoschek M, Oskolkov N, Bocci M, Lövrot J, Larsson C, Sommarin M, Madsen CD, Lindgren D, Pekar G, Karlsson G, et al: Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun. 9:51502018. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R: The biology and function of fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI | |
Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, McGraw T and Mittal V: The lung microenvironment: An important regulator of tumour growth and metastasis. Nat Rev Cancer. 19:9–31. 2019. View Article : Google Scholar : | |
Wang Z and Zöller M: Exosomes, metastases, and the miracle of cancer stem cell markers. Cancer Metastasis Rev. 38:259–295. 2019. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol. 51:1357–1369. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dotto GP: Multifocal epithelial tumors and field cancerization: Stroma as a primary determinant. J Clin Invest. 124:1446–1453. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shibue T and Weinberg RA: EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat Rev Clin Oncol. 14:611–629. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schreiber RD, Old LJ and Smyth MJ: Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion. Science. 331:1565–1570. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fukumura D, Kloepper J, Amoozgar Z, Duda DG and Jain RK: Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat Rev Clin Oncol. 15:325–340. 2018. View Article : Google Scholar : PubMed/NCBI | |
Robbins J, Blondel BJ, Gallahan D and Callahan R: Mouse mammary tumor gene int-3: A member of the Notch gene family transforms mammary epithelial cells. J Virol. 66:2594–2599. 1992. View Article : Google Scholar : PubMed/NCBI | |
Peters G, Lee AE and Dickson C: Concerted activation of two potential proto-oncogenes in carcinomas induced by mouse mammary tumour virus. Nature. 320:628–631. 1986. View Article : Google Scholar : PubMed/NCBI | |
Shackleford GM, MacArthur CA, Kwan HC and Varmus HE: Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt-1 transgenic mice by insertional activation of int-2/Fgf-3 and hst/Fgf-4. Proc Natl Acad Sci USA. 90:740–744. 1993. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: WNT and FGF gene clusters (review). Int J Oncol. 21:1269–1273. 2002.PubMed/NCBI | |
Lowther W, Wiley K, Smith GH and Callahan R: A new common integration site, Int7, for the mouse mammary tumor virus in mouse mammary tumors identifies a gene whose product has furin-like and thrombospondin-like sequences. J Virol. 79:10093–10096. 2005. View Article : Google Scholar : PubMed/NCBI | |
Theodorou V, Kimm MA, Boer M, Wessels L, Theelen W, Jonkers J and Hilkens J: MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nat Genet. 39:759–769. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhan T, Rindtorff N and Boutros M: Wnt signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar : | |
Morgan RG, Mortensson E and Williams AC: Targeting LGR5 in colorectal cancer: Therapeutic gold or too plastic. Br J Cancer. 118:1410–1418. 2018. View Article : Google Scholar : PubMed/NCBI | |
Estrach S, Ambler CA, Lo Celso C, Hozumi K and Watt FM: Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development. 133:4427–4438. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Wang Y, Hui Y, Du Y, Chen Z, Feng H, Zhang S, Li N, Song J, Fang Y, et al: WNT/NOTCH pathway is essential for the maintenance and expansion of human MGE progenitors. Stem Cell Reports. 12:934–949. 2019. View Article : Google Scholar : PubMed/NCBI | |
Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P, Pellicoro A, Ridgway RA, Seo SS, Spee B, Van Rooijen N, et al: Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med. 18:572–579. 2012. View Article : Google Scholar : PubMed/NCBI | |
Högström J, Heino S, Kallio P, Lähde M, Leppänen VM, Balboa D, Wiener Z and Alitalo K: Transcription factor PROX1 suppresses Notch pathway activation via the nucleosome remod-eling and deacetylase complex in colorectal cancer stem-like cells. Cancer Res. 78:5820–5832. 2018. | |
Phng LK, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I, Ondr JK, Rao S, Lang RA, Thurston G and Gerhardt H: Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell. 16:70–82. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Li H, Hong SH, Piszczek GP, Chen W and Rodgers GP: Olfactomedin 4 deletion induces colon adenocarcinoma in ApcMin/+ mice. Oncogene. 35:5237–5247. 2016. View Article : Google Scholar : PubMed/NCBI | |
Giancotti FG: Mechanisms governing metastatic dormancy and reactivation. Cell. 155:750–764. 2013. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). Int J Mol Med. 42:713–725. 2018.PubMed/NCBI | |
Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M, Campisi J, Wazer DE and Band V: The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res. 62:4736–4745. 2002.PubMed/NCBI | |
De Jaime-Soguero A, Aulicino F, Ertaylan G, Griego A, Cerrato A, Tallam A, Del Sol A, Cosma MP and Lluis F: Wnt/Tcf1 pathway restricts embryonic stem cell cycle through activation of the Ink4/Arf locus. PLoS Genet. 13:e10066822017. View Article : Google Scholar : PubMed/NCBI | |
Srinivasan T, Walters J, Bu P, Than EB, Tung KL, Chen KY, Panarelli N, Milsom J, Augenlicht L, Lipkin SM and Shen X: NOTCH signaling regulates asymmetric cell fate of fast- and slow-cycling colon cancer-initiating cells. Cancer Res. 76:3411–3421. 2016. View Article : Google Scholar : PubMed/NCBI | |
Germann M, Xu H, Malaterre J, Sampurno S, Huyghe M, Cheasley D, Fre S and Ramsay RG: Tripartite interactions between Wnt signaling, Notch and Myb for stem/progenitor cell functions during intestinal tumorigenesis. Stem Cell Res. 13:355–366. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mourao L, Jacquemin G, Huyghe M, Nawrocki WJ, Menssouri N, Servant N and Fre S: Lineage tracing of Notch1-expressing cells in intestinal tumours reveals a distinct population of cancer stem cells. Sci Rep. 9:8882019. View Article : Google Scholar : PubMed/NCBI | |
Jain RK: Normalizing tumor microenvironment to treat cancer: Bench to bedside to biomarkers. J Clin Oncol. 31:2205–2218. 2013. View Article : Google Scholar : PubMed/NCBI | |
De Palma M, Biziato D and Petrova TV: Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 17:457–474. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yunus M, Jansson PJ, Kovacevic Z, Kalinowski DS and Richardson DR: Tumor-induced neoangiogenesis and receptor tyrosine kinases-Mechanisms and strategies for acquired resistance. Biochim Biophys Acta Gen Subj. 1863:1217–1225. 2019. View Article : Google Scholar : PubMed/NCBI | |
Potente M, Gerhardt H and Carmeliet P: Basic and therapeutic aspects of angiogenesis. Cell. 146:873–887. 2011. View Article : Google Scholar : PubMed/NCBI | |
Goel HL and Mercurio AM: VEGF targets the tumour cell. Nat Rev Cancer. 13:871–882. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bridges E, Oon CE and Harris A: Notch regulation of tumor angiogenesis. Future Oncol. 7:569–588. 2011. View Article : Google Scholar : PubMed/NCBI | |
Simons M, Gordon E and Claesson-Welsh L: Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 17:611–625. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wieland E, Rodriguez-Vita J, Liebler SS, Mogler C, Moll I, Herberich SE, Espinet E, Herpel E, Menuchin A, Chang-Claude J, et al: Endothelial Notch1 activity facilitates metastasis. Cancer Cell. 31:355–367. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wohlfeil SA, Häfele V, Dietsch B, Schledzewski K, Winkler M, Zierow J, Leibing T, Mohammadi MM, Heineke J, Sticht C, et al: Hepatic endothelial Notch activation protects against liver metastasis by regulating endothelial-tumor cell adhesion independent of angiocrine signaling. Cancer Res. 79:598–610. 2019. View Article : Google Scholar | |
Radtke F, MacDonald HR and Tacchini-Cottier F: Regulation of innate and adaptive immunity by Notch. Nat Rev Immunol. 13:427–437. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lobry C, Oh P, Mansour MR, Look AT and Aifantis I: Notch signaling: Switching an oncogene to a tumor suppressor. Blood. 123:2451–2459. 2014. View Article : Google Scholar : PubMed/NCBI | |
Amsen D, Helbig C and Backer RA: Notch in T cell differentiation: all things considered. Trends Immunol. 36:802–814. 2015. View Article : Google Scholar : PubMed/NCBI | |
Charbonnier LM, Wang S, Georgiev P, Sefik E and Chatila TA: Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling. Nat Immunol. 16:1162–1173. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang YC, He F, Feng F, Liu XW, Dong GY, Qin HY, Hu XB, Zheng MH, Liang L, Feng L, et al: Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 70:4840–4849. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wang J, Zhang M, Xuan Q, Wang Z, Lian X and Zhang Q: Jagged1 promotes aromatase inhibitor resistance by modulating tumor-associated macrophage differentiation in breast cancer patients. Breast Cancer Res Treat. 166:95–107. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rashedi I, Gómez-Aristizábal A, Wang XH, Viswanathan S and Keating A: TLR3 or TLR4 activation enhances mesenchymal stromal cell-mediated Treg induction via Notch signaling. Stem Cells. 35:265–275. 2017. View Article : Google Scholar | |
Cahill EF, Tobin LM, Carty F, Mahon BP and English K: Jagged-1 is required for the expansion of CD4+ CD25+ FoxP3+ regulatory T cells and tolerogenic dendritic cells by murine mesenchymal stromal cells. Stem Cell Res Ther. 6:192015. View Article : Google Scholar : PubMed/NCBI | |
Kared H, Adle-Biassette H, Foïs E, Masson A, Bach JF, Chatenoud L, Schneider E and Zavala F: Jagged2-expressing hematopoietic progenitors promote regulatory T cell expansion in the periphery through Notch signaling. Immunity. 25:823–834. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ting HA, de Almeida Nagata D, Rasky AJ, Malinczak CA, Maillard IP, Schaller MA and Lukacs NW: Notch ligand Delta-like 4 induces epigenetic regulation of Treg cell differentiation and function in viral infection. Mucosal Immunol. 11:1524–1536. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, Gao R, Kang B, Zhang Q, Huang JY, et al: Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature. 564:268–272. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U and Bondesson M: Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev Cell. 9:617–628. 2005. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int J Mol Med. 38:3–15. 2016. View Article : Google Scholar : PubMed/NCBI | |
Grazioli P, Felli MP, Screpanti I and Campese AF: The mazy case of Notch and immunoregulatory cells. J Leukoc Biol. 102:361–368. 2017. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: Genomic testing, tumor microenvironment and targeted therapy of Hedgehog-related human cancers. Clin Sci (Lond). 133:953–970. 2019. View Article : Google Scholar | |
Yang Z, Qi Y, Lai N, Zhang J, Chen Z, Liu M, Zhang W, Luo R and Kang S: Notch1 signaling in melanoma cells promoted tumor-induced immunosuppression via upregulation of TGF-β1. J Exp Clin Cancer Res. 37:12018. View Article : Google Scholar | |
Mao L, Zhao ZL, Yu GT, Wu L, Deng WW, Li YC, Liu JF, Bu LL, Liu B, Kulkarni AB, et al: γ-Secretase inhibitor reduces immunosuppressive cells and enhances tumour immunity in head and neck squamous cell carcinoma. Int J Cancer. 142:999–1009. 2018. View Article : Google Scholar | |
El-Khoueiry AB, Desai J, Iyer SP, Gadgeel SM, Ramalingam SS, Horn L, LoRusso P, Bajaj G, Kollia G, Qi Z, et al: A phase I study of AL101, a pan-NOTCH inhibitor, in patients (pts) with locally advanced or metastatic solid tumors. J Clin Oncol. 36(15 Suppl): S25152018. View Article : Google Scholar | |
Massard C, Azaro A, Soria JC, Lassen U, Le Tourneau C, Sarker D, Smith C, Ohnmacht U, Oakley G, Patel BKR, et al: First-in-human study of LY3039478, an oral Notch signaling inhibitor in advanced or metastatic cancer. Ann Oncol. 29:1911–1917. 2018. View Article : Google Scholar : PubMed/NCBI | |
Habets RA, de Bock CE, Serneels L, Lodewijckx I, Verbeke D, Nittner D, Narlawar R, Demeyer S, Dooley J, Liston A, et al: Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci Transl Med. 11:pii: eaau6246. 2019. View Article : Google Scholar : PubMed/NCBI | |
Messersmith WA, Shapiro GI, Cleary JM, Jimeno A, Dasari A, Huang B, Shaik MN, Cesari R, Zheng X, Reynolds JM, et al: A phase I, dose-finding study in patients with advanced solid malignancies of the oral γ-secretase inhibitor PF-03084014. Clin Cancer Res. 21:60–67. 2015. View Article : Google Scholar | |
Kummar S, O'Sullivan Coyne G, Do KT, Turkbey B, Meltzer PS, Polley E, Choyke PL, Meehan R, Vilimas R, Horneffer Y, et al: Clinical activity of the γ-secretase inhibitor PF-03084014 in adults with desmoid tumors (aggressive fibromatosis). J Clin Oncol. 35:1561–1569. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tolcher AW, Messersmith WA, Mikulski SM, Papadopoulos KP, Kwak EL, Gibbon DG, Patnaik A, Falchook GS, Dasari A, Shapiro GI, et al: Phase I study of RO4929097, a gamma secre-tase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. J Clin Oncol. 30:2348–2353. 2012. View Article : Google Scholar : PubMed/NCBI | |
Strosberg JR, Yeatman T, Weber J, Coppola D, Schell MJ, Han G, Almhanna K, Kim R, Valone T, Jump H and Sullivan D: A phase II study of RO4929097 in metastatic colorectal cancer. Eur J Cancer. 48:997–1003. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jordan NV, Bardia A, Wittner BS, Benes C, Ligorio M, Zheng Y, Yu M, Sundaresan TK, Licausi JA, Desai R, et al: HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature. 537:102–106. 2016. View Article : Google Scholar : PubMed/NCBI | |
Diluvio G, Del Gaudio F, Giuli MV, Franciosa G, Giuliani E, Palermo R, Besharat ZM, Pignataro MG, Vacca A, d'Amati G, et al: NOTCH3 inactivation increases triple negative breast cancer sensitivity to gefitinib by promoting EGFR tyrosine dephosphorylation and its intracellular arrest. Oncogenesis. 7:422018. View Article : Google Scholar : PubMed/NCBI | |
Yao J, Qian C, Shu T, Zhang X, Zhao Z and Liang Y: Combination treatment of PD98059 and DAPT in gastric cancer through induction of apoptosis and downregulation of WNT/β-catenin. Cancer Biol Ther. 14:833–839. 2013. View Article : Google Scholar : PubMed/NCBI | |
Smith DC, Eisenberg PD, Manikhas G, Chugh R, Gubens MA, Stagg RJ, Kapoun AM, Xu L, Dupont J and Sikic B: A phase I dose escalation and expansion study of the anticancer stem cell agent demcizumab (anti-DLL4) in patients with previously treated solid tumors. Clin Cancer Res. 20:6295–6303. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chiorean EG, LoRusso P, Strother RM, Diamond JR, Younger A, Messersmith WA, Adriaens L, Liu L, Kao RJ, DiCioccio AT, et al: A phase I first-in-human study of enoticumab (REGN421), a fully human Delta-like ligand 4 (DLL4) monoclonal antibody, in patients with advanced solid tumors. Clin Cancer Res. 21:2695–2703. 2015. View Article : Google Scholar : PubMed/NCBI | |
Falchook GS, Dowlati A, Naing A, Gribbin MJ, Jenkins DW, Chang LL, Lai DW and Smith DC: Phase I study of MEDI0639 in patients with advanced solid tumors. J Clin Oncol. 33(15 Suppl): S30242015. View Article : Google Scholar | |
Ferrarotto R, Eckhardt G, Patnaik A, LoRusso P, Faoro L, Heymach JV, Kapoun AM, Xu L and Munster P: A phase I dose-escalation and dose-expansion study of brontictuzumab in subjects with selected solid tumors. Ann Oncol. 29:1561–1568. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yen WC, Fischer MM, Axelrod F, Bond C, Cain J, Cancilla B, Henner WR, Meisner R, Sato A, Shah J, et al: Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin Cancer Res. 21:2084–2095. 2015. View Article : Google Scholar : PubMed/NCBI | |
Smith DC, Chugh R, Patnaik A, Papadopoulos KP, Wang M, Kapoun AM, Xu L, Dupont J, Stagg RJ and Tolcher A: A phase 1 dose escalation and expansion study of Tarextumab (OMP-59R5) in patients with solid tumors. Invest New Drugs. 37:722–730. 2019. View Article : Google Scholar : | |
Beck A, Goetsch L, Dumontet C and Corvaïa N: Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 16:315–337. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lambert JM and Berkenblit A: Antibody-Drug conjugates for cancer treatment. Annu Rev Med. 69:191–207. 2018. View Article : Google Scholar : PubMed/NCBI | |
Carter PJ and Lazar GA: Next generation antibody drugs: Pursuit of the 'high-hanging fruit'. Nat Rev Drug Discov. 17:197–223. 2018. View Article : Google Scholar | |
June CH, O'Connor RS, Kawalekar OU, Ghassemi S and Milone MC: CAR T cell immunotherapy for human cancer. Science. 359:1361–1365. 2018. View Article : Google Scholar : PubMed/NCBI | |
Saunders LR, Bankovich AJ, Anderson WC, Aujay MA, Bheddah S, Black K, Desai R, Escarpe PA, Hampl J, Laysang A, et al: A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med. 7:302ra1362015. View Article : Google Scholar : PubMed/NCBI | |
Rudin CM, Pietanza MC, Bauer TM, Ready N, Morgensztern D, Glisson BS, Byers LA, Johnson ML, Burris HA III, Robert F, et al: Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: A first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 18:42–51. 2017. View Article : Google Scholar : | |
Carbone DP, Morgensztern D, Le Moulec S, Santana-Davila R, Ready N, Hann CL, Glisson BS, Dowlati A, Rudin CM, Lally S, et al: Efficacy and safety of rovalpituzumab tesirine in patients With DLL3-expressing, ≥ 3rd line small cell lung cancer: Results from the phase 2 TRINITY study. J Clin Oncol. 36(15 Suppl): S85072018. View Article : Google Scholar | |
Rosen LS, Wesolowski R, Baffa R, Liao KH, Hua SY, Gibson BL, Pirie-Shepherd S and Tolcher AW: A phase I, dose-escalation study of PF-06650808, an anti-Notch3 antibody-drug conjugate, in patients with breast cancer and other advanced solid tumors. Invest New Drugs. Mar 18–2019.Epub ahead of print. PubMed/NCBI | |
Smit MAD, Borghaei H, TOwonikoko TK, Hummel HD, Johnson ML, Champiat S, Salgia R, Udagawa H, Boyer MJ and Govindan R: Phase 1 study of AMG 757, a half-life extended bispecific T cell engager (BiTE) antibody construct targeting DLL3, in patients with small cell lung cancer (SCLC). J Clin Oncol. 37(15 Suppl): TPS85772019. | |
Li Y, Hickson JA, Ambrosi DJ, Haasch DL, Foster-Duke KD, Eaton LJ, DiGiammarino EL, Panchal SC, Jiang F, Mudd SR, et al: ABT-165, a dual variable domain immunoglobulin (DVD-Ig) targeting DLL4 and VEGF, demonstrates superior efficacy and favorable safety profiles in preclinical models. Mol Cancer Ther. 17:1039–1050. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jimeno A, Moore KN, Gordon M, Chugh R, Diamond JR, Aljumaily R, Mendelson D, Kapoun AM, Xu L, Stagg R and Smith DC: A first-in-human phase 1a study of the bispecific anti-DLL4/anti-VEGF antibody navicixizumab (OMP-305B83) in patients with previously treated solid tumors. Invest New Drugs. 37:461–472. 2019. View Article : Google Scholar | |
Hu S, Fu W, Li T, Yuan Q, Wang F, Lv G, Lv Y, Fan X, Shen Y, Lin F, et al: Antagonism of EGFR and Notch limits resistance to EGFR inhibitors and radiation by decreasing tumor-initiating cell frequency. Sci Transl Med. 9:pii: eaag0339. 2017. View Article : Google Scholar | |
Fu W, Lei C, Yu Y, Liu S, Li T, Lin F, Fan X, Shen Y, Ding M, Tang Y, et al: EGFR/Notch antagonists enhance the response to inhibitors of the PI3K-Akt pathway by decreasing tumor-initiating cell frequency. Clin Cancer Res. 25:2835–2847. 2019. View Article : Google Scholar : PubMed/NCBI | |
Byers LA, Chiappori A and Smit MAD: Phase 1 study of AMG 119, a chimeric antigen receptor (CAR) T cell therapy targeting DLL3, in patients with relapsed/refractory small cell lung cancer (SCLC). J Clin Oncol. 37(15 Suppl): TPS85762019. | |
Puca L, Gavyert K, Sailer V, Conteduca V, Dardenne E, Sigouros M, Isse K, Kearney M, Vosoughi A, Fernandez L, et al: Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci Transl Med. 11:pii: eaav0891. 2019. View Article : Google Scholar : PubMed/NCBI | |
Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, Lin Y, Braunschweig I, Hill BT, Timmerman JM, et al: Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 12 trial. Lancet Oncol. 20:31–42. 2019. View Article : Google Scholar | |
Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, Jäger U, Jaglowski S, Andreadis C, Westin JR, et al: Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 380:45–56. 2019. View Article : Google Scholar | |
Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, Gökbuget N, O'Brien S, Wang K, Wang T, et al: Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 375:740–753. 2016. View Article : Google Scholar : PubMed/NCBI | |
Horwitz S, O'Connor OA, Pro B, Illidge T, Fanale M, Advani R, Bartlett NL, Christensen JH, Morschhauser F, Domingo-Domenech E, et al: Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): A global, double-blind, randomised, phase 3 trial. Lancet. 393:229–240. 2019. View Article : Google Scholar : | |
Tilly H, Morschhauser F, Bartlett NL, Mehta A, Salles G, Haioun C, Munoz J, Chen AI, Kolibaba K, Lu D, et al: Polatuzumab vedotin in combination with immunochemotherapy in patients with previously untreated diffuse large B-cell lymphoma: An open-label, non-randomised, phase 1b-2 study. Lancet Oncol. 20:998–1010. 2019. View Article : Google Scholar : PubMed/NCBI | |
Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh DY, Diéras V, Guardino E, et al: Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 367:1783–1791. 2012. View Article : Google Scholar : PubMed/NCBI | |
Doi T, Shitara K, Naito Y, Shimomura A, Fujiwara Y, Yonemori K, Shimizu C, Shimoi T, Kuboki Y, Matsubara N, et al: Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody-drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: A phase 1 dose-escalation study. Lancet Oncol. 18:1512–1522. 2017. View Article : Google Scholar : PubMed/NCBI | |
Banerji U, van Herpen CML, Saura C, Thistlethwaite F, Lord S, Moreno V, Macpherson IR, Boni V, Rolfo C, de Vries EGE, et al: Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: A phase 1 dose-escalation and dose-expansion study. Lancet Oncol. 20:1124–1135. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lassman AB, van den Bent MJ, Gan HK, Reardon DA, Kumthekar P, Butowski N, Lwin Z, Mikkelsen T, Nabors LB, Papadopoulos KP, et al: Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR-amplified, recurrent glioblastoma: Results from an international phase I multicenter trial. Neuro Oncol. 21:106–114. 2019. View Article : Google Scholar | |
Moore KN, Martin LP, O'Malley DM, Matulonis UA, Konner JA, Perez RP, Bauer TM, Ruiz-Soto R and Birrer MJ: Safety and activity of mirvetuximab soravtansine (IMGN853), a folate receptor alpha-targeting antibody-drug conjugate, in platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: A phase I expansion study. J Clin Oncol. 35:1112–1118. 2017. View Article : Google Scholar | |
Challita-Eid PM, Satpayev D, Yang P, An Z, Morrison K, Shostak Y, Raitano A, Nadell R, Liu W, Lortie DR, et al: Enfortumab vedotin antibody-drug conjugate targeting Nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 76:3003–3013. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bardia A, Mayer IA, Vahdat LT, Tolaney SM, Isakoff SJ, Diamond JR, O'Shaughnessy J, Moroose RL, Santin AD, Abramson VG, et al: Sacituzumab govitecanhziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 380:741–751. 2019. View Article : Google Scholar : PubMed/NCBI | |
Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, Liedtke M, Rosenblatt J, Maus MV, Turka A, et al: Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 380:1726–1737. 2019. View Article : Google Scholar : PubMed/NCBI | |
Merlino G, Fiascarelli A, Bigioni M, Bressan A, Carrisi C, Bellarosa D, Salerno M, Bugianesi R, Manno R, Bernadó Morales C, et al: MEN1309/OBT076, a first-in-class antibody-drug conjugate targeting CD205 in solid tumors. Mol Cancer Ther. 18:1533–1543. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhan X, Wang B, Li Z, Li J, Wang H, Chen L, Jiang H, Wu M, Xiao J, Peng X, et al: Phase I trial of Claudin 18.2-specific chimeric antigen receptor T cells for advanced gastric and pancreatic adenocarcinoma. J Clin Oncol. 37(15 Suppl): S25092019. View Article : Google Scholar | |
García-Alonso S, Ocaña A and Pandiella A: Resistance to antibody-drug conjugates. Cancer Res. 78:2159–2165. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shah NN and Fry TJ: Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 16:372–385. 2019. View Article : Google Scholar : PubMed/NCBI | |
Singal G, Miller PG, Agarwala V, Li G, Kaushik G, Backenroth D, Gossai A, Frampton GM, Torres AZ, Lehnert EM, et al: Association of patient characteristics and tumor genomics with clinical outcomes among patients with non-small cell lung cancer using a clinicogenomic database. JAMA. 321:1391–1399. 2019. View Article : Google Scholar : PubMed/NCBI | |
Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A, et al: Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 51:202–206. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rubinstein JC, Nicolson NG and Ahuja N: Next-generation sequencing in the management of gastric and esophageal cancers. Surg Clin North Am. 99:511–527. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hirsch FR, Suda K, Wiens J and Bunn PA Jr: New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet. 388:1012–1024. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N, et al: Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 36:633–641. 2018. View Article : Google Scholar : PubMed/NCBI | |
Offin M, Rizvi H, Tenet M, Ni A, Sanchez-Vega F, Li BT, Drilon A, Kris MG, Rudin CM, Schultz N, et al: Tumor mutation burden and efficacy of EGFR-tyrosine kinase inhibitors in patients with EGFR-mutant lung cancers. Clin Cancer Res. 25:1063–1069. 2019. View Article : Google Scholar | |
Buchhalter I, Rempel E, Endris V, Allgäuer M, Neumann O, Volckmar AL, Kirchner M, Leichsenring J, Lier A, von Winterfeld M, et al: Size matters: Dissecting key parameters for panel-based tumor mutational burden analysis. Int J Cancer. 144:848–858. 2019. View Article : Google Scholar | |
Schneider G: Automating drug discovery. Nat Rev Drug Discov. 17:97–113. 2018. View Article : Google Scholar | |
Katoh M: Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat Rev Clin Oncol. 16:105–122. 2019. View Article : Google Scholar | |
Somashekhar SP, Sepúlveda MJ, Puglielli S, Norden AD, Shortliffe EH, Rohit Kumar C, Rauthan A, Arun Kumar N, Patil P, Rhee K, et al: Watson for oncology and breast cancer treatment recommendations: Agreement with an expert multidisciplinary tumor board. Ann Oncol. 29:418–423. 2018. View Article : Google Scholar : PubMed/NCBI | |
Paley S and Karp PD: The MultiOmics explainer: Explaining omics results in the context of a pathway/genome database. BMC Bioinformatics. 20:3992019. View Article : Google Scholar : PubMed/NCBI | |
Cheng JZ, Ni D, Chou YH, Qin J, Tiu CM, Chang YC, Huang CS, Shen D and Chen CM: Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep. 6:244542016. View Article : Google Scholar : PubMed/NCBI | |
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM and Thrun S: Dermatologist-level classification of skin cancer with deep neural networks. Nature. 542:115–118. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D, Etemadi M, Ye W, Corrado G, et al: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 25:954–961. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dascalu A and David EO: Skin cancer detection by deep learning and sound analysis algorithms: A prospective clinical study of an elementary dermoscope. EBioMedicine. 43:107–113. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mori Y, Kudo SE, Misawa M, Saito Y, Ikematsu H, Hotta K, Ohtsuka K, Urushibara F, Kataoka S, Ogawa Y, et al: Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: A prospective study. Ann Intern Med. 169:357–366. 2018. View Article : Google Scholar : PubMed/NCBI | |
Aboutalib SS, Mohamed AA, Berg WA, Zuley ML, Sumkin JH and Wu S: Deep learning to distinguish recalled but benign mammography images in breast cancer screening. Clin Cancer Res. 24:5902–5909. 2018. View Article : Google Scholar : PubMed/NCBI | |
Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, Moreira AL, Razavian N and Tsirigos A: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 24:1559–1567. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kather JN, Pearson AT, Halama N, Jäger D, Krause J, Loosen SH, Marx A, Boor P, Tacke F, Neumann UP, et al: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med. 25:1054–1056. 2019. View Article : Google Scholar : PubMed/NCBI | |
Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss, Silva V, Busam KJ, Brogi E, Reuter VE, Klimstra DS and Fuchs TJ: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med. 25:1301–1309. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hekler A, Utikal JS, Enk AH, Solass W, Schmitt M, Klode J, Schadendorf D, Sondermann W, Franklin C, Bestvater F, et al: Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur J Cancer. 118:91–96. 2019. View Article : Google Scholar : PubMed/NCBI | |
Topol EJ: High-performance medicine: The convergence of human and artificial intelligence. Nat Med. 25:44–56. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng H, Bae Y, Kasimir-Bauer S, Tang R, Chen J, Ren G, Yuan M, Esposito M, Li W, Wei Y, et al: Therapeutic antibody targeting tumor- and osteoblastic niche-derived Jagged1 sensitizes bone metastasis to chemotherapy. Cancer Cell. 32:731–747.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li DD, Zhao CH, Ding HW, Wu Q, Ren TS, Wang J, Chen CQ and Zhao QC: A novel inhibitor of ADAM17 sensitizes colorectal cancer cells to 5-Fluorouracil by reversing Notch and epithelial-mesenchymal transition in vitro and in vivo. Cell Prolif. 51:e124802018. View Article : Google Scholar : PubMed/NCBI | |
Weber D, Lehal R, Frismantas V, Bourquin J, Bauer M, Murone M and Radtke F: 411P-Pharmacological activity of CB-103-an oral pan-NOTCH inhibitor with a novel mode of action. Ann Oncol. 28(Suppl 5): v122–v141. 2017. View Article : Google Scholar | |
Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL and Bradner JE: Direct inhibition of the NOTCH transcription factor complex. Nature. 462:182–188. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sano R, Krytska K, Larmour CE, Raman P, Martinez D, Ligon GF, Lillquist JS, Cucchi U, Orsini P, Rizzi S, et al: An antibody-drug conjugate directed to the ALK receptor demonstrates efficacy in preclinical models of neuroblastoma. Sci Transl Med. 11:pii: eaau9732. 2019. View Article : Google Scholar : PubMed/NCBI | |
Boshuizen J, Koopman LA, Krijgsman O, Shahrabi A, van den Heuvel EG, Ligtenberg MA, Vredevoogd DW, Kemper K, Kuilman T, Song JY, et al: Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors. Nat Med. 24:203–212. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tao Y, Wang R, Lai Q, Wu M, Wang Y, Jiang X, Zeng L, Zhou S, Li Z, Yang T, et al: Targeting of DDR1 with antibody-drug conjugates has antitumor effects in a mouse model of colon carcinoma. Mol Oncol. 13:1855–1873. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sommer A, Kopitz C, Schatz CA, Nising CF, Mahlert C, Lerchen HG, Stelte-Ludwig B, Hammer S, Greven S, Schuhmacher J, et al: Preclinical efficacy of the auristatin-based antibody-drug conjugate BAY 1187982 for the treatment of FGFR2-positive solid tumors. Cancer Res. 76:6331–6339. 2016. View Article : Google Scholar : PubMed/NCBI | |
Surguladze D, Pennello A, Ren X, Mack T, Rigby A, Balderes P, Navarro E, Amaladas N, Eastman S, Topper M, et al: LY3076226, a novel anti-FGFR3 antibody drug conjugate exhibits potent and durable anti-tumor activity in tumor models harboring FGFR3 mutations or fusions. Cancer Res. 79(13 Suppl): S48352019. | |
Rudra-Ganguly N, Challita-Eid PM, Lowe C, Mattie M, Moon SJ, Mendelsohn BA, Leavitt M, Virata C, A Verlinsky A, Capo L, et al: AGS62P1, a novel site-specific antibody drug conjugate targeting FLT3 exhibits potent anti-tumor activity regardless of FLT3 kinase activation status. Cancer Res. 76(14 Suppl): S5742016. | |
Avilés P, Domínguez JM, Guillén MJ, Muñoz-Alonso MJ, Mateo C, Rodriguez-Acebes R, Molina-Guijarro JM, Francesch A, Martínez-Leal JF, Munt S, et al: MI130004, a novel antibody-drug conjugate combining trastuzumab with a molecule of marine origin, shows outstanding in iivo activity against HER2-expressing tumors. Mol Cancer Ther. 17:786–794. 2018. View Article : Google Scholar | |
Koganemaru S, Kuboki Y, Koga Y, Kojima T, Yamauchi M, Maeda N, Kagari T, Hirotani K, Yasunaga M, Matsumura Y and Doi T: U3-1402, a novel HER3-targeting antibody-drug conjugate, for the treatment of colorectal cancer. Mol Cancer Ther. 18:2043–2050. 2019. View Article : Google Scholar : PubMed/NCBI | |
Abrams T, Connor A, Fanton C, Cohen SB, Huber T, Miller K, Hong EE, Niu X, Kline J, Ison-Dugenny M, et al: Preclinical antitumor activity of a novel anti-c-KIT antibody-drug conjugate against mutant and wild-type c-KIT-positive solid tumors. Clin Cancer Res. 24:4297–4308. 2018. View Article : Google Scholar : PubMed/NCBI | |
Strickler JH, Weekes CD, Nemunaitis J, Ramanathan RK, Heist RS, Morgensztern D, Angevin E, Bauer TM, Yue H, Motwani M, et al: First-in-human phase I, dose-escalation and -expansion study of telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met, in patients with advanced solid tumors. J Clin Oncol. 36:3298–3306. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sachdev JC, Maitland ML, Sharma M, Moreno V, Boni V, Kummar S, Stringer-Reasor EM, Forero-Torres A, Lakhani NJ, Gibson B, et al: PF-06647020 (PF-7020), an antibody-drug conjugate (ADC) targeting protein tyrosine kinase 7 (PTK7), in patients (pts) with advanced solid tumors: Results of a phase I dose escalation and expansion study. J Clin Oncol. 36(15-Suppl): S55652018. View Article : Google Scholar | |
Nguyen M, Miyakawa S, Kato J, Mori T, Arai T, Armanini M, Gelmon K, Yerushalmi R, Leung S, Gao D, et al: Preclinical efficacy and safety assessment of an antibody-drug conjugate targeting the c-RET proto-oncogene for breast carcinoma. Clin Cancer Res. 21:5552–5562. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yao HP, Feng L, Suthe SR, Chen LH, Weng TH, Hu CY, Jun ES, Wu ZG, Wang WL, Kim SC, et al: Therapeutic efficacy, pharmacokinetic profiles, and toxicological activities of humanized antibody-drug conjugate Zt/g4-MMAE targeting RON receptor tyrosine kinase for cancer therapy. J Immunother Cancer. 7:752019. View Article : Google Scholar : PubMed/NCBI | |
Berger C, Sommermeyer D, Hudecek M, Berger M, Balakrishnan A, Paszkiewicz PJ, Kosasih PL, Rader C and Riddell SR: Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells. Cancer Immunol Res. 3:206–216. 2015. View Article : Google Scholar : | |
Trudel S, Lendvai N, Popat R, Voorhees PM, Reeves B, Libby EN, Richardson PG, Hoos A, Gupta I, Bragulat V, et al: Antibody-drug conjugate, GSK2857916, in relapsed/refractory multiple myeloma: An update on safety and efficacy from dose expansion phase I study. Blood Cancer J. 9:372019. View Article : Google Scholar : PubMed/NCBI | |
Godwin CD, Gale RP and Walter RB: Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia. 31:1855–1868. 2017. View Article : Google Scholar : PubMed/NCBI | |
Socinski MA, Kaye FJ, Spigel DR, Kudrik FJ, Ponce S, Ellis PM, Majem M, Lorigan P, Gandhi L, Gutierrez ME, et al: Phase 1/2 study of the CD56-targeting antibody-drug conjugate lorvotuzumab mertansine (IMGN901) in combination with carboplatin/etoposide in small-cell lung cancer patients with extensive-stage disease. Clin Lung Cancer. 18:68–76.e2. 2017. View Article : Google Scholar : PubMed/NCBI | |
de Bono JS, Concin N, Hong DS, Thistlethwaite FC, Machiels JP, Arkenau HT, Plummer R, Jones RH, Nielsen D, Windfeld K, et al: Tisotumab vedotin in patients with advanced or metastatic solid tumours (InnovaTV 201): A first-in-human, multicentre, phase 1-2 trial. Lancet Oncol. 20:383–393. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dotan E, Cohen SJ, Starodub AN, Lieu CH, Messersmith WA, Simpson PS, Guarino MJ, Marshall JL, Goldberg RM, Hecht JR, et al: Phase I/II trial of labetuzumab govitecan (anti-CEACAM5/SN-38 antibody-drug conjugate) in patients with refractory or relapsing metastatic colorectal cancer. J Clin Oncol. 35:3338–3346. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Foletti D, Liu X, Ding S, Melton Witt J, Hasa-Moreno A, Rickert M, Holz C, Aschenbrenner L, Yang AH, et al: Targeting CLDN18.2 by CD3 bispecific and ADC modalities for the treatments of gastric and pancreatic cancer. Sci Rep. 9:84202019. View Article : Google Scholar : PubMed/NCBI | |
Bhakta S, Crocker LM, Chen Y, Hazen M, Schutten MM, Li D, Kuijl C, Ohri R, Zhong F, Poon KA, et al: An anti-GDNF family receptor alpha 1 (GFRA1) antibody-drug conjugate for the treatment of hormone receptor-positive breast cancer. Mol Cancer Ther. 17:638–649. 2018. View Article : Google Scholar | |
Ott PA, Pavlick AC, Johnson DB, Hart LL, Infante JR, Luke JJ, Lutzky J, Rothschild NE, Spitler LE, Cowey CL, et al: A phase 2 study of glembatumumab vedotin, an antibody-drug conjugate targeting glycoprotein NMB, in patients with advanced melanoma. Cancer. 125:1113–1123. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gong X, Azhdarinia A, Ghosh SC, Xiong W, An Z, Liu Q and Carmon KS: LGR5-targeted antibody-drug conjugate eradicates gastrointestinal tumors and prevents recurrence. Mol Cancer Ther. 15:1580–1590. 2016. View Article : Google Scholar : PubMed/NCBI | |
Purcell JW, Tanlimco SG, Hickson J, Fox M, Sho M, Durkin L, Uziel T, Powers R, Foster K, McGonigal T, et al: LRRC15 is a novel mesenchymal protein and stromal target for antibody-drug conjugates. Cancer Res. 78:4059–4072. 2018. View Article : Google Scholar : PubMed/NCBI | |
Willuda J, Linden L, Lerchen HG, Kopitz C, Stelte-Ludwig B, Pena C, Lange C, Golfier S, Kneip C, Carrigan PE, et al: Preclinical antitumor efficacy of BAY 1129980-a novel auristatin-based anti-C4.4A (LYPD3) antibody-drug conjugate for the treatment of non-small cell lung cancer. Mol Cancer Ther. 16:893–904. 2017. View Article : Google Scholar : PubMed/NCBI | |
Golfier S, Kopitz C, Kahnert A, Heisler I, Schatz CA, Stelte-Ludwig B, Mayer-Bartschmid A, Unterschemmann K, Bruder S, Linden L, et al: Anetumab ravtansine: A novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol Cancer Ther. 13:1537–1548. 2014. View Article : Google Scholar : PubMed/NCBI | |
Banerjee S, Oza AM, Birrer MJ, Hamilton EP, Hasan J, Leary A, Moore KN, Mackowiak-Matejczyk B, Pikiel J, Ray-Coquard I, et al: Anti-NaPi2b antibody-drug conjugate lifastuzumab vedotin (DNIB0600A) compared with pegylated liposomal doxorubicin in patients with platinum-resistant ovarian cancer in a randomized, open-label, phase II study. Ann Oncol. 29:917–923. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sussman D, Smith LM, Anderson ME, Duniho S, Hunter JH, Kostner H, Miyamoto JB, Nesterova A, Westendorf L, Van Epps HA, et al: SGN-LIV1A: A novel antibody-drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol Cancer Ther. 13:2991–3000. 2014. View Article : Google Scholar : PubMed/NCBI |