Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2020 Volume 45 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2020 Volume 45 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

miR‑146a improves hepatic lipid and glucose metabolism by targeting MED1

  • Authors:
    • Kun Li
    • Bao Zhao
    • Diandian Wei
    • Wenrui Wang
    • Yixuan Cui
    • Lisheng Qian
    • Guodong Liu
  • View Affiliations / Copyright

    Affiliations: Department of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, P.R. China, Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China, Department of Biotechnology, School of Life Science and Technology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 543-555
    |
    Published online on: December 27, 2019
       https://doi.org/10.3892/ijmm.2019.4443
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Non‑alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. Increasing evidence has shown that microRNAs (miRNAs) play a vital role in the progression of NAFLD. The aim of the present study was to examine the expression level and roles of miR‑146a in fatty liver of high‑fat diet (HFD) and ob/ob mice and fatty acid‑treated hepatic cells using RT‑qPCR and western blot analysis. The results showed that the expression of miR‑146a was significantly decreased in the livers of high‑fat diet (HFD) and ob/ob mice and free fatty acid‑stimulated cells by RT‑qPCR. Overexpression of hepatic miR‑146a improved glucose and insulin tolerance as well as lipid accumulation in the liver by promoting the oxidative metabolism of fatty acids. In addition, the overexpression of miR‑146a increased the amount of mitochondria and promoted mitochondrial respiration in hepatocytes. Similarly, inhibition of miR‑146a expression levels significantly reduced mitochondrial numbers in AML12 cells as well as the expression of mitochondrial respiration related genes. Additionally, MED1 was a direct target of miR‑146a and restoring MED1 abolished the metabolic effects of miR‑146a on lipid metabolism and mitochondrial function. Therefore, results of the present study identified a novel function of miR‑146a in glucose and lipid metabolism in targeting MED1, suggesting that miR‑146a serves as a potential therapeutic target for metabolic syndrome disease.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Trefts E, Gannon M and Wasserman DH: The liver. Curr Biol. 27:R1147–R1151. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, Zenari L, Day C and Arcaro G: Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care. 30:1212–1218. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Byrne CD and Targher G: NAFLD: A multisystem disease. J Hepatol. 62(1 Suppl): S47–S64. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Cobbina E and Akhlaghi F: Non-alcoholic fatty liver disease (NAFLD)-pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab Rev. 49:197–211. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Ajith TA: Role of mitochondria and mitochondria-targeted agents in non-alcoholic fatty liver disease. Clin Exp Pharmacol Physiol. 45:413–421. 2018. View Article : Google Scholar

6 

Petrosillo G, Portincasa P, Grattagliano I, Casanova G, Matera M, Ruggiero FM, Ferri D and Paradies G: Mitochondrial dysfunction in rat with nonalcoholic fatty liver involvement of complex I, reactive oxygen species and cardiolipin. Biochim Biophys Acta. 1767:1260–1267. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Wei Y, Rector RS, Thyfault JP and Ibdah JA: Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J Gastroentero. 14:193–199. 2008. View Article : Google Scholar

8 

Satapati S, Sunny NE, Kucejova B, Fu X, He TT, Méndez-Lucas A, Shelton JM, Perales JC, Browning JD and Burgess SC: Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J Lipid Res. 53:1080–1092. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Cortez-Pinto H, Chatham J, Chacko VP, Arnold C, Rashid A and Diehl AM: Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis-A pilot study. JAMA. 282:1659–1664. 1999. View Article : Google Scholar : PubMed/NCBI

10 

Schmid AI, Szendroedi J, Chmelik M, Krssak M, Moser E and Roden M: Liver ATP synthesis is lower and relates to insulin sensitivity in patients with type 2 diabetes. Diabetes Care. 34:448–453. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Abdelmalek MF, Lazo M, Horska A, Bonekamp S, Lipkin EW, Balasubramanyam A, Bantle JP, Johnson RJ, Diehl AM, Clark JM, et al: Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. Hepatology. 56:952–960. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Szendroedi J, Chmelik M, Schmid AI, Nowotny P, Brehm A, Krssak M, Moser E and Roden M: Abnormal hepatic energy homeostasis in type 2 diabetes. Hepatology. 50:1079–1086. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Fritsch M, Koliaki C, Livingstone R, Phielix E, Bierwagen A, Meisinger M, Jelenik T, Strassburger K, Zimmermann S, Brockmann K, et al: Time course of postprandial hepatic phosphorus metabolites in lean, obese, and type 2 diabetes patients. Am J Clin Nutr. 102:1051–1058. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Ambros V: The functions of animal microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Hackl H, Burkard TR, Sturn A, Rubio R, Schleiffer A, Tian S, Quackenbush J, Eisenhaber F and Trajanoski Z: Molecular processes during fat cell development revealed by gene expression profiling and functional annotation. Genome Biol. 6:R1082005. View Article : Google Scholar

16 

Yuan Y, Zeng ZY, Liu XH, Gong DJ, Tao J, Cheng HZ and Huang SD: MicroRNA-203 inhibits cell proliferation by repressing ΔNp63 expression in human esophageal squamous cell carcinoma. BMC Cancer. 11:572011. View Article : Google Scholar

17 

Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA and Vasconcelos MH: MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer. 47:163–174. 2011. View Article : Google Scholar

18 

Liston A, Linterman M and Lu LF: MicroRNA in the adaptive immune system, in sickness and in health. J Clin Immunol. 30:339–346. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Esquela-Kerscher A and Slack FJ: Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Liang T, Liu C and Ye Z: Deep sequencing of small RNA repertoires in mice reveals metabolic disorders-associated hepatic miRNAs. PLoS One. 8:e807742013. View Article : Google Scholar : PubMed/NCBI

21 

Rottiers V and Naar AM: MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 13:239–250. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Taganov KD, Boldin MP, Chang KJ and Baltimore D: NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 103:12481–12486. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Cobb BS, Hertweck A, Smith J, O'Connor E, Graf D, Cook T, Smale ST, Sakaguchi S, Livesey FJ, Fisher AG and Merkenschlager M: A role for Dicer in immune regulation. J Exp Med. 203:2519–2527. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Liu X, Dong Y, Chen S, Zhang G, Zhang M, Gong Y and Li X: Circulating MicroRNA-146a and MicroRNA-21 predict left ventricular remodeling after ST-elevation myocardial infarction. Cardiology. 132:233–241. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Xiong XD, Cho M, Cai XP, Cheng J, Jing X, Cen JM, Liu X, Yang XL and Suh Y: A common variant in pre-miR-146 is associated with coronary artery disease risk and its mature miRNA expression. Mutat Res. 761:15–20. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR and de la Chapelle A: Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA. 105:7269–7274. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Jin X, Liu J, Chen YP, Xiang Z, Ding JX and Li YM: Effect of miR-146 targeted HDMCP up regulation in the pathogenesis of nonalcoholic steatohepatitis. PLoS One. 12:e01742182017. View Article : Google Scholar

28 

Bleau AM, Redrado M, Nistal-Villan E, Villalba M, Exposito F, Redin E, de Aberasturi AL, Larzabal L, Freire J, Gomez-Roman J and Calvo A: miR-146a targets c-met and abolishes colorectal cancer liver metastasis. Cancer Lett. 414:257–267. 2018. View Article : Google Scholar

29 

Sun X, Zhang J, Hou Z, Han Q, Zhang C and Tian Z: miR-146a is directly regulated by STAT3 in human hepatocellular carcinoma cells and involved in anti-tumor immune suppression. Cell Cycle. 14:243–252. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Zhang X, Ye ZH, Liang HW, Ren FH, Li P, Dang YW and Chen G: Down-regulation of miR-146a-5p and its potential targets in hepatocellular carcinoma validated by a TCGA- and GEO-based study. FEBS Open Bio. 7:504–521. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR and Auwerx J: Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11:213–219. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

33 

Schneider L, Giordano S, Zelickson BR, S Johnson M, A Benavides G, Ouyang X, Fineberg N, Darley-Usmar VM and Zhang J: Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Radic Biol Med. 51:2007–2017. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Liu W, Cao H, Yan J, Huang R and Ying H: 'Micro-managers' of hepatic lipid metabolism and NAFLD. Wiley Interdiscip Rev RNA. 6:581–593. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Bonawitz ND, Clayton DA and Shadel GS: Initiation and beyond: Multiple functions of the human mitochondrial transcription machinery. Mol Cell. 24:813–825. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Piantadosi CA, Carraway MS, Babiker A and Suliman HB: Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res. 103:1232–1240. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Scarpulla RC, Vega RB and Kelly DP: Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab. 23:459–466. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Suliman HB, Sweeney TE, Withers CM and Piantadosi CA: Co-regulation of nuclear respiratory factor-1 by NFkappaB and CREB links LPS-induced inflammation to mitochondrial biogenesis. J Cell Sci. 123:2565–2575. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Campbell CT, Kolesar JE and Kaufman BA: Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta. 1819:921–929. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Falkenberg M, Gaspari M, Rantanen A, Trifunovic A, Larsson NG and Gustafsson CM: Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet. 31:289–294. 2002. View Article : Google Scholar : PubMed/NCBI

41 

Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS and Clayton DA: Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet. 18:231–236. 1998. View Article : Google Scholar : PubMed/NCBI

42 

Dhar SS, Ongwijitwat S and Wong-Riley MT: Nuclear respiratory factor 1 regulates all ten nuclear-encoded Subunits of cytochrome c oxidase in neurons. J Biol Chem. 283:3120–3129. 2008. View Article : Google Scholar

43 

Kelly DP and Scarpulla RC: Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 18:357–368. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Scarpulla RC: Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev. 88:611–638. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Jia Y, Viswakarma N and Reddy JK: Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis. Gene Expr. 16:63–75. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Leite NC, Salles GF, Araujo AL, Villela-Nogueira CA and Cardoso CR: Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int. 29:113–119. 2009. View Article : Google Scholar

47 

Li S, Chen X, Zhang H, Liang X, Xiang Y, Yu C, Zen K, Li Y and Zhang CY: Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res. 50:1756–1765. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Ding J, Li M, Wan X, Jin X, Chen S, Yu C and Li Y: Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease. Sci Rep. 5:137292015. View Article : Google Scholar

49 

Xu Y, Zalzala M, Xu J, Li Y, Yin L and Zhang Y: A metabolic stress-inducible miR-34a-HNF4 α pathway regulates lipid and lipoprotein metabolism. Nat Commun. 6:74662015. View Article : Google Scholar

50 

Derdak Z, Villegas KA, Harb R, Wu AM, Sousa A and Wands JR: Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease. J Hepatol. 58:785–791. 2013. View Article : Google Scholar :

51 

Ahn J, Lee H, Jung CH and Ha T: Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet. Mol Nutr Food Res. 56:1665–1674. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Sun C, Huang F, Liu X, Xiao X, Yang M, Hu G, Liu H and Liao L: miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR. Int J Mol Med. 35:847–853. 2015. View Article : Google Scholar : PubMed/NCBI

53 

He Y, Huang C, Lin X and Li J: MicroRNA-29 family, a crucial therapeutic target for fibrosis diseases. Biochimie. 95:1355–1359. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Pogribny IP, Starlard-Davenport A, Tryndyak VP, Han T, Ross SA, Rusyn I and Beland FA: Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice. Lab Invest. 90:1437–1446. 2010. View Article : Google Scholar : PubMed/NCBI

55 

He S, Guo W, Deng F, Chen K, Jiang Y, Dong M, Peng L and Chen X: Targeted delivery of microRNA 146b mimic to hepatocytes by lactosylated PDMAEMA nanoparticles for the treatment of NAFLD. Artif Cells Nanomed Biotechnol. 46(Suppl 2): S217–S228. 2018. View Article : Google Scholar

56 

Paradies G, Paradies V, Ruggiero FM and Petrosillo G: Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroentero. 20:14205–14218. 2014. View Article : Google Scholar

57 

Azizi R, Soltani-Zangbar MS, Sheikhansari G, Pourmoghadam Z, Mehdizadeh A, Mahdipour M, Sandoghchian S, Danaii S, Koushaein L, Samadi Kafil H and Yousefi M: Metabolic syndrome mediates inflammatory and oxidative stress responses in patients with recurrent pregnancy loss. J Reprod Immunol. 133:18–26. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Ge K, Guermah M, Yuan CX, Ito M, Wallberg AE, Spiegelman BM and Roeder RG: Transcription coactivator TRAP220 is required for PPAR gamma 2-stimulated adipogenesis. Nature. 417:563–567. 2002. View Article : Google Scholar : PubMed/NCBI

59 

Chen W, Zhang X, Birsoy K and Roeder RG: A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism. Proc Natl Acad Sci USA. 107:10196–10201. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Yu J, Xiao Y, Liu J, Ji Y, Liu H, Xu J, Jin X, Liu L, Guan MX and Jiang P: Loss of MED1 triggers mitochondrial biogenesis in C2C12 cells. Mitochondrion. 14:18–25. 2014. View Article : Google Scholar

61 

Bai L, Jia Y, Viswakarma N, Huang J, Vluggens A, Wolins NE, Jafari N, Rao MS, Borensztajn J, Yang G and Reddy JK: Transcription coactivator mediator subunit MED1 is required for the development of fatty liver in the mouse. Hepatology. 53:1164–1174. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Kornberg RD: The molecular basis of eukaryotic transcription. Proc Natl Acad Sci USA. 104:12955–12961. 2007. View Article : Google Scholar : PubMed/NCBI

63 

Malik S and Roeder RG: Dynamic regulation of pol II transcription by the mammalian Mediator complex. Trends Biochem Sci. 30:256–263. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Lieber CS, Leo MA, Mak KM, Xu Y, Cao Q, Ren C, Ponomarenko A and DeCarli LM: Model of nonalcoholic steatohepatitis. Am J Clin Nutr. 79:502–509. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Kim JA, Wei Y and Sowers JR: Role of mitochondrial dysfunction in insulin resistance. Circ Res. 102:401–414. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Miele L, Grieco A, Armuzzi A, Candelli M, Forgione A, Gasbarrini A and Gasbarrini G: Hepatic mitochondrial beta-oxidation in patients with nonalcoholic steatohepatitis assessed by 13C-octanoate breath test. Am J Gastroenterol. 98:2335–2336. 2003. View Article : Google Scholar : PubMed/NCBI

67 

Iozzo P, Bucci M, Roivainen A, Någren K, Järvisalo MJ, Kiss J, Guiducci L, Fielding B, Naum AG, Borra R, et al: Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology. 139:846–856. e1–6. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Sunny NE, Parks EJ, Browning JD and Burgess SC: Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 14:804–810. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Sunny NE, Bril F and Cusi K: Mitochondrial adaptation in nonalcoholic fatty liver disease: Novel mechanisms and treatment strategies. Trends Endocrinol Metab. 28:250–260. 2017. View Article : Google Scholar

70 

Rong M, He R, Dang Y and Chen G: Expression and clinicopathological significance of miR-146a in hepatocellular carcinoma tissues. Ups J Med Sci. 119:19–24. 2014. View Article : Google Scholar :

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li K, Zhao B, Wei D, Wang W, Cui Y, Qian L and Liu G: miR‑146a improves hepatic lipid and glucose metabolism by targeting MED1. Int J Mol Med 45: 543-555, 2020.
APA
Li, K., Zhao, B., Wei, D., Wang, W., Cui, Y., Qian, L., & Liu, G. (2020). miR‑146a improves hepatic lipid and glucose metabolism by targeting MED1. International Journal of Molecular Medicine, 45, 543-555. https://doi.org/10.3892/ijmm.2019.4443
MLA
Li, K., Zhao, B., Wei, D., Wang, W., Cui, Y., Qian, L., Liu, G."miR‑146a improves hepatic lipid and glucose metabolism by targeting MED1". International Journal of Molecular Medicine 45.2 (2020): 543-555.
Chicago
Li, K., Zhao, B., Wei, D., Wang, W., Cui, Y., Qian, L., Liu, G."miR‑146a improves hepatic lipid and glucose metabolism by targeting MED1". International Journal of Molecular Medicine 45, no. 2 (2020): 543-555. https://doi.org/10.3892/ijmm.2019.4443
Copy and paste a formatted citation
x
Spandidos Publications style
Li K, Zhao B, Wei D, Wang W, Cui Y, Qian L and Liu G: miR‑146a improves hepatic lipid and glucose metabolism by targeting MED1. Int J Mol Med 45: 543-555, 2020.
APA
Li, K., Zhao, B., Wei, D., Wang, W., Cui, Y., Qian, L., & Liu, G. (2020). miR‑146a improves hepatic lipid and glucose metabolism by targeting MED1. International Journal of Molecular Medicine, 45, 543-555. https://doi.org/10.3892/ijmm.2019.4443
MLA
Li, K., Zhao, B., Wei, D., Wang, W., Cui, Y., Qian, L., Liu, G."miR‑146a improves hepatic lipid and glucose metabolism by targeting MED1". International Journal of Molecular Medicine 45.2 (2020): 543-555.
Chicago
Li, K., Zhao, B., Wei, D., Wang, W., Cui, Y., Qian, L., Liu, G."miR‑146a improves hepatic lipid and glucose metabolism by targeting MED1". International Journal of Molecular Medicine 45, no. 2 (2020): 543-555. https://doi.org/10.3892/ijmm.2019.4443
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team