Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
June-2020 Volume 45 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2020 Volume 45 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Polyphenols from grape pomace induce osteogenic differentiation in mesenchymal stem cells

  • Authors:
    • Elisa Torre
    • Giorgio Iviglia
    • Clara Cassinelli
    • Marco Morra
    • Nazario Russo
  • View Affiliations / Copyright

    Affiliations: Nobil Bio Ricerche srl, I‑14037 Portacomaro, Italy, University of Cagliari, I‑09124 Cagliari, Italy
    Copyright: © Torre et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1721-1734
    |
    Published online on: March 30, 2020
       https://doi.org/10.3892/ijmm.2020.4556
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Polyphenols are increasingly investigated for the treatment of periodontitis and research on their use in dental biomaterials is currently being conducted. Grape pomace extracts are a rich source of polyphenols. In the present study, the polyphenols of two different types of grape pomace were characterized and identified by high‑performance liquid chromatography‑diode array detector, and the effect of polyphenol‑rich grape pomace extracts on mesenchymal stem cell (MSC) osteogenic differentiation was investigated. Solid‑liquid extraction was used to recover polyphenols from red and white grape pomace. The two extracts have been characterized through the phenolic content and antioxidant power. Human MSCs (hMSCs) from the bone marrow were cultured both with and without given amounts (10 or 20 µg/ml) of the obtained pomace extracts. Their effects on cell differentiation were evaluated by reverse transcription‑quantitative polymerase chain reaction, compared with relevant controls. Results showed that both pomace extracts, albeit different in phenolic composition and concentration, induced multiple effects on hMSC gene expression, such as a decreased receptor activator of nuclear factor κ‑Β ligand/osteoprotegerin ratio and an enhanced expression of genes involved in osteoblast differentiation, thus suggesting a shift of hMSCs towards osteoblast differentiation. The obtained results provided data in favor of the exploitation of polyphenol properties from grape pomace extracts as complementary active molecules for dental materials and devices for bone regeneration in periodontal defects.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Palaska I, Papathanasiou E and Theoharides TC: Use of polyphenols in periodontal inflammation. Eur J Pharmacol. 720:77–83. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Sankari SL, Babu NA, Rani V, Priyadharsini C and Masthan KM: Flavonoids-clinical effects and applications in dentistry: A review. J Pharm Bioallied Sci. 6(Suppl 1): S26–S29. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Bunte K, Hensel A and Beikler T: Polyphenols in the prevention and treatment of periodontal disease: A systematic review of in vivo, ex vivo and in vitro studies. Fitoterapia. 132:30–39. 2019. View Article : Google Scholar

4 

Nazir MA: Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Health Sci (Qassim). 11:72–80. 2017.

5 

Özden FO, Sakallioğlu EE, Sakallioğlu U, Ayas B and Erişgin Z: Effects of grape seed extract on periodontal disease: An experimental study in rats. J Appl Oral Sci. 25:121–129. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Gennaro G, Claudino M, Cestari TM, Ceolin D, Germino P, Garlet GP and de Assis GF: Green tea modulates cytokine expression in the periodontium and attenuates alveolar bone resorption in type 1 diabetic rats. PLoS One. 10:e01347842015. View Article : Google Scholar : PubMed/NCBI

7 

Tominari T, Hirata M, Matsumoto C, Inada M and Miyaura C: Polymethoxy flavonoids, nobiletin and tangeretin, prevent lipopolysaccharide-induced inflammatory bone loss in an experimental model for periodontitis. J Pharmacol Sci. 119:390–394. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Fernández-Rojas B and Gutiérrez-Venegas G: Flavonoids exert multiple periodontic benefits including anti-inflammatory, periodontal ligament-supporting, and alveolar bone-preserving effects. Life Sci. 209:435–454. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Houde V, Grenier D and Chandad F: Protective effects of grape seed proanthocyanidins against oxidative stress induced by lipopolysaccharides of periodontopathogens. J Periodontol. 77:1371–1379. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Govindaraj J, Emmadi P, Deepalakshmi, Rajaram V, Prakash G and Puvanakrishnan R: Protective effect of proanthocyanidins on endotoxin induced experimental periodontitis in rats. Indian J Exp Biol. 48:133–142. 2010.PubMed/NCBI

11 

Shen CL, Wang P, Guerrieri J, Yeh JK and Wang JS: Protective effect of green tea polyphenols on bone loss in middle-aged female rats. Osteoporos Int. 19:979–990. 2008. View Article : Google Scholar

12 

Lee JH, Jin H, Shim HE, Kim HN, Ha H and Lee ZH: Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-kappaB signal. Mol Pharmacol. 77:17–25. 2010. View Article : Google Scholar

13 

Nakamura H, Ukai T, Yoshimura A, Kozuka Y, Yoshioka H, Yoshinaga Y, Abe Y and Hara Y: Green tea catechin inhibits lipo-polysaccharide-induced bone resorption in vivo. J Periodontal Res. 45:23–30. 2010. View Article : Google Scholar

14 

Gómez-Florit M, Monjo M and Ramis JM: Identification of quercitrin as potential therapeutic agent for periodontal applications. J Periodontol. 85:966–974. 2014. View Article : Google Scholar

15 

Chen JR, Lazarenko OP, Wu X, Kang J, Blackburn ML, Shankar K, Badger TM and Ronis MJ: Dietary-induced serum phenolic acids promote bone growth via p38 MAPK/β-catenin canonical Wnt signaling. J Bone Miner Res. 25:2399–2411. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Bu SY, Hunt TS and Smith BJ: Dried plum polyphenols attenuate the detrimental effects of TNF-alpha on osteoblast function coincident with up-regulation of Runx2, Osterix and IGF-I. J Nutr Biochem. 20:35–44. 2009. View Article : Google Scholar

17 

Trzeciakiewicz A, Habauzit V, Mercier S, Lebecque P, Davicco MJ, Coxam V, Demigne C and Horcajada MN: Hesperetin stimulates differentiation of primary rat osteoblasts involving the BMP signalling pathway. J Nutr Biochem. 21:424–431. 2010. View Article : Google Scholar

18 

Byun MR, Sung MK, Kima AR, Lee CH, Jang EJ, Jeong MG, Noh M, Hwang ES and Hong JH: (-)-Epicatechin gallate (ECG) stimulates osteoblast differentiation via Runt-related transcription factor 2 (RUNX2) and transcriptional coactivator with PDZ-binding motif (TAZ)-mediated transcriptional activation. J Biol Chem. 289:9926–9935. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Santiago-Mora R, Casado-Díaz A, De Castro MD and Quesada-Gómez JM: Oleuropein enhances osteoblastogenesis and inhibits adipogenesis: The effect on differentiation in stem cells derived from bone marrow. Osteoporos Int. 22:675–684. 2011. View Article : Google Scholar

20 

Patisaul HB and Jefferson W: The pros and cons of phytoestrogens. Front Neuroendocrinol. 31:400–419. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Torre E: Molecular signaling mechanisms behind polyphenol-induced bone anabolism. Phytochem Rev. 16:1183–1226. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Torre E, Iviglia G, Cassinelli C and Morra M: Potentials of poly-phenols in bone-implant devices. Polyphenols. Wong J: IntechOpen; 2018, https://www.intechopen.com/books/polyphe-nols/potentials-of-polyphenols-in-bone-implant-devices. Accessed April 11, 2018. View Article : Google Scholar

23 

Sheikh Z, Sima C and Glogauer M: Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation. Materials. 8:2953–2993. 2015. View Article : Google Scholar

24 

Rodriguez Baena RY, Rizzo S, Manzo L and Lupi SM: Nanofeatured titanium surfaces for dental implantology: Biological effects, biocompatibility, and safety. J Nanomater. 2017:182017. View Article : Google Scholar

25 

Morra M: Biomolecular modification of implant surfaces. Expert Rev Med Devices. 4:36–372. 2007. View Article : Google Scholar

26 

Brett E, Flacco J, Blackshear C, Longaker MT and Wan DC: Biomimetics of bone implants: The regenerative road. Biores Open Access. 6:1–6. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Morra M, Cassinelli C, Torre E and Iviglia G: Permanent wettability of a novel, nanoengineered, clinically available, hyaluronan-coated dental implant. Clin Exp Dent Res. 4:196–205. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Bryers JD, Giachelli CM and Ratner BD: Engineering biomaterials to integrate and heal: The biocompatibility paradigm shifts. Biotechnol Bioeng. 109:1898–1911. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Insua A, Monje A, Wang HL and Miron RJ: Basis of bone metabolism around dental implants during osseointegration and peri-implant bone loss. J Biomed Mater Res A. 105:2075–2089. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Zhang X, Ferraris S, Prenesti E and Verné E: Surface functionalization of bioactive glasses with natural molecules of biological significance, part I: Gallic acid as model molecule. Appl Surf Sci. 2013.

31 

Zhang X, Ferraris S, Prenesti E and Verné E: Surface functionalization of bioactive glasses with natural molecules of biological significance, part II: Grafting of polyphenols extracted from grape skin. Appl Surf Sci. 287:341–348. 2013. View Article : Google Scholar

32 

Córdoba A, Satué M, Gómez-Florit M, Hierro-Oliva M, Petzold C, Lyngstadaas SP, González-Martín ML, Monjo M and Ramis JM: Flavonoid-modified surfaces: Multifunctional bioactive biomaterials with osteopromotive, anti-inflammatory, and anti-fibrotic potential. Adv Healthc Mater. 4:540–549. 2015. View Article : Google Scholar

33 

Gomez-Florit M, Pacha-Olivenza MA, Fernández-Calderón MC, Córdoba A, González-Martín ML, Monjo M and Ramis JM: Quercitrin-nanocoated titanium surfaces favour gingival cells against oral bacteria. Sci Rep. 6:224442016. View Article : Google Scholar : PubMed/NCBI

34 

Cazzola M, Corazzari I, Prenesti E, Bertone E, Vernè E and Ferraris S: Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability. Appl Surf Sci. 367:237–248. 2016. View Article : Google Scholar

35 

Cazzola M, Vernè E, Cochis A, Sorrentino R, Azzimonti BC, Prenesti E, Rimondini L and Ferraris S: Bioactive glasses functionalized with polyphenols: In vitro interactions with healthy and cancerous osteoblast cells. J Mater Sci. 52:2017. View Article : Google Scholar

36 

Cazzola M, Ferraris S, Boschetto F, Rondinella A, Marin E, Zhu W, Pezzotti G, Vernè E and Spriano S: Green tea polyphenols coupled with a bioactive titanium alloy surface: In vitro characterization of osteoinductive behavior through a KUSA A1 cell study. Int J Mol Sci. 19:E22552018. View Article : Google Scholar : PubMed/NCBI

37 

Tsuchiya S, Sugimoto K, Kamio H, Okabe K, Kuroda K, Okido M and Hibi H: Kaempferol-immobilized titanium dioxide promotes formation of new bone: Effects of loading methods on bone marrow stromal cell differentiation in vivo and in vitro. Int J Nanomedicine. 13:1665–1676. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Iviglia G, Bollati D, Cassinelli C, Torre E and Morra M: Dreamer: An Innovative Bone Filler Paste For The Treatment Of Periodontitis. In: Dreamer: An Innovative Bone Filler Paste For The Treatment Of Periodontitis. In: Front. Bioeng. Biotechnol. Conference Abstract: 10th World Biomaterials Congress; 2016

39 

Kallithraka S, Garcia-Viguera C, Bridle P and Bakker J: Survey of solvents for the extraction of grape seed phenolics. Phytochem Anal. 6:265–267. 1995. View Article : Google Scholar

40 

Pekić B, Kovač V, Alonso E and Revilla E: Study of the extraction of proanthocyanidins from grape seeds. Food Chem. 61:201–206. 1998. View Article : Google Scholar

41 

Shi J, Yu J, Pohorly J, Young JC, Bryan M and Wu Y: Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. J Food Agric Environ. 1:42–47. 2003.

42 

Neveu V, Perez-Jiménez J, Vos F, Crespy V, du Chaffaut L, Mennen L, Knox C, Eisner R, Cruz J, Wishart D and Scalbert A: Phenol-Explorer: An online comprehensive database on poly-phenol contents in foods. Database (Oxford). 2010. pp. bap0242010, View Article : Google Scholar

43 

Rothwell JA, Urpi-Sarda M, Boto-Ordoñez M, Knox C, Llorach R, Eisner R, Cruz J, Neveu V, Wishart D, Manach C, et al: Phenol-Explorer 20: A major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database (Oxford). 2012. pp. bas0312012, View Article : Google Scholar

44 

Rothwell JA, Pérez-Jiménez J, Neveu V, Medina-Remón A, M'hiri N, García-Lobato P, Manach C, Knox C, Eisner R, Wishart DS and Scalbert A: Phenol-Explorer 30: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database (Oxford). 2013. pp. bat0702013, View Article : Google Scholar

45 

Arumugam B, Balagangadharan K and Selvamurugan N: Syringic acid, a phenolic acid, promotes osteoblast differentiation by stimulation of Runx2 expression and targeting of Smad7 by miR-21 in mouse mesenchymal stem cells. J Cell Commun Signal. 12:561–573. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Gu Q, Cai Y, Huang C, Shi Q and Yang H: Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation. Pharmacogn Mag. 8:202–208. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Lin SY, Kang L, Wang CZ, Huang HH, Cheng TL, Huang HT, Lee MJ, Lin YS, Ho ML, Wang GJ and Chen CH: (-)-Epigallocatechin-3-gallate (EGCG) enhances osteogenic differentiation of human bone marrow mesenchymal stem cells. Molecules. 23:E32212018. View Article : Google Scholar : PubMed/NCBI

48 

Zhang J, Wu K, Xu T, Wu J, Li P, Wang H, Wu H and Wu G: Epigallocatechin-3-gallate enhances the osteoblastogenic differentiation of human adipose-derived stem cells. Drug Des Devel Ther. 13:1311–1321. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Song LH, Pan W, Yu YH, Quarles LD, Zhou HH and Xiao ZS: Resveratrol prevents CsA inhibition of proliferation and osteoblastic differentiation of mouse bone marrow-derived mesenchymal stem cells through an ER/NO/cGMP pathway. Toxicol In Vitro. 20:915–922. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Dai Z, Li Y, Quarles LD, Song T, Pan W, Zhou H and Xiao Z: Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine. 14:806–814. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Wittenauer J, MäcKle S, Sußmann D, Schweiggert-Weisz U and Carle R: Inhibitory effects of polyphenols from grape pomace extract on collagenase and elastase activity. Fitoterapia. 101:179–187. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Brand-Williams W, Cuvelier ME and Berset C: Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 28:25–30. 1995. View Article : Google Scholar

53 

Ribéreau-Gayon P and Stonestreet E: Determination of anthocyanins in red wine. Bull Soc Chim Fr. 9:2649–2652. 1965.In French.

54 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

55 

Hammer Ø, Harper D and Ryan P: Past: Paleontological statistics software package for education and data analysis. Paleontol Electron. 4:92001.

56 

Santos J, Oliveira MB, Ibáñez E and Herrero M: Phenolic profile evolution of different ready-to-eat baby-leaf vegetables during storage. J Chromatogr A. 1327:118–131. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Dolan JW: Gradient Elution, Part V: Baseline Drift Problems. LCGC North Am. 31:538–543. 2013.

58 

Snyder LR, Kirkland JJ and Dolan JW: Introduction to Modern Liquid Chromatography. 3rd Edition. Wiley; 2010

59 

Austermann K, Baecker N, Stehle P and Heer M: Putative effects of nutritive polyphenols on bone metabolism in vivo-evidence from human studies. Nutrients. 11:E8712019. View Article : Google Scholar : PubMed/NCBI

60 

Trzeciakiewicz A, Habauzit V and Horcajada MN: When nutrition interacts with osteoblast function: Molecular mechanisms of polyphenols. Nutr Res Rev. 22:68–81. 2009. View Article : Google Scholar : PubMed/NCBI

61 

Kojima K, Maki K, Tofani I, Kamitani Y and Kimura M: Effects of grape seed proanthocyanidins extract on rat mandibular condyle. J Musculoskelet Neuronal Interact. 4:301–307. 2004.PubMed/NCBI

62 

Huang JM, Bao Y, Xiang W, Jing XZ, Guo JC, Yao XD, Wang R and Guo FJ: Icariin Regulates the Bidirectional Differentiation of Bone Marrow Mesenchymal Stem Cells through Canonical Wnt Signaling Pathway. Evid Based Complement Alternat Med. 2017:80853252017. View Article : Google Scholar

63 

Ma HP, Ming LG, Ge BF, Zhai YK, Song P, Xian CJ and Chen KM: Icariin is more potent than genistein in promoting osteoblast differentiation and mineralization in vitro. J Cell Biochem. 112:916–923. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Hsieh TP, Sheu SY, Sun JS, Chen MH and Liu MH: Icariin isolated from Epimedium pubescens regulates osteoblasts anabolism through BMP-2, SMAD4, and Cbfa1 expression. Phytomedicine. 17:414–423. 2010. View Article : Google Scholar

65 

Trzeciakiewicz A, Habauzit V, Mercier S, Barron D, Urpi-Sarda M, Manach C, Offord E and Horcajada MN: Molecular mechanism of hesperetin-7-O-glucuronide, the main circulating metabolite of hesperidin, involved in osteoblast differentiation. J Agric Food Chem. 58:668–675. 2010. View Article : Google Scholar

66 

Sheng H, Zhang G, Wang X, Lee K, Yao X, Leung K, Li G and Qin L: Phytochemical molecule icariin stimulates osteogenic but inhibits adipogenic differentiation of mesenchymal stem cells. Bone. 43(Suppl 1): S42–S43. 2008. View Article : Google Scholar

67 

Wei Q, Zhang J, Hong G, Chen Z, Deng W, He W and Chen MH: Icariin promotes osteogenic differentiation of rat bone marrow stromal cells by activating the ERα-Wnt/β-catenin signaling pathway. Biomed Pharmacother. 84:931–939. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Tseng PC, Hou SM, Chen RJ, Peng HW, Hsieh CF, Kuo ML and Yen ML: Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res. 26:2552–2563. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Dai J, Li Y, Zhou H, Chen J, Chen M and Xiao Z: Genistein promotion of osteogenic differentiation through BMP2/SMAD5/RUNX2 signaling. Int J Biol Sci. 9:1089–1098. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Yang L, Takai H, Utsunomiya T, Li X, Li Z, Wang Z, Wang S, Sasaki Y, Yamamoto H and Ogata Y: Kaempferol stimulates bone sialoprotein gene transcription and new bone formation. J Cell Biochem. 110:1342–1355. 2010. View Article : Google Scholar : PubMed/NCBI

71 

Jung WW: Protective effect of apigenin against oxidative stress-induced damage in osteoblastic cells. Int J Mol Med. 33:1327–1334. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Ying X, Sun L, Chen X, Xu H, Guo X, Chen H, Hong J, Cheng S and Peng L: Silibinin promotes osteoblast differentiation of human bone marrow stromal cells via bone morphogenetic protein signaling. Eur J Pharmacol. 721:225–230. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Zhao L, Wang Y, Wang Z, Xu Z, Zhang Q and Yin M: Effects of dietary resveratrol on excess-iron-induced bone loss via antioxidative character. J Nutr Biochem. 26:1174–1182. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Kim JM, Lee SU, Kim YS, Min YK and Kim SH: Baicalein stimulates osteoblast differentiation via coordinating activation of MAP kinases and transcription factors. J Cell Biochem. 104:1906–1917. 2008.PubMed/NCBI

75 

Liu H, Zhong L, Zhang Y, Liu X and Li J: Rutin attenuates cerebral ischemia/reperfusion injury in ovariectomized rats via estrogen receptor-mediated BDNF-TrkB and NGF-TrkA signaling. Biochem Cell Biol. 96:672–681. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Abdel-Naim AB, Alghamdi AA, Algandaby MM, Al-Abbasi FA, Al-Abd AM, Eid BG, Abdallah HM and El-Halawany AM: Rutin isolated from Chrozophora tinctoria enhances bone cell proliferation and ossification markers. Oxid Med Cell Longev. 2018:51064692018. View Article : Google Scholar :

77 

Rassi CM, Lieberherr M, Chaumaz G, Pointillart A and Cournot G: Modulation of osteoclastogenesis in porcine bone marrow cultures by quercetin and rutin. Cell Tissue Res. 319:383–393. 2005. View Article : Google Scholar : PubMed/NCBI

78 

Zhou S, Turgeman G, Harris SE, Leitman DC, Komm BS, Bodine PV and Gazit D: Estrogens activate bone morphogenetic protein-2 gene transcription in mouse mesenchymal stem cells. Mol Endocrinol. 17:56–66. 2003. View Article : Google Scholar : PubMed/NCBI

79 

Hidalgo M, Sánchez-Moreno C and de Pascual-Teresa S: Flavonoid-flavonoid interaction and its effect on their antioxidant activity. Food Chem. 121:691–696. 2010. View Article : Google Scholar

80 

Galanakis CM, Kotanidis A, Dianellou M and Gekas V: Phenolic content and antioxidant capacity of Cypriot wines. Czech J Food Sci. 33:126–136. 2015. View Article : Google Scholar

81 

Gao J, Feng Z, Wang X, Zeng M, Liu J, Han S, Xu J, Chen L, Cao K, Long J, et al: SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress. Cell Death Differ. 25:229–240. 2018. View Article : Google Scholar :

82 

Giner M, Montoya MJ, Vázquez MA, Rios MJ, Moruno R, Miranda MJ and Pérez-Cano R: Modifying RANKL/OPG mRNA expression in differentiating and growing human primary osteoblasts. Horm Metab Res. 40:869–874. 2008. View Article : Google Scholar : PubMed/NCBI

83 

Shakibaei M, Shayan P, Busch F, Aldinger C, Buhrmann C, Lueders C and Mobasheri A: Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: Potential role of Runx2 deacetylation. PLoS One. 7:e357122012. View Article : Google Scholar : PubMed/NCBI

84 

Zhang JF, Li G, Meng CL, Dong Q, Chan CY, He ML, Leung PC, Zhang YO and Kung HF: Total flavonoids of Herba Epimedii improves osteogenesis and inhibits osteoclastogenesis of human mesenchymal stem cells. Phytomedicine. 16:521–529. 2009. View Article : Google Scholar : PubMed/NCBI

85 

Marini H, Minutoli L, Polito F, Bitto A, Altavilla D, Atteritano M, Gaudio A, Mazzaferro S, Frisina A, Frisina N, et al: OPG and sRANKL serum concentrations in osteopenic, postmenopausal women after 2-year genistein administration. J Bone Miner Res. 23:715–720. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Napimoga MH, Clemente-Napimoga JT, Macedo CG, Freitas FF, Stipp RN, Pinho-Ribeiro FA, Casagrande R and Verri WA Jr: Quercetin inhibits inflammatory bone resorption in a mouse periodontitis model. J Nat Prod. 76:2316–2321. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Papadaki M, Rinotas V, Violitzi F, Thireou T, Panayotou G, Samiotaki M and Douni E: New insights for RANKL as a proinflammatory modulator in modeled inflammatory arthritis. Front Immunol. 10:972019. View Article : Google Scholar : PubMed/NCBI

88 

Boyce BF, Xiu Y, Li J, Xing L and Yao Z: NF-κB-mediated regulation of osteoclastogenesis. Endocrinol Metab (Seoul). 30:35–44. 2015. View Article : Google Scholar

89 

Bu SY, Lerner M, Stoecker BJ, Boldrin E, Brackett DJ, Lucas EA and Smith BJ: Dried plum polyphenols inhibit osteoclastogenesis by downregulating NFATc1 and inflammatory mediators. Calcif Tissue Int. 82:475–488. 2008. View Article : Google Scholar : PubMed/NCBI

90 

Sheu SY, Tsai CC, Sun JS, Chen MH, Liu MH and Sun MG: Stimulatory effect of puerarin on bone formation through co-activation of nitric oxide and bone morphogenetic protein-2/mitogen-activated protein kinases pathways in mice. Chin Med J (Engl). 125:3646–3653. 2012.

91 

Mauney J and Volloch V: Adult human bone marrow stromal cells regulate expression of their MMPs and TIMPs in differentiation type-specific manner. Matrix Biol. 29:3–8. 2010. View Article : Google Scholar

92 

Kobayashi T, Kishimoto J, Ge Y, Jin W, Hudson DL, Ouahes N, Ehama R, Shinkai H and Burgeson RE: A novel mechanism of matrix metalloproteinase-9 gene expression implies a role for keratinization. EMBO Rep. 2:604–608. 2001. View Article : Google Scholar : PubMed/NCBI

93 

Philips N, Auler S, Hugo R and Gonzalez S: Beneficial regulation of matrix metalloproteinases for skin health. Enzyme Res. 2011:4272852011. View Article : Google Scholar : PubMed/NCBI

94 

Garlet GP, Martins W Jr, Fonseca BA, Ferreira BR and Silva JS: Matrix metalloproteinases, their physiological inhibitors and osteoclast factors are differentially regulated by the cytokine profile in human periodontal disease. J Clin Periodontol. 31:671–679. 2004. View Article : Google Scholar : PubMed/NCBI

95 

Lazăr L, Loghin A, Bud ES, Cerghizan D, Horváth E and Nagy EE: Cyclooxygenase-2 and matrix metalloproteinase-9 expressions correlate with tissue inflammation degree in periodontal disease. Rom J Morphol Embryol. 56:1441–1446. 2015.

96 

Sorsa T, Mäntylä P, Tervahartiala T, Pussinen PJ, Gamonal J and Hernandez M: MMP activation in diagnostics of periodontitis and systemic inflammation. J Clin Periodontol. 38:817–819. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Nissinen L and Kähäri VM: Matrix metalloproteinases in inflammation. Biochim Biophys Acta. 1840:2571–2580. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Almalki SG and Agrawal DK: Effects of matrix metalloproteinases on the fate of mesenchymal stem cells. Stem Cell Res Ther. 7:1292016. View Article : Google Scholar : PubMed/NCBI

99 

Yun JH, Pang EK, Kim CS, Yoo YJ, Cho KS, Chai JK, Kim CK and Choi SH: Inhibitory effects of green tea polyphenol (-)-epigallocatechin gallate on the expression of matrix metal-loproteinase-9 and on the formation of osteoclasts. J Periodontal Res. 39:300–307. 2004. View Article : Google Scholar : PubMed/NCBI

100 

Wang D, Wang Y, Xu S, Wang F, Wang B, Han K, Sun D and Li L: Epigallocatechin-3-gallate protects against hydrogen peroxide-induced inhibition of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Stem Cells Int. 2016:75327982016. View Article : Google Scholar : PubMed/NCBI

101 

Gómez-Florit M, Monjo M and Ramis JM: Quercitrin for periodontal regeneration: Effects on human gingival fibroblasts and mesenchymal stem cells. Sci Rep. 5:165932015. View Article : Google Scholar : PubMed/NCBI

102 

Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha MJ and Spencer JP: Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients. 2:1106–1131. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Torre E, Iviglia G, Cassinelli C, Morra M and Russo N: Polyphenols from grape pomace induce osteogenic differentiation in mesenchymal stem cells. Int J Mol Med 45: 1721-1734, 2020.
APA
Torre, E., Iviglia, G., Cassinelli, C., Morra, M., & Russo, N. (2020). Polyphenols from grape pomace induce osteogenic differentiation in mesenchymal stem cells. International Journal of Molecular Medicine, 45, 1721-1734. https://doi.org/10.3892/ijmm.2020.4556
MLA
Torre, E., Iviglia, G., Cassinelli, C., Morra, M., Russo, N."Polyphenols from grape pomace induce osteogenic differentiation in mesenchymal stem cells". International Journal of Molecular Medicine 45.6 (2020): 1721-1734.
Chicago
Torre, E., Iviglia, G., Cassinelli, C., Morra, M., Russo, N."Polyphenols from grape pomace induce osteogenic differentiation in mesenchymal stem cells". International Journal of Molecular Medicine 45, no. 6 (2020): 1721-1734. https://doi.org/10.3892/ijmm.2020.4556
Copy and paste a formatted citation
x
Spandidos Publications style
Torre E, Iviglia G, Cassinelli C, Morra M and Russo N: Polyphenols from grape pomace induce osteogenic differentiation in mesenchymal stem cells. Int J Mol Med 45: 1721-1734, 2020.
APA
Torre, E., Iviglia, G., Cassinelli, C., Morra, M., & Russo, N. (2020). Polyphenols from grape pomace induce osteogenic differentiation in mesenchymal stem cells. International Journal of Molecular Medicine, 45, 1721-1734. https://doi.org/10.3892/ijmm.2020.4556
MLA
Torre, E., Iviglia, G., Cassinelli, C., Morra, M., Russo, N."Polyphenols from grape pomace induce osteogenic differentiation in mesenchymal stem cells". International Journal of Molecular Medicine 45.6 (2020): 1721-1734.
Chicago
Torre, E., Iviglia, G., Cassinelli, C., Morra, M., Russo, N."Polyphenols from grape pomace induce osteogenic differentiation in mesenchymal stem cells". International Journal of Molecular Medicine 45, no. 6 (2020): 1721-1734. https://doi.org/10.3892/ijmm.2020.4556
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team