Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
July-2020 Volume 46 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2020 Volume 46 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Osteocyte TGFβ1‑Smad2/3 is positively associated with bone turnover parameters in subchondral bone of advanced osteoarthritis

  • Authors:
    • Guangming Dai
    • Haozhuo Xiao
    • Junyi Liao
    • Nian Zhou
    • Chen Zhao
    • Wei Xu
    • Wenjuan Xu
    • Xi Liang
    • Wei Huang
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China, Institute of Life and Science Research, Chongqing Medical University, Chongqing 400016, P.R. China
    Copyright: © Dai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 167-178
    |
    Published online on: April 14, 2020
       https://doi.org/10.3892/ijmm.2020.4576
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Subchondral sclerosis is considered the main characteristic of advanced osteoarthritis, in which bone remodeling mediated by transforming growth factor β (TGFβ) signaling plays an indispensable role in the metabolism. Osteocytes have been identified as pivotal regulators of bone metabolism, due to their mechanosensing and endocrine function. Therefore, the aim of the present study was to investigate the association between osteocyte TGFβ signal and subchondral sclerosis. Knee tibia plateau samples were collected from osteoarthritic patients and divided into three groups: The full cartilage, partial cartilage and full defect groups. Next, changes in osteocyte TGFβ signaling and subchondral bone structure underlying various types of cartilage erosion were detected. Bone mineral density (BMD) assay, histology [hematoxylin and eosin, Safranin‑O/Fast green, and tartrate resistant acid phosphatase (TRAP) staining], and reverse transcription‑quantitative PCR mainly detected structural alterations, osteogenic and osteoclastic activity in the cartilage and subchondral bone. The activation of the TGFβ signaling pathway in the subchondral bone was detected by immunohistochemistry and western blotting. The association between osteocyte TGFβ and the regulation of bone metabolism was analyzed by correlation analysis, and further proven in vitro. It was confirmed that the BMD of the subchondral bone increased and underwent sclerosis in the partial cartilage and full defect groups. Additional observation included the thinning of the area of calcified cartilage, in which a bone island formed locally, with subchondral bone plate thickening and increased trabecular bone volume. TRAP staining suggested an increase in bone resorption in subchondral underlying areas of the partial cartilage and full defect groups. Immunohistochemistry results confirmed the activation of osteocyte TGFβ in subchondral underlying areas with severe cartilage erosion. Moreover, osteocyte phosphorylated‑Smad2/3 was positively correlated with subchondral BMD, alkaline phosphatase and osteopontin mRNA expression, but it was negatively correlated with TRAP+ cells. Furthermore, it was confirmed in vitro that osteocyte TGFβ signaling could regulate the osteogenic and osteoclastic activity of the mesenchymal stem cells. This study illustrated that osteocyte TGFβ signaling is positively associated with the remodeling of subchondral bone in advanced osteoarthritis and provides a preliminary theoretical basis for further investigations of the role and mechanism of osteocyte TGFβ in subchondral of osteoarthritis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M, Bridgett L, Williams S, Guillemin F, Hill CL, et al: The global burden of hip and knee osteoarthritis: Estimates from the global burden of disease 2010 study. Ann Rheum Dis. 73:1323–1330. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Hugle T and Geurts J: What drives osteoarthritis?-synovial versus subchondral bone pathology. Rheumatology (Oxford). 56:1461–1471. 2017.

3 

Adebayo OO, Ko FC, Wan PT, Goldring SR, Goldring MB, Wright TM and van der Meulen MCH: Role of subchondral bone properties and changes in development of load-induced osteoarthritis in mice. Osteoarthritis Cartilage. 25:2108–2118. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Kwan Tat S, Lajeunesse D, Pelletier JP and Martel-Pelletier J: Targeting subchondral bone for treating osteoarthritis: What is the evidence? Best Pract Res Clin Rheumatol. 24:51–70. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J, Rodan GA and Duong LT: The role of subchondral bone remodeling in osteoarthritis: Reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum. 50:1193–1206. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Bertuglia A, Lacourt M, Girard C, Beauchamp G, Richard H and Laverty S: Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation. Osteoarthritis Cartilage. 24:555–566. 2016. View Article : Google Scholar

7 

Bianco D, Todorov A, Čengić T, Pagenstert G, Schären S, Netzer C, Hügle T and Geurts J: Alterations of subchondral bone progenitor cells in human knee and hip osteoarthritis lead to a bone sclerosis phenotype. Int J Mol Sci. 19:E4752018. View Article : Google Scholar : PubMed/NCBI

8 

Zhao W, Wang T, Luo Q, Chen Y, Leung VY, Wen C, Shah MF, Pan H, Chiu K, Cao X and Lu WW: Cartilage degeneration and excessive subchondral bone formation in spontaneous osteoarthritis involves altered TGF-β signaling. J Orthop Res. 34:763–770. 2016. View Article : Google Scholar

9 

Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, et al: Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 19:704–712. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Zhen G and Cao X: Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol Sci. 35:227–236. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Cui Z, Crane J, Xie H, Jin X, Zhen G, Li C, Xie L, Wang L, Bian Q, Qiu T, et al: Halofuginone attenuates osteoarthritis by inhibition of TGF-beta activity and H-type vessel formation in subchondral bone. Ann Rheum Dis. 75:1714–1721. 2016. View Article : Google Scholar

12 

Xie L, Tintani F, Wang X, Li F, Zhen G, Qiu T, Wan M, Crane J, Chen Q and Cao X: Systemic neutralization of TGF-β attenuates osteoarthritis. Ann N Y Acad Sci. 1376:53–64. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Aref-Eshghi E, Liu M, Harper PE, Doré J, Martin G, Furey A, Green R, Rahman P and Zhai G: Overexpression of MMP13 in human osteoarthritic cartilage is associated with the SMAD-independent TGF-β signalling pathway. Arthritis Res Ther. 17:2642015. View Article : Google Scholar

14 

van de Laar IM, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JM, Hoedemaekers YM, Willemsen R, Severijnen LA, Venselaar H, et al: Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet. 43:121–126. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Serra R, Johnson M, Filvaroff EH, LaBorde J, Sheehan DM, Derynck R and Moses HL: Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol. 139:541–552. 1997. View Article : Google Scholar : PubMed/NCBI

16 

Shen J, Li J, Wang B, Jin H, Wang M, Zhang Y, Yang Y, Im HJ, O'Keefe R and Chen D: Deletion of the transforming growth factor beta receptor type II gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice. Arthritis Rheum. 65:3107–3119. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Bakker AC, van de Loo FA, van Beuningen HM, Sime P, van Lent PL, van der Kraan PM, Richards CD and van den Berg WB: Overexpression of active TGF-beta-1 in the murine knee joint: Evidence for synovial-layer-dependent chondro-osteophyte formation. Osteoarthritis Cartilage. 9:128–136. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A and Weinbaum S: Mechanosensation and transduction in osteocytes. Bone. 54:182–190. 2013. View Article : Google Scholar

19 

Chen H, Senda T and Kubo KY: The osteocyte plays multiple roles in bone remodeling and mineral homeostasis. Med Mol Morphol. 48:61–68. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Nguyen J, Tang SY, Nguyen D and Alliston T: Load regulates bone formation and Sclerostin expression through a TGFβ-dependent mechanism. PLoS One. 8:e538132013. View Article : Google Scholar

21 

Jaiprakash A, Prasadam I, Feng JQ, Liu Y, Crawford R and Xiao Y: Phenotypic characterization of osteoarthritic osteocytes from the sclerotic zones: A possible pathological role in subchondral bone sclerosis. Int J Biol Sci. 8:406–417. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Prasadam I, Farnaghi S, Feng JQ, Gu W, Perry S, Crawford R and Xiao Y: Impact of extracellular matrix derived from osteoarthritis subchondral bone osteoblasts on osteocytes role of integrinβ1 and focal adhesion kinase signaling cues. Arthritis Res Ther. 15:R1502013. View Article : Google Scholar

23 

Dolan EB, Haugh MG, Voisin MC, Tallon D and McNamara LM: Thermally induced osteocyte damage initiates a remodelling signaling cascade. PLoS One. 10:e01196522015. View Article : Google Scholar : PubMed/NCBI

24 

Meo Burt P, Xiao L, Dealy C, Fisher MC and Hurley MM: FGF2 high molecular weight isoforms contribute to osteoarthropathy in male mice. Endocrinology. 157:4602–4614. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Zhao C, Jiang W, Zhou N, Liao J, Yang M, Hu N, Liang X, Xu W, Chen H, Liu W, et al: Sox9 augments BMP2-induced chondro-genic differentiation by downregulating Smad7 in mesenchymal stem cells (MSCs). Genes Dis. 4:229–239. 2017. View Article : Google Scholar

26 

Dai Guangming RL, Chen H, Liu W, Chen Y, He X, Liu W, Tu X and Huang W: Down-regulation of osteoeytic TGFβ/Smad4 inhibits the osteoblastic and osteoelastic differentiation in mouse BMSCs. Basic Clin Med. 37:786–791. 2017.

27 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

28 

Stern AR, Stern M, Van Dyke ME, Jähn K, Prideaux M and Bonewald LF: Isolation and culture of primary osteocytes from the long bones of skeletally mature and aged mice. BioTechniques. 52:361–373. 2012.PubMed/NCBI

29 

Boregowda SV, Krishnappa V and Phinney DG: Isolation of mouse bone marrow mesenchymal stem cells. Methods Mol Biol. 1416:205–223. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Yatabe T, Mochizuki S, Takizawa M, Chijiiwa M, Okada A, Kimura T, Fujita Y, Matsumoto H, Toyama Y and Okada Y: Hyaluronan inhibits expression of ADAMTS4 (aggrecanase-1) in human osteoarthritic chondrocytes. Ann Rheum Dis. 68:1051–1058. 2009. View Article : Google Scholar :

31 

Song RH, Tortorella MD, Malfait AM, Alston JT, Yang Z, Arner EC and Griggs DW: Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum. 56:575–585. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Wu L, Guo H, Sun K, Zhao X, Ma T and Jin Q: Sclerostin expression in the subchondral bone of patients with knee osteoarthritis. Int J Mol Med. 38:1395–1402. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Wood CL, Pajevic PD and Gooi JH: Osteocyte secreted factors inhibit skeletal muscle differentiation. Bone Rep. 6:74–80. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, et al: Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 38:1310–1315. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D'Agostin D, Kurahara C, Gao Y, Cao J, Gong J, et al: Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 23:860–869. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Rosser J and Bonewald LF: Studying osteocyte function using the cell lines MLO-Y4 and MLO-A5. Methods Mol Biol. 816:67–81. 2012. View Article : Google Scholar

37 

Kazakia GJ, Kuo D, Schooler J, Siddiqui S, Shanbhag S, Bernstein G, Horvai A, Majumdar S, Ries M and Li X: Bone and cartilage demonstrate changes localized to bone marrow edema-like lesions within osteoarthritic knees. Osteoarthritis Cartilage. 21:94–101. 2013. View Article : Google Scholar :

38 

Siebelt M, Waarsing JH, Groen HC, Müller C, Koelewijn SJ, de Blois E, Verhaar JA, de Jong M and Weinans H: Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression. Bone. 66:163–170. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Nakasa T, Ishikawa M, Takada T, Miyaki S and Ochi M: Attenuation of cartilage degeneration by calcitonin gene-related paptide receptor antagonist via inhibition of subchondral bone sclerosis in osteoarthritis mice. J Orthop Res. 34:1177–1184. 2016. View Article : Google Scholar

40 

Xie L, Ding F, Jiao J, Kan W and Wang J: Total Hip and Knee arthroplasty in a patient with osteopetrosis: A case report and review of the literature. BMC Musculoskelet Disord. 16:2592015. View Article : Google Scholar : PubMed/NCBI

41 

Remst DF, Blom AB, Vitters EL, Bank RA, van den Berg WB, Blaney Davidson EN and van der Kraan PM: Gene expression analysis of murine and human osteoarthritis synovium reveals elevation of transforming growth factor beta-responsive genes in osteoarthritis-related fibrosis. Arthritis Rheumatol. 66:647–656. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Li ZC, Dai LY, Jiang LS and Qiu S: Difference in subchondral cancellous bone between postmenopausal women with hip osteoarthritis and osteoporotic fracture: Implication for fatigue microdamage, bone microarchitecture, and biomechanical properties. Arthritis Rheum. 64:3955–3962. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Hinz B: The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship. Matrix Biol. 47:54–65. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, et al: TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 15:757–765. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Zarei A, Hulley PA, Sabokbar A and Javaid MK: Co-expression of DKK-1 and sclerostin in subchondral bone of the proximal femoral heads from osteoarthritic hips. Calcif Tissue Int. 100:609–618. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Bouaziz W, Funck-Brentano T, Lin H, Marty C, Ea HK, Hay E and Cohen-Solal M: Loss of sclerostin promotes osteoarthritis in mice via β-catenin-dependent and -independent Wnt pathways. Arthritis Res Ther. 17:242015. View Article : Google Scholar

47 

Loots GG, Keller H, Leupin O, Murugesh D, Collette NM and Genetos DC: TGF-β regulates sclerostin expression via the ECR5 enhancer. Bone. 50:663–669. 2012. View Article : Google Scholar

48 

Li C, Wang W, Xie L, Luo X, Cao X and Wan M: Lipoprotein receptor-related protein 6 is required for parathyroid hormone-induced Sost suppression. Ann N Y Acad Sci. 1364:62–73. 2016. View Article : Google Scholar

49 

Ansari N, Ho PW, Crimeen-Irwin B, Poulton IJ, Brunt AR, Forwood MR, Divieti Pajevic P, Gooi JH, Martin TJ and Sims NA: Autocrine and paracrine regulation of the murine skeleton by osteocyte-derived parathyroid hormone-related protein. J Bone Miner Res. 33:137–153. 2018. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Dai G, Xiao H, Liao J, Zhou N, Zhao C, Xu W, Xu W, Liang X and Huang W: Osteocyte TGFβ1‑Smad2/3 is positively associated with bone turnover parameters in subchondral bone of advanced osteoarthritis. Int J Mol Med 46: 167-178, 2020.
APA
Dai, G., Xiao, H., Liao, J., Zhou, N., Zhao, C., Xu, W. ... Huang, W. (2020). Osteocyte TGFβ1‑Smad2/3 is positively associated with bone turnover parameters in subchondral bone of advanced osteoarthritis. International Journal of Molecular Medicine, 46, 167-178. https://doi.org/10.3892/ijmm.2020.4576
MLA
Dai, G., Xiao, H., Liao, J., Zhou, N., Zhao, C., Xu, W., Xu, W., Liang, X., Huang, W."Osteocyte TGFβ1‑Smad2/3 is positively associated with bone turnover parameters in subchondral bone of advanced osteoarthritis". International Journal of Molecular Medicine 46.1 (2020): 167-178.
Chicago
Dai, G., Xiao, H., Liao, J., Zhou, N., Zhao, C., Xu, W., Xu, W., Liang, X., Huang, W."Osteocyte TGFβ1‑Smad2/3 is positively associated with bone turnover parameters in subchondral bone of advanced osteoarthritis". International Journal of Molecular Medicine 46, no. 1 (2020): 167-178. https://doi.org/10.3892/ijmm.2020.4576
Copy and paste a formatted citation
x
Spandidos Publications style
Dai G, Xiao H, Liao J, Zhou N, Zhao C, Xu W, Xu W, Liang X and Huang W: Osteocyte TGFβ1‑Smad2/3 is positively associated with bone turnover parameters in subchondral bone of advanced osteoarthritis. Int J Mol Med 46: 167-178, 2020.
APA
Dai, G., Xiao, H., Liao, J., Zhou, N., Zhao, C., Xu, W. ... Huang, W. (2020). Osteocyte TGFβ1‑Smad2/3 is positively associated with bone turnover parameters in subchondral bone of advanced osteoarthritis. International Journal of Molecular Medicine, 46, 167-178. https://doi.org/10.3892/ijmm.2020.4576
MLA
Dai, G., Xiao, H., Liao, J., Zhou, N., Zhao, C., Xu, W., Xu, W., Liang, X., Huang, W."Osteocyte TGFβ1‑Smad2/3 is positively associated with bone turnover parameters in subchondral bone of advanced osteoarthritis". International Journal of Molecular Medicine 46.1 (2020): 167-178.
Chicago
Dai, G., Xiao, H., Liao, J., Zhou, N., Zhao, C., Xu, W., Xu, W., Liang, X., Huang, W."Osteocyte TGFβ1‑Smad2/3 is positively associated with bone turnover parameters in subchondral bone of advanced osteoarthritis". International Journal of Molecular Medicine 46, no. 1 (2020): 167-178. https://doi.org/10.3892/ijmm.2020.4576
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team