|
1
|
Palaska I, Papathanasiou E and Theoharides
TC: Use of polyphenols in periodontal inflammation. Eur J
Pharmacol. 720:77–83. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sankari SL, Babu NA, Rani V, Priyadharsini
C and Masthan KM: Flavonoids-clinical effects and applications in
dentistry: A review. J Pharm Bioallied Sci. 6(Suppl 1): S26–S29.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bunte K, Hensel A and Beikler T:
Polyphenols in the prevention and treatment of periodontal disease:
A systematic review of in vivo, ex vivo and in vitro studies.
Fitoterapia. 132:30–39. 2019. View Article : Google Scholar
|
|
4
|
Nazir MA: Prevalence of periodontal
disease, its association with systemic diseases and prevention. Int
J Health Sci (Qassim). 11:72–80. 2017.
|
|
5
|
Özden FO, Sakallioğlu EE, Sakallioğlu U,
Ayas B and Erişgin Z: Effects of grape seed extract on periodontal
disease: An experimental study in rats. J Appl Oral Sci.
25:121–129. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Gennaro G, Claudino M, Cestari TM, Ceolin
D, Germino P, Garlet GP and de Assis GF: Green tea modulates
cytokine expression in the periodontium and attenuates alveolar
bone resorption in type 1 diabetic rats. PLoS One. 10:e01347842015.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Tominari T, Hirata M, Matsumoto C, Inada M
and Miyaura C: Polymethoxy flavonoids, nobiletin and tangeretin,
prevent lipopolysaccharide-induced inflammatory bone loss in an
experimental model for periodontitis. J Pharmacol Sci. 119:390–394.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Fernández-Rojas B and Gutiérrez-Venegas G:
Flavonoids exert multiple periodontic benefits including
anti-inflammatory, periodontal ligament-supporting, and alveolar
bone-preserving effects. Life Sci. 209:435–454. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Houde V, Grenier D and Chandad F:
Protective effects of grape seed proanthocyanidins against
oxidative stress induced by lipopolysaccharides of
periodontopathogens. J Periodontol. 77:1371–1379. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Govindaraj J, Emmadi P, Deepalakshmi,
Rajaram V, Prakash G and Puvanakrishnan R: Protective effect of
proanthocyanidins on endotoxin induced experimental periodontitis
in rats. Indian J Exp Biol. 48:133–142. 2010.PubMed/NCBI
|
|
11
|
Shen CL, Wang P, Guerrieri J, Yeh JK and
Wang JS: Protective effect of green tea polyphenols on bone loss in
middle-aged female rats. Osteoporos Int. 19:979–990. 2008.
View Article : Google Scholar
|
|
12
|
Lee JH, Jin H, Shim HE, Kim HN, Ha H and
Lee ZH: Epigallocatechin-3-gallate inhibits osteoclastogenesis by
down-regulating c-Fos expression and suppressing the nuclear
factor-kappaB signal. Mol Pharmacol. 77:17–25. 2010. View Article : Google Scholar
|
|
13
|
Nakamura H, Ukai T, Yoshimura A, Kozuka Y,
Yoshioka H, Yoshinaga Y, Abe Y and Hara Y: Green tea catechin
inhibits lipo-polysaccharide-induced bone resorption in vivo. J
Periodontal Res. 45:23–30. 2010. View Article : Google Scholar
|
|
14
|
Gómez-Florit M, Monjo M and Ramis JM:
Identification of quercitrin as potential therapeutic agent for
periodontal applications. J Periodontol. 85:966–974. 2014.
View Article : Google Scholar
|
|
15
|
Chen JR, Lazarenko OP, Wu X, Kang J,
Blackburn ML, Shankar K, Badger TM and Ronis MJ: Dietary-induced
serum phenolic acids promote bone growth via p38 MAPK/β-catenin
canonical Wnt signaling. J Bone Miner Res. 25:2399–2411. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bu SY, Hunt TS and Smith BJ: Dried plum
polyphenols attenuate the detrimental effects of TNF-alpha on
osteoblast function coincident with up-regulation of Runx2, Osterix
and IGF-I. J Nutr Biochem. 20:35–44. 2009. View Article : Google Scholar
|
|
17
|
Trzeciakiewicz A, Habauzit V, Mercier S,
Lebecque P, Davicco MJ, Coxam V, Demigne C and Horcajada MN:
Hesperetin stimulates differentiation of primary rat osteoblasts
involving the BMP signalling pathway. J Nutr Biochem. 21:424–431.
2010. View Article : Google Scholar
|
|
18
|
Byun MR, Sung MK, Kima AR, Lee CH, Jang
EJ, Jeong MG, Noh M, Hwang ES and Hong JH: (-)-Epicatechin gallate
(ECG) stimulates osteoblast differentiation via Runt-related
transcription factor 2 (RUNX2) and transcriptional coactivator with
PDZ-binding motif (TAZ)-mediated transcriptional activation. J Biol
Chem. 289:9926–9935. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Santiago-Mora R, Casado-Díaz A, De Castro
MD and Quesada-Gómez JM: Oleuropein enhances osteoblastogenesis and
inhibits adipogenesis: The effect on differentiation in stem cells
derived from bone marrow. Osteoporos Int. 22:675–684. 2011.
View Article : Google Scholar
|
|
20
|
Patisaul HB and Jefferson W: The pros and
cons of phytoestrogens. Front Neuroendocrinol. 31:400–419. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Torre E: Molecular signaling mechanisms
behind polyphenol-induced bone anabolism. Phytochem Rev.
16:1183–1226. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Torre E, Iviglia G, Cassinelli C and Morra
M: Potentials of poly-phenols in bone-implant devices. Polyphenols.
Wong J: IntechOpen; 2018, https://www.intechopen.com/books/polyphe-nols/potentials-of-polyphenols-in-bone-implant-devices.
Accessed April 11, 2018. View Article : Google Scholar
|
|
23
|
Sheikh Z, Sima C and Glogauer M: Bone
replacement materials and techniques used for achieving vertical
alveolar bone augmentation. Materials. 8:2953–2993. 2015.
View Article : Google Scholar
|
|
24
|
Rodriguez Baena RY, Rizzo S, Manzo L and
Lupi SM: Nanofeatured titanium surfaces for dental implantology:
Biological effects, biocompatibility, and safety. J Nanomater.
2017:182017. View Article : Google Scholar
|
|
25
|
Morra M: Biomolecular modification of
implant surfaces. Expert Rev Med Devices. 4:36–372. 2007.
View Article : Google Scholar
|
|
26
|
Brett E, Flacco J, Blackshear C, Longaker
MT and Wan DC: Biomimetics of bone implants: The regenerative road.
Biores Open Access. 6:1–6. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Morra M, Cassinelli C, Torre E and Iviglia
G: Permanent wettability of a novel, nanoengineered, clinically
available, hyaluronan-coated dental implant. Clin Exp Dent Res.
4:196–205. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Bryers JD, Giachelli CM and Ratner BD:
Engineering biomaterials to integrate and heal: The
biocompatibility paradigm shifts. Biotechnol Bioeng. 109:1898–1911.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Insua A, Monje A, Wang HL and Miron RJ:
Basis of bone metabolism around dental implants during
osseointegration and peri-implant bone loss. J Biomed Mater Res A.
105:2075–2089. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhang X, Ferraris S, Prenesti E and Verné
E: Surface functionalization of bioactive glasses with natural
molecules of biological significance, part I: Gallic acid as model
molecule. Appl Surf Sci. 2013.
|
|
31
|
Zhang X, Ferraris S, Prenesti E and Verné
E: Surface functionalization of bioactive glasses with natural
molecules of biological significance, part II: Grafting of
polyphenols extracted from grape skin. Appl Surf Sci. 287:341–348.
2013. View Article : Google Scholar
|
|
32
|
Córdoba A, Satué M, Gómez-Florit M,
Hierro-Oliva M, Petzold C, Lyngstadaas SP, González-Martín ML,
Monjo M and Ramis JM: Flavonoid-modified surfaces: Multifunctional
bioactive biomaterials with osteopromotive, anti-inflammatory, and
anti-fibrotic potential. Adv Healthc Mater. 4:540–549. 2015.
View Article : Google Scholar
|
|
33
|
Gomez-Florit M, Pacha-Olivenza MA,
Fernández-Calderón MC, Córdoba A, González-Martín ML, Monjo M and
Ramis JM: Quercitrin-nanocoated titanium surfaces favour gingival
cells against oral bacteria. Sci Rep. 6:224442016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cazzola M, Corazzari I, Prenesti E,
Bertone E, Vernè E and Ferraris S: Bioactive glass coupling with
natural polyphenols: Surface modification, bioactivity and
anti-oxidant ability. Appl Surf Sci. 367:237–248. 2016. View Article : Google Scholar
|
|
35
|
Cazzola M, Vernè E, Cochis A, Sorrentino
R, Azzimonti BC, Prenesti E, Rimondini L and Ferraris S: Bioactive
glasses functionalized with polyphenols: In vitro interactions with
healthy and cancerous osteoblast cells. J Mater Sci. 52:2017.
View Article : Google Scholar
|
|
36
|
Cazzola M, Ferraris S, Boschetto F,
Rondinella A, Marin E, Zhu W, Pezzotti G, Vernè E and Spriano S:
Green tea polyphenols coupled with a bioactive titanium alloy
surface: In vitro characterization of osteoinductive behavior
through a KUSA A1 cell study. Int J Mol Sci. 19:E22552018.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Tsuchiya S, Sugimoto K, Kamio H, Okabe K,
Kuroda K, Okido M and Hibi H: Kaempferol-immobilized titanium
dioxide promotes formation of new bone: Effects of loading methods
on bone marrow stromal cell differentiation in vivo and in vitro.
Int J Nanomedicine. 13:1665–1676. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Iviglia G, Bollati D, Cassinelli C, Torre
E and Morra M: Dreamer: An Innovative Bone Filler Paste For The
Treatment Of Periodontitis. In: Dreamer: An Innovative Bone Filler
Paste For The Treatment Of Periodontitis. In: Front. Bioeng.
Biotechnol. Conference Abstract: 10th World Biomaterials Congress;
2016
|
|
39
|
Kallithraka S, Garcia-Viguera C, Bridle P
and Bakker J: Survey of solvents for the extraction of grape seed
phenolics. Phytochem Anal. 6:265–267. 1995. View Article : Google Scholar
|
|
40
|
Pekić B, Kovač V, Alonso E and Revilla E:
Study of the extraction of proanthocyanidins from grape seeds. Food
Chem. 61:201–206. 1998. View Article : Google Scholar
|
|
41
|
Shi J, Yu J, Pohorly J, Young JC, Bryan M
and Wu Y: Optimization of the extraction of polyphenols from grape
seed meal by aqueous ethanol solution. J Food Agric Environ.
1:42–47. 2003.
|
|
42
|
Neveu V, Perez-Jiménez J, Vos F, Crespy V,
du Chaffaut L, Mennen L, Knox C, Eisner R, Cruz J, Wishart D and
Scalbert A: Phenol-Explorer: An online comprehensive database on
poly-phenol contents in foods. Database (Oxford). 2010. pp.
bap0242010, View Article : Google Scholar
|
|
43
|
Rothwell JA, Urpi-Sarda M, Boto-Ordoñez M,
Knox C, Llorach R, Eisner R, Cruz J, Neveu V, Wishart D, Manach C,
et al: Phenol-Explorer 20: A major update of the Phenol-Explorer
database integrating data on polyphenol metabolism and
pharmacokinetics in humans and experimental animals. Database
(Oxford). 2012. pp. bas0312012, View Article : Google Scholar
|
|
44
|
Rothwell JA, Pérez-Jiménez J, Neveu V,
Medina-Remón A, M'hiri N, García-Lobato P, Manach C, Knox C, Eisner
R, Wishart DS and Scalbert A: Phenol-Explorer 30: A major update of
the Phenol-Explorer database to incorporate data on the effects of
food processing on polyphenol content. Database (Oxford). 2013. pp.
bat0702013, View Article : Google Scholar
|
|
45
|
Arumugam B, Balagangadharan K and
Selvamurugan N: Syringic acid, a phenolic acid, promotes osteoblast
differentiation by stimulation of Runx2 expression and targeting of
Smad7 by miR-21 in mouse mesenchymal stem cells. J Cell Commun
Signal. 12:561–573. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Gu Q, Cai Y, Huang C, Shi Q and Yang H:
Curcumin increases rat mesenchymal stem cell osteoblast
differentiation but inhibits adipocyte differentiation. Pharmacogn
Mag. 8:202–208. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lin SY, Kang L, Wang CZ, Huang HH, Cheng
TL, Huang HT, Lee MJ, Lin YS, Ho ML, Wang GJ and Chen CH:
(-)-Epigallocatechin-3-gallate (EGCG) enhances osteogenic
differentiation of human bone marrow mesenchymal stem cells.
Molecules. 23:E32212018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhang J, Wu K, Xu T, Wu J, Li P, Wang H,
Wu H and Wu G: Epigallocatechin-3-gallate enhances the
osteoblastogenic differentiation of human adipose-derived stem
cells. Drug Des Devel Ther. 13:1311–1321. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Song LH, Pan W, Yu YH, Quarles LD, Zhou HH
and Xiao ZS: Resveratrol prevents CsA inhibition of proliferation
and osteoblastic differentiation of mouse bone marrow-derived
mesenchymal stem cells through an ER/NO/cGMP pathway. Toxicol In
Vitro. 20:915–922. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Dai Z, Li Y, Quarles LD, Song T, Pan W,
Zhou H and Xiao Z: Resveratrol enhances proliferation and
osteoblastic differentiation in human mesenchymal stem cells via
ER-dependent ERK1/2 activation. Phytomedicine. 14:806–814. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wittenauer J, MäcKle S, Sußmann D,
Schweiggert-Weisz U and Carle R: Inhibitory effects of polyphenols
from grape pomace extract on collagenase and elastase activity.
Fitoterapia. 101:179–187. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Brand-Williams W, Cuvelier ME and Berset
C: Use of a free radical method to evaluate antioxidant activity.
LWT-Food Sci Technol. 28:25–30. 1995. View Article : Google Scholar
|
|
53
|
Ribéreau-Gayon P and Stonestreet E:
Determination of anthocyanins in red wine. Bull Soc Chim Fr.
9:2649–2652. 1965.In French.
|
|
54
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
|
55
|
Hammer Ø, Harper D and Ryan P: Past:
Paleontological statistics software package for education and data
analysis. Paleontol Electron. 4:92001.
|
|
56
|
Santos J, Oliveira MB, Ibáñez E and
Herrero M: Phenolic profile evolution of different ready-to-eat
baby-leaf vegetables during storage. J Chromatogr A. 1327:118–131.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Dolan JW: Gradient Elution, Part V:
Baseline Drift Problems. LCGC North Am. 31:538–543. 2013.
|
|
58
|
Snyder LR, Kirkland JJ and Dolan JW:
Introduction to Modern Liquid Chromatography. 3rd Edition. Wiley;
2010
|
|
59
|
Austermann K, Baecker N, Stehle P and Heer
M: Putative effects of nutritive polyphenols on bone metabolism in
vivo-evidence from human studies. Nutrients. 11:E8712019.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Trzeciakiewicz A, Habauzit V and Horcajada
MN: When nutrition interacts with osteoblast function: Molecular
mechanisms of polyphenols. Nutr Res Rev. 22:68–81. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kojima K, Maki K, Tofani I, Kamitani Y and
Kimura M: Effects of grape seed proanthocyanidins extract on rat
mandibular condyle. J Musculoskelet Neuronal Interact. 4:301–307.
2004.PubMed/NCBI
|
|
62
|
Huang JM, Bao Y, Xiang W, Jing XZ, Guo JC,
Yao XD, Wang R and Guo FJ: Icariin Regulates the Bidirectional
Differentiation of Bone Marrow Mesenchymal Stem Cells through
Canonical Wnt Signaling Pathway. Evid Based Complement Alternat
Med. 2017:80853252017. View Article : Google Scholar
|
|
63
|
Ma HP, Ming LG, Ge BF, Zhai YK, Song P,
Xian CJ and Chen KM: Icariin is more potent than genistein in
promoting osteoblast differentiation and mineralization in vitro. J
Cell Biochem. 112:916–923. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hsieh TP, Sheu SY, Sun JS, Chen MH and Liu
MH: Icariin isolated from Epimedium pubescens regulates osteoblasts
anabolism through BMP-2, SMAD4, and Cbfa1 expression.
Phytomedicine. 17:414–423. 2010. View Article : Google Scholar
|
|
65
|
Trzeciakiewicz A, Habauzit V, Mercier S,
Barron D, Urpi-Sarda M, Manach C, Offord E and Horcajada MN:
Molecular mechanism of hesperetin-7-O-glucuronide, the main
circulating metabolite of hesperidin, involved in osteoblast
differentiation. J Agric Food Chem. 58:668–675. 2010. View Article : Google Scholar
|
|
66
|
Sheng H, Zhang G, Wang X, Lee K, Yao X,
Leung K, Li G and Qin L: Phytochemical molecule icariin stimulates
osteogenic but inhibits adipogenic differentiation of mesenchymal
stem cells. Bone. 43(Suppl 1): S42–S43. 2008. View Article : Google Scholar
|
|
67
|
Wei Q, Zhang J, Hong G, Chen Z, Deng W, He
W and Chen MH: Icariin promotes osteogenic differentiation of rat
bone marrow stromal cells by activating the ERα-Wnt/β-catenin
signaling pathway. Biomed Pharmacother. 84:931–939. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tseng PC, Hou SM, Chen RJ, Peng HW, Hsieh
CF, Kuo ML and Yen ML: Resveratrol promotes osteogenesis of human
mesenchymal stem cells by upregulating RUNX2 gene expression via
the SIRT1/FOXO3A axis. J Bone Miner Res. 26:2552–2563. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Dai J, Li Y, Zhou H, Chen J, Chen M and
Xiao Z: Genistein promotion of osteogenic differentiation through
BMP2/SMAD5/RUNX2 signaling. Int J Biol Sci. 9:1089–1098. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yang L, Takai H, Utsunomiya T, Li X, Li Z,
Wang Z, Wang S, Sasaki Y, Yamamoto H and Ogata Y: Kaempferol
stimulates bone sialoprotein gene transcription and new bone
formation. J Cell Biochem. 110:1342–1355. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jung WW: Protective effect of apigenin
against oxidative stress-induced damage in osteoblastic cells. Int
J Mol Med. 33:1327–1334. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ying X, Sun L, Chen X, Xu H, Guo X, Chen
H, Hong J, Cheng S and Peng L: Silibinin promotes osteoblast
differentiation of human bone marrow stromal cells via bone
morphogenetic protein signaling. Eur J Pharmacol. 721:225–230.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhao L, Wang Y, Wang Z, Xu Z, Zhang Q and
Yin M: Effects of dietary resveratrol on excess-iron-induced bone
loss via antioxidative character. J Nutr Biochem. 26:1174–1182.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kim JM, Lee SU, Kim YS, Min YK and Kim SH:
Baicalein stimulates osteoblast differentiation via coordinating
activation of MAP kinases and transcription factors. J Cell
Biochem. 104:1906–1917. 2008.PubMed/NCBI
|
|
75
|
Liu H, Zhong L, Zhang Y, Liu X and Li J:
Rutin attenuates cerebral ischemia/reperfusion injury in
ovariectomized rats via estrogen receptor-mediated BDNF-TrkB and
NGF-TrkA signaling. Biochem Cell Biol. 96:672–681. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Abdel-Naim AB, Alghamdi AA, Algandaby MM,
Al-Abbasi FA, Al-Abd AM, Eid BG, Abdallah HM and El-Halawany AM:
Rutin isolated from Chrozophora tinctoria enhances bone cell
proliferation and ossification markers. Oxid Med Cell Longev.
2018:51064692018. View Article : Google Scholar :
|
|
77
|
Rassi CM, Lieberherr M, Chaumaz G,
Pointillart A and Cournot G: Modulation of osteoclastogenesis in
porcine bone marrow cultures by quercetin and rutin. Cell Tissue
Res. 319:383–393. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhou S, Turgeman G, Harris SE, Leitman DC,
Komm BS, Bodine PV and Gazit D: Estrogens activate bone
morphogenetic protein-2 gene transcription in mouse mesenchymal
stem cells. Mol Endocrinol. 17:56–66. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hidalgo M, Sánchez-Moreno C and de
Pascual-Teresa S: Flavonoid-flavonoid interaction and its effect on
their antioxidant activity. Food Chem. 121:691–696. 2010.
View Article : Google Scholar
|
|
80
|
Galanakis CM, Kotanidis A, Dianellou M and
Gekas V: Phenolic content and antioxidant capacity of Cypriot
wines. Czech J Food Sci. 33:126–136. 2015. View Article : Google Scholar
|
|
81
|
Gao J, Feng Z, Wang X, Zeng M, Liu J, Han
S, Xu J, Chen L, Cao K, Long J, et al: SIRT3/SOD2 maintains
osteoblast differentiation and bone formation by regulating
mitochondrial stress. Cell Death Differ. 25:229–240. 2018.
View Article : Google Scholar :
|
|
82
|
Giner M, Montoya MJ, Vázquez MA, Rios MJ,
Moruno R, Miranda MJ and Pérez-Cano R: Modifying RANKL/OPG mRNA
expression in differentiating and growing human primary
osteoblasts. Horm Metab Res. 40:869–874. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Shakibaei M, Shayan P, Busch F, Aldinger
C, Buhrmann C, Lueders C and Mobasheri A: Resveratrol mediated
modulation of Sirt-1/Runx2 promotes osteogenic differentiation of
mesenchymal stem cells: Potential role of Runx2 deacetylation. PLoS
One. 7:e357122012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang JF, Li G, Meng CL, Dong Q, Chan CY,
He ML, Leung PC, Zhang YO and Kung HF: Total flavonoids of Herba
Epimedii improves osteogenesis and inhibits osteoclastogenesis of
human mesenchymal stem cells. Phytomedicine. 16:521–529. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Marini H, Minutoli L, Polito F, Bitto A,
Altavilla D, Atteritano M, Gaudio A, Mazzaferro S, Frisina A,
Frisina N, et al: OPG and sRANKL serum concentrations in
osteopenic, postmenopausal women after 2-year genistein
administration. J Bone Miner Res. 23:715–720. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Napimoga MH, Clemente-Napimoga JT, Macedo
CG, Freitas FF, Stipp RN, Pinho-Ribeiro FA, Casagrande R and Verri
WA Jr: Quercetin inhibits inflammatory bone resorption in a mouse
periodontitis model. J Nat Prod. 76:2316–2321. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Papadaki M, Rinotas V, Violitzi F, Thireou
T, Panayotou G, Samiotaki M and Douni E: New insights for RANKL as
a proinflammatory modulator in modeled inflammatory arthritis.
Front Immunol. 10:972019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Boyce BF, Xiu Y, Li J, Xing L and Yao Z:
NF-κB-mediated regulation of osteoclastogenesis. Endocrinol Metab
(Seoul). 30:35–44. 2015. View Article : Google Scholar
|
|
89
|
Bu SY, Lerner M, Stoecker BJ, Boldrin E,
Brackett DJ, Lucas EA and Smith BJ: Dried plum polyphenols inhibit
osteoclastogenesis by downregulating NFATc1 and inflammatory
mediators. Calcif Tissue Int. 82:475–488. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Sheu SY, Tsai CC, Sun JS, Chen MH, Liu MH
and Sun MG: Stimulatory effect of puerarin on bone formation
through co-activation of nitric oxide and bone morphogenetic
protein-2/mitogen-activated protein kinases pathways in mice. Chin
Med J (Engl). 125:3646–3653. 2012.
|
|
91
|
Mauney J and Volloch V: Adult human bone
marrow stromal cells regulate expression of their MMPs and TIMPs in
differentiation type-specific manner. Matrix Biol. 29:3–8. 2010.
View Article : Google Scholar
|
|
92
|
Kobayashi T, Kishimoto J, Ge Y, Jin W,
Hudson DL, Ouahes N, Ehama R, Shinkai H and Burgeson RE: A novel
mechanism of matrix metalloproteinase-9 gene expression implies a
role for keratinization. EMBO Rep. 2:604–608. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Philips N, Auler S, Hugo R and Gonzalez S:
Beneficial regulation of matrix metalloproteinases for skin health.
Enzyme Res. 2011:4272852011. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Garlet GP, Martins W Jr, Fonseca BA,
Ferreira BR and Silva JS: Matrix metalloproteinases, their
physiological inhibitors and osteoclast factors are differentially
regulated by the cytokine profile in human periodontal disease. J
Clin Periodontol. 31:671–679. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lazăr L, Loghin A, Bud ES, Cerghizan D,
Horváth E and Nagy EE: Cyclooxygenase-2 and matrix
metalloproteinase-9 expressions correlate with tissue inflammation
degree in periodontal disease. Rom J Morphol Embryol. 56:1441–1446.
2015.
|
|
96
|
Sorsa T, Mäntylä P, Tervahartiala T,
Pussinen PJ, Gamonal J and Hernandez M: MMP activation in
diagnostics of periodontitis and systemic inflammation. J Clin
Periodontol. 38:817–819. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Nissinen L and Kähäri VM: Matrix
metalloproteinases in inflammation. Biochim Biophys Acta.
1840:2571–2580. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Almalki SG and Agrawal DK: Effects of
matrix metalloproteinases on the fate of mesenchymal stem cells.
Stem Cell Res Ther. 7:1292016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Yun JH, Pang EK, Kim CS, Yoo YJ, Cho KS,
Chai JK, Kim CK and Choi SH: Inhibitory effects of green tea
polyphenol (-)-epigallocatechin gallate on the expression of matrix
metal-loproteinase-9 and on the formation of osteoclasts. J
Periodontal Res. 39:300–307. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wang D, Wang Y, Xu S, Wang F, Wang B, Han
K, Sun D and Li L: Epigallocatechin-3-gallate protects against
hydrogen peroxide-induced inhibition of osteogenic differentiation
of human bone marrow-derived mesenchymal stem cells. Stem Cells
Int. 2016:75327982016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Gómez-Florit M, Monjo M and Ramis JM:
Quercitrin for periodontal regeneration: Effects on human gingival
fibroblasts and mesenchymal stem cells. Sci Rep. 5:165932015.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Vauzour D, Rodriguez-Mateos A, Corona G,
Oruna-Concha MJ and Spencer JP: Polyphenols and human health:
Prevention of disease and mechanisms of action. Nutrients.
2:1106–1131. 2010. View Article : Google Scholar : PubMed/NCBI
|