Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
July-2020 Volume 46 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2020 Volume 46 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Large intestine embryogenesis: Molecular pathways and related disorders (Review)

  • Authors:
    • Antonios Kostouros
    • Ioannis Koliarakis
    • Konstantinos Natsis
    • Demetrios A. Spandidos
    • Aristidis Tsatsakis
    • John Tsiaoussis
  • View Affiliations / Copyright

    Affiliations: Laboratory of Anatomy‑Histology‑Embryology, Medical School, University of Crete, 71110 Heraklion, Greece, Department of Anatomy and Surgical Anatomy, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece, Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
  • Pages: 27-57
    |
    Published online on: April 21, 2020
       https://doi.org/10.3892/ijmm.2020.4583
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The large intestine, part of the gastrointestinal tract (GI), is composed of all three germ layers, namely the endoderm, the mesoderm and the ectoderm, forming the epithelium, the smooth muscle layers and the enteric nervous system, respectively. Since gastrulation, these layers develop simultaneously during embryogenesis, signaling to each other continuously until adult age. Two invaginations, the anterior intestinal portal (AIP) and the caudal/posterior intestinal portal (CIP), elongate and fuse, creating the primitive gut tube, which is then patterned along the antero‑posterior (AP) axis and the radial (RAD) axis in the context of left‑right (LR) asymmetry. These events lead to the formation of three distinct regions, the foregut, midgut and hindgut. All the above‑mentioned phenomena are under strict control from various molecular pathways, which are critical for the normal intestinal development and function. Specifically, the intestinal epithelium constitutes a constantly developing tissue, deriving from the progenitor stem cells at the bottom of the intestinal crypt. Epithelial differentiation strongly depends on the crosstalk with the adjacent mesoderm. Major molecular pathways that are implicated in the embryogenesis of the large intestine include the canonical and non‑canonical wingless‑related integration site (Wnt), bone morphogenetic protein (BMP), Notch and hedgehog systems. The aberrant regulation of these pathways inevitably leads to several intestinal malformation syndromes, such as atresia, stenosis, or agangliosis. Novel theories, involving the regulation and homeostasis of intestinal stem cells, suggest an embryological basis for the pathogenesis of colorectal cancer (CRC). Thus, the present review article summarizes the diverse roles of these molecular factors in intestinal embryogenesis and related disorders.
View Figures

Figure 1

Figure 2

View References

1 

Spence JR, Lauf R and Shroyer NF: Vertebrate intestinal endoderm development. Dev Dyn. 240:501–520. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Roberts DJ: Molecular mechanisms of development of the gastrointestinal tract. Dev Dyn. 219:109–120. 2000. View Article : Google Scholar : PubMed/NCBI

3 

De Santa Barbara P, Van den Brink GR and Roberts DJ: Molecular etiology of gut malformations and diseases. Am J Med Genet. 115:221–230. 2002. View Article : Google Scholar : PubMed/NCBI

4 

Kelleher FC, Fennelly D and Rafferty M: Common critical pathways in embryogenesis and cancer. Acta Oncol. 45:375–388. 2006. View Article : Google Scholar : PubMed/NCBI

5 

Park JJ, Wolff BG, Tollefson MK, Walsh EE and Larson DR: Meckel diverticulum: The mayo clinic experience with 1476 patients (1950-2002). Ann Surg. 241:529–533. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Kluth D, Jaeschke-Melli S and Fiegel H: The embryology of gut rotation. Semin Pediatr Surg. 12:275–279. 2003. View Article : Google Scholar : PubMed/NCBI

7 

Kluth D, Fiegel HC and Metzger R: Embryology of the hindgut. Semin Pediatr Surg. 20:152–160. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Lee JM and Kim NK: Essential anatomy of the anorectum for colorectal surgeons focused on the gross anatomy and histologic findings. Ann Coloproctol. 34:59–71. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Uesaka T, Young HM, Pachnis V and Enomoto H: Development of the intrinsic and extrinsic innervation of the gut. Dev Biol. 417:158–167. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Bayha E, Jørgensen MC, Serup P and Grapin-Botton A: Retinoic acid signaling organizes endodermal organ specification along the entire antero-posterior axis. PLoS One. 4:e58452009. View Article : Google Scholar : PubMed/NCBI

11 

Bayliss WM and Starling EH: The movements and innervation of the small intestine. J Physiol. 24:99–143. 1899. View Article : Google Scholar : PubMed/NCBI

12 

Timmermans JP, Hens J and Adriaensen D: Outer submucous plexus An intrinsic nerve network involved in both secretory and motility processes in the intestine of large mammals and humans. Anat Rec. 262:71–78. 2001. View Article : Google Scholar : PubMed/NCBI

13 

Shen M: Nodal signaling: Developmental roles and regulation. Development. 134:1023–1034. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR and Bradley A: Requirement for Wnt3 in vertebrate axis formation. Nat Genet. 22:361–365. 1999. View Article : Google Scholar : PubMed/NCBI

15 

Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K and Kemler R: Lack of beta-catenin affects mouse development at gastrulation. Development. 121:3529–3537. 1995.PubMed/NCBI

16 

Lowe LA, Yamada S and Kuehn MR: Genetic dissection of nodal function in patterning the mouse embryo. Development. 128:1831–1843. 2001.PubMed/NCBI

17 

Vincent SD, Dunn NR, Hayashi S, Norris DP and Robertson EJ: Cell fate decisions within the mouse organizer are governed by graded Nodal signals. Genes Dev. 17:1646–1662. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Weng W and Stemple DL: Nodal signaling and vertebrate germ layer formation. Birth Defects Res C Embryo Today. 69:325–332. 2003. View Article : Google Scholar

19 

Tada S, Era T, Furusawa C, Sakurai H and Nishikawa S, Kinoshita M, Nakao K, Chiba T and Nishikawa S: Characterization of mesendoderm: A diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development. 132:4363–4374. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Horb ME and Thomsen GH: A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation. Development. 124:1689–1698. 1997.PubMed/NCBI

21 

Hart AH, Hartley L, Sourris K, Stadler ES, Li R, Stanley EG, Tam PP, Elefanty AG and Robb L: Mixl1 is required for axial mesendoderm morphogenesis and patterning in the murine embryo. Development. 129:3597–3608. 2002.PubMed/NCBI

22 

Maduro MF, Meneghini MD, Bowerman B, Broitman-Maduro G and Rothman JH: Restriction of mesendoderm to a single blastomere by the combined action of SKN-1 and a GSK-3beta homolog is mediated by MED-1 and -2 in C. elegans. Mol Cell. 7:475–485. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Kanai-Azuma M, Kanai Y, Gad JM, Tajima Y, Taya C, Kurohmaru M, Sanai Y, Yonekawa H, Yazaki K, Tam PP and Hayashi Y: Depletion of definitive gut endoderm in Sox17-null mutant mice. Development. 129:2367–2379. 2002.PubMed/NCBI

24 

Zhu J, Fukushige T, McGhee JD and Rothman JH: Reprogramming of early embryonic blastomeres into endodermal progenitors by a Caenorhabditis elegans GATA factor. Genes Dev. 12:3809–3814. 1998. View Article : Google Scholar : PubMed/NCBI

25 

Smith JC, Price BM, Van Nimmen K and Huylebroeck D: Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature. 345:729–731. 1990. View Article : Google Scholar : PubMed/NCBI

26 

Henry GL, Brivanlou IH, Kessler DS, Hemmati-Brivanlou A and Melton DA: TGF-beta signals and a pattern in Xenopus laevis endodermal development. Development. 122:1007–1015. 1996.PubMed/NCBI

27 

Lawson A and Schoenwolf GC: Epiblast and primitive-streak origins of the endoderm in the gastrulating chick embryo. Development. 130:3491–3501. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Kimura W, Yasugi S, Stern CD and Fukuda K: Fate and plasticity of the endoderm in the early chick embryo. Dev Biol. 289:283–295. 2006. View Article : Google Scholar

29 

Franklin V, Khoo PL, Bildsoe H, Wong N, Lewis S and Tam PP: Regionalisation of the endoderm progenitors and morphogenesis of the gut portals of the mouse embryo. Mech Dev. 125:587–600. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Zorn AM and Wells JM: Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 25:221–251. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Kwon GS, Viotti M and Hadjantonakis AK: The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. Dev Cell. 15:509–520. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Tam PP, Khoo PL, Wong N, Tsang TE and Behringer RR: Regionalization of cell fates and cell movement in the endoderm of the mouse gastrula and the impact of loss of Lhx1(Lim1) function. Dev Biol. 274:171–187. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Lawson KA and Pedersen RA: Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse. Development. 101:627–652. 1987.PubMed/NCBI

34 

Lewis SL and Tam PP: Definitive endoderm of the mouse embryo: Formation, cell fates, and morphogenetic function. Dev Dyn. 235:2315–2329. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Reed RA, Womble MA, Dush MK, Tull RR, Bloom SK, Morckel AR, Devlin EW and Nascone-Yoder NM: Morphogenesis of the primitive gut tube is generated by Rho/ROCK/myosin II-mediated endoderm rearrangements. Dev Dyn. 238:3111–3125. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Molkentin JD, Lin Q, Duncan SA and Olson EN: Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11:1061–1072. 1997. View Article : Google Scholar : PubMed/NCBI

37 

Garcia-Garcia MJ, Shibata M and Anderson KV: Chato, a KRAB zinc-finger protein, regulates convergent extension in the mouse embryo. Development. 135:3053–3062. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Wen J, Chiang YJ, Gao C, Xue H, Xu J, Ning Y, Hodes RJ, Gao X and Chen YG: Loss of Dact1 disrupts planar cell polarity signaling by altering dishevelled activity and leads to posterior malformation in mice. J Biol Chem. 285:11023–11030. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Koike T and Yasugi S: In vitro analysis of mesenchymal influences on the differentiation of stomach epithelial cells of the chicken embryo. Differentiation. 65:13–25. 1999. View Article : Google Scholar : PubMed/NCBI

40 

Sumiya M: Differentiation of the digestive tract epithelium of the chick embryo cultured in vitro enveloped in a fragment of the vitelline membrane, in the absence of mesenchyme. Roux Arch Dev Biol. 179:1–17. 1976. View Article : Google Scholar

41 

Aufderheide E and Ekblom P: Tenascin during gut development: Appearance in the mesenchyme, shift in molecular forms, and dependence on epithelial-mesenchymal interactions. J Cell Biol. 107:2341–2349. 1988. View Article : Google Scholar : PubMed/NCBI

42 

Kedinger M, Simon-Assmann P, Bouziges F, Arnold C, Alexandre E and Haffen K: Smooth muscle actin expression during rat gut development and induction in fetal skin fibro-blastic cells associated with intestinal embryonic epithelium. Differentiation. 43:87–97. 1990. View Article : Google Scholar : PubMed/NCBI

43 

Yasugi S, Takeda H and Fukuda K: Early Determination of developmental fate in presumptive intestinal endoderm of the chicken embryo. Dev Growth Differ. 33:235–241. 1991. View Article : Google Scholar

44 

Roberts DJ, Smith DM, Goff DJ and Tabin CJ: Epithelial-mesenchymal signaling during the regionalization of the chick gut. Development. 125:2791–2801. 1998.PubMed/NCBI

45 

Riddle RD, Johnson RL, Laufer E and Tabin C: Sonic hedgehog mediates the polarizing activity of the ZPA. Cell. 75:1401–1416. 1993. View Article : Google Scholar : PubMed/NCBI

46 

Fan CM and Tessier-Lavigne M: Patterning of mammalian somites by surface ectoderm and notochord: Evidence for sclerotome induction by a hedgehog homolog. Cell. 79:1175–1186. 1994. View Article : Google Scholar : PubMed/NCBI

47 

Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Ruiz i Altaba A, Tanabe Y, Placzek M, Edlund T, Jessell TM, et al: Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell. 76:761–775. 1994. View Article : Google Scholar : PubMed/NCBI

48 

Narita T, Ishii Y, Nohno T, Noji S and Yasugi S: Sonic hedgehog expression in developing chicken digestive organs is regulated by epithelial-mesenchymal interactions. Dev Growth Differ. 40:67–74. 1998. View Article : Google Scholar : PubMed/NCBI

49 

Roberts DJ, Johnson RL, Burke AC, Nelson CE, Morgan BA and Tabin C: Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development. 121:3163–3174. 1995.PubMed/NCBI

50 

Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H and Beachy PA: Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature. 383:407–413. 1996. View Article : Google Scholar : PubMed/NCBI

51 

Pepicelli CV, Lewis PM and McMahon AP: Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol. 8:1083–1086. 1998. View Article : Google Scholar : PubMed/NCBI

52 

Sukegawa A, Narita T, Kameda T, Saitoh K, Nohno T, Iba H, Yasugi S and Fukuda K: The concentric structure of the developing gut is regulated by Sonic hedgehog derived from endodermal epithelium. Development. 127:1971–1980. 2000.PubMed/NCBI

53 

Pisano JM, Colón-Hastings F and Birren SJ: Postmigratory enteric and sympathetic neural precursors share common, developmentally regulated, responses to BMP2. Dev Biol. 227:1–11. 2000. View Article : Google Scholar : PubMed/NCBI

54 

Chalazonitis A: Neurotrophin-3 in the development of the enteric nervous system. Prog Brain Res. 146:243–263. 2004. View Article : Google Scholar : PubMed/NCBI

55 

Chawengsaksophak K, de Graaff W, Rossant J, Deschamps J and Beck F: Cdx2 is essential for axial elongation in mouse development. Proc Natl Acad Sci USA. 101:7641–7645. 2004. View Article : Google Scholar : PubMed/NCBI

56 

Kinkel MD, Eames SC, Alonzo MR and Prince VE: Cdx4 is required in the endoderm to localize the pancreas and limit beta-cell number. Development. 135:919–929. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Sherwood RI, Chen TY and Melton DA: Transcriptional dynamics of endodermal organ formation. Dev Dyn. 238:29–42. 2009. View Article : Google Scholar

58 

Wells JM and Melton DA: Vertebrate endoderm development. Annu Rev Cell Dev Biol. 15:393–410. 1999. View Article : Google Scholar : PubMed/NCBI

59 

Tiso N, Filippi A, Pauls S, Bortolussi M and Argenton F: BMP signalling regulates anteroposterior endoderm patterning in zebrafish. Mech Dev. 118:29–37. 2002. View Article : Google Scholar : PubMed/NCBI

60 

Grapin-Botton A: Antero-posterior patterning of the vertebrate digestive tract: 40 years after Nicole Le Douarin's PhD thesis. Int J Dev Biol. 49:335–347. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Marikawa Y: Wnt/beta-catenin signaling and body plan formation in mouse embryos. Semin Cell Dev Biol. 17:175–184. 2006. View Article : Google Scholar : PubMed/NCBI

62 

Johannesson M, Ståhlberg A, Ameri J, Sand FW, Norrman K and Semb H: FGF4 and retinoic acid direct differentiation of hESCs into PDX1-expressing foregut endoderm in a time- and concentration-dependent manner. PLoS One. 4:e47942009. View Article : Google Scholar : PubMed/NCBI

63 

Ameri J, Ståhlberg A, Pedersen J, Johansson JK, Johannesson MM, Artner I and Semb H: FGF2 specifies hESC- derived definitive endoderm into foregut/midgut cell lineages in a concentration-dependent manner. Stem Cells. 28:45–56. 2010.

64 

Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM, et al: Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 470:105–109. 2011. View Article : Google Scholar :

65 

Geske MJ, Zhang X, Patel KK, Ornitz DM and Stappenbeck TS: Fgf9 signaling regulates small intestinal elongation and mesen-chymal development. Development. 135:2959–2968. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Zhang X, Stappenbeck TS, White AC, Lavine KJ, Gordon JI and Ornitz DM: Reciprocal epithelial-mesenchymal FGF signaling is required for cecal development. Development. 133:173–180. 2006. View Article : Google Scholar

67 

Burns RC, Fairbanks TJ, Sala F, De Langhe S, Mailleux A, Thiery JP, Dickson C, Itoh N, Warburton D, Anderson KD and Bellusci S: Requirement for fibroblast growth factor 10 or fibroblast growth factor receptor 2-IIIb signaling for cecal development in mouse. Dev Biol. 265:61–74. 2004. View Article : Google Scholar

68 

Sala FG, Curtis JL, Veltmaat JM, Del Moral PM, Le LT, Fairbanks TJ, Warburton D, Ford H, Wang K, Burns RC and Bellusci S: Fibroblast growth factor 10 is required for survival and proliferation but not differentiation of intestinal epithelial progenitor cells during murine colon development. Dev Biol. 299:373–385. 2006. View Article : Google Scholar : PubMed/NCBI

69 

Grapin-Botton A and Melton DA: Endoderm development: From patterning to organogenesis. Trends Genet. 16:124–130. 2000. View Article : Google Scholar : PubMed/NCBI

70 

Gao N, White P and Kaestner KH: Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev Cell. 16:588–599. 2009. View Article : Google Scholar : PubMed/NCBI

71 

Grainger S, Savory JG and Lohnes D: Cdx2 regulates patterning of the intestinal epithelium. Dev Biol. 339:155–165. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Beck F and Stringer EJ: The role of Cdx genes in the gut and in axial development. Biochem Soc Trans. 38:353–357. 2010. View Article : Google Scholar : PubMed/NCBI

73 

Allan D, Houle M, Bouchard N, Meyer BI, Gruss P and Lohnes D: RARgamma and Cdx1 interactions in vertebral patterning. Dev Biol. 240:46–60. 2001. View Article : Google Scholar

74 

Ikeya M and Takada S: Wnt-3a is required for somite specification along the anteroposterior axis of the mouse embryo and for regulation of cdx-1 expression. Mech Dev. 103:27–33. 2001. View Article : Google Scholar : PubMed/NCBI

75 

Keenan ID, Sharrard RM and Isaacs HV: FGF signal transduction and the regulation of Cdx gene expression. Dev Biol. 299:478–488. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Gregorieff A, Grosschedl R and Clevers H: Hindgut defects and transformation of the gastro-intestinal tract in Tcf4(-/-)/Tcf1(-/-) embryos. EMBO J. 23:1825–1833. 2004. View Article : Google Scholar : PubMed/NCBI

77 

Yokouchi Y, Sakiyama J and Kuroiwa A: Coordinated expression of Abd-B subfamily genes of the HoxA cluster in the developing digestive tract of chick embryo. Dev Biol. 169:76–89. 1995. View Article : Google Scholar : PubMed/NCBI

78 

Boulet AM and Capecchi MR: Targeted disruption of hoxc-4 causes esophageal defects and vertebral transformations. Dev Biol. 177:232–249. 1996. View Article : Google Scholar : PubMed/NCBI

79 

Warot X, Fromental-Ramain C, Fraulob V, Chambon P and Dollé P: Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development. 124:4781–4791. 1997.

80 

Zacchetti G, Duboule D and Zakany J: Hox gene function in vertebrate gut morphogenesis: The case of the caecum. Development. 134:3967–3973. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Mortlock DP and Innis JW: Mutation of HOXA13 in hand-foot-genital syndrome. Nat Genet. 15:179–180. 1997. View Article : Google Scholar : PubMed/NCBI

82 

Huelsken J and Birchmeier W: New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev. 11:547–553. 2001. View Article : Google Scholar : PubMed/NCBI

83 

Theodosiou NA and Tabin CJ: Wnt signaling during development of the gastrointestinal tract. Dev Biol. 259:258–271. 2003. View Article : Google Scholar : PubMed/NCBI

84 

McBride HJ, Fatke B and Fraser SE: Wnt signaling components in the chicken intestinal tract. Dev Biol. 256:18–33. 2003. View Article : Google Scholar : PubMed/NCBI

85 

Zhang X, Chen Y, Ye Y, Wang J, Wang H, Yuan G, Lin Z, Wu Y, Zhang Y and Lin X: Wnt signaling promotes hindgut fate commitment through regulating multi-lineage genes during hESC differentiation. Cell Signal. 29:12–22. 2017. View Article : Google Scholar

86 

Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R and Birchmeier W: Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 382:638–642. 1996. View Article : Google Scholar : PubMed/NCBI

87 

Hart M, Concordet JP, Lassot I, Albert I, del los Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R and Polakis P: The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol. 9:207–210. 1999. View Article : Google Scholar : PubMed/NCBI

88 

Hart MJ, de los Santos R, Albert IN, Rubinfeld B and Polakis P: Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol. 8:573–581. 1998. View Article : Google Scholar : PubMed/NCBI

89 

Noordermeer J, Klingensmith J, Perrimon N and Nusse R: Dishevelled and armadillo act in the wingless signalling pathway in Drosophila. Nature. 367:80–83. 1994. View Article : Google Scholar : PubMed/NCBI

90 

Joo JH, Taxter TJ, Munguba GC, Kim YH, Dhaduvai K, Dunn NW, Degan WJ, Oh SP and Sugrue SP: Pinin modulates expression of an intestinal homeobox gene, Cdx2, and plays an essential role for small intestinal morphogenesis. Dev Biol. 345:191–203. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Polakis P: Wnt signaling and cancer. Genes Dev. 14:1837–1851. 2000.PubMed/NCBI

92 

van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L and Grosschedl R: Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 8:2691–2703. 1994. View Article : Google Scholar : PubMed/NCBI

93 

Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R, Logtenberg T and Clevers H: Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Science. 285:1923–1926. 1999. View Article : Google Scholar : PubMed/NCBI

94 

Lickert H, Domon C, Huls G, Wehrle C, Duluc I, Clevers H, Meyer BI, Freund JN and Kemler R: Wnt/(beta)-catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine. Development. 127:3805–3813. 2000.PubMed/NCBI

95 

Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA and McMahon AP: Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 8:174–189. 1994. View Article : Google Scholar : PubMed/NCBI

96 

Yamaguchi TP, Bradley A, McMahon AP and Jones S: A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development. 126:1211–1223. 1999.PubMed/NCBI

97 

Mlodzik M: Spiny legs and prickled bodies: New insights and complexities in planar polarity establishment. Bioessays. 22:311–315. 2000. View Article : Google Scholar : PubMed/NCBI

98 

Li L, Yuan H, Xie W, Mao J, Caruso AM, McMahon A, Sussman DJ and Wu D: Dishevelled proteins lead to two signaling pathways. Regulation of LEF-1 and c-Jun N-terminal kinase in mammalian cells. J Biol Chem. 274:129–134. 1999. View Article : Google Scholar

99 

Winter CG, Wang B, Ballew A, Royou A, Karess R, Axelrod JD and Luo L: Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell. 105:81–91. 2001. View Article : Google Scholar : PubMed/NCBI

100 

Marlow F, Topczewski J, Sepich D and Solnica-Krezel L: Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr Biol. 12:876–884. 2002. View Article : Google Scholar : PubMed/NCBI

101 

Moon RT, Campbell RM, Christian JL, McGrew LL, Shih J and Fraser S: Xwnt-5A: A maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development. 119:97–111. 1993.PubMed/NCBI

102 

Kuhl M, Sheldahl LC, Malbon CC and Moon RT: Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem. 275:12701–12711. 2000. View Article : Google Scholar : PubMed/NCBI

103 

Slusarski DC, Corces VG and Moon RT: Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphati-dylinositol signalling. Nature. 390:410–413. 1997. View Article : Google Scholar : PubMed/NCBI

104 

Xu Q, D'Amore PA and Sokol SY: Functional and biochemical interactions of Wnts with FrzA, a secreted Wnt antagonist. Development. 125:4767–4776. 1998.PubMed/NCBI

105 

Wang S, Krinks M and Moos M Jr: Frzb-1, an antagonist of Wnt-1 and Wnt-8, does not block signaling by Wnts -3A, -5A, or -11. Biochem Biophys Res Commun. 236:502–504. 1997. View Article : Google Scholar : PubMed/NCBI

106 

Lee CS, Buttitta LA, May NR, Kispert A and Fan CM: SHH-N upregulates Sfrp2 to mediate its competitive interaction with WNT1 and WNT4 in the somitic mesoderm. Development. 127:109–118. 2000.PubMed/NCBI

107 

Cervantes S, Yamaguchi TP and Hebrok M: Wnt5a is essential for intestinal elongation in mice. Dev Biol. 326:285–294. 2009. View Article : Google Scholar :

108 

Matsuyama M, Aizawa S and Shimono A: Sfrp controls apicobasal polarity and oriented cell division in developing gut epithelium. PLoS Genet. 5:e10004272009. View Article : Google Scholar : PubMed/NCBI

109 

Capdevila I and Izpisúa Belmonte JC: Knowing left from right: The molecular basis of laterality defects. Mol Med Today. 6:112–118. 2000. View Article : Google Scholar : PubMed/NCBI

110 

Levin M and Mercola M: The compulsion of chirality: Toward an understanding of left-right asymmetry. Genes Dev. 12:763–769. 1998. View Article : Google Scholar : PubMed/NCBI

111 

Logan M, Pagan-Westphal SM, Smith DM, Paganessi L and Tabin CJ: The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell. 94:307–317. 1998. View Article : Google Scholar : PubMed/NCBI

112 

Izraeli S, Lowe LA, Bertness VL, Good DJ, Dorward DW, Kirsch IR and Kuehn MR: The SIL gene is required for mouse embryonic axial development and left-right specification. Nature. 399:691–694. 1999. View Article : Google Scholar : PubMed/NCBI

113 

Boettger T, Wittler L and Kessel M: FGF8 functions in the specification of the right body side of the chick. Curr Biol. 9:277–280. 1999. View Article : Google Scholar : PubMed/NCBI

114 

Soffers JH, Hikspoors JP, Mekonen HK, Koehler SE and Lamers WH: The growth pattern of the human intestine and its mesentery. BMC Dev Biol. 15:312015. View Article : Google Scholar : PubMed/NCBI

115 

Hikspoors JPJM, Kruepunga N, Mommen GMC, Peeters J, Hülsman CJM, Eleonore Köhler S and Lamers WH: The development of the dorsal mesentery in human embryos and fetuses. Semin Cell Dev Biol. 92:18–26. 2019. View Article : Google Scholar

116 

Mekonen HK, Hikspoors JP, Mommen G, Köhler SE and Lamers WH: Development of the ventral body wall in the human embryo. J Anat. 227:673–685. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Frazer JE and Robbins RH: On the factors concerned in causing rotation of the intestine in man. J Anat Physiol. 50:75–110. 1915.PubMed/NCBI

118 

Szpinda M, Paruszewska-Achtel M, Woźniak A, Badura M, Mila-Kierzenkowska C and Wiśniewski M: Three-dimensional growth dynamics of the liver in the human fetus. Surg Radiol Anat. 37:439–448. 2015. View Article : Google Scholar : PubMed/NCBI

119 

Davis NM, Kurpios NA, Sun X, Gros J, Martin JF and Tabin CJ: The chirality of gut rotation derives from left-right asymmetric changes in the architecture of the dorsal mesentery. Dev Cell. 15:134–145. 2008. View Article : Google Scholar : PubMed/NCBI

120 

Okada Y, Takeda S, Tanaka Y, Belmonte JI and Hirokawa N: Mechanism of nodal flow: A conserved symmetry breaking event in left-right axis determination. Cell. 121:633–644. 2005. View Article : Google Scholar : PubMed/NCBI

121 

Ermakov AS: Establishment of visceral left-right asymmetry in mammals: The role of ciliary action and leftward fluid flow in the region of Hensen's node. Ontogenez. 44:341–356. 2013.In Russian. PubMed/NCBI

122 

Yuan S and Schoenwolf GC: Islet-1 marks the early heart rudiments and is asymmetrically expressed during early rotation of the foregut in the chick embryo. Anat Rec. 260:204–207. 2000. View Article : Google Scholar : PubMed/NCBI

123 

Plageman TF Jr, Zacharias AL, Gage PJ and Lang RA: Shroom3 and a Pitx2-N-cadherin pathway function cooperatively to generate asymmetric cell shape changes during gut morphogenesis. Dev Biol. 357:227–234. 2011. View Article : Google Scholar : PubMed/NCBI

124 

Kurpios NA, Ibanes M, Davis NM, Lui W, Katz T, Martin JF, Izpisua Belmonte JC and Tabin CJ: The direction of gut looping is established by changes in the extracellular matrix and in cell: Cell adhesion. Proc Natl Acad Sci USA. 105:8499–8506. 2008. View Article : Google Scholar

125 

Welsh IC, Thomsen M, Gludish DW, Alfonso-Parra C, Bai Y, Martin JF and Kurpios NA: Integration of left-right Pitx2 transcription and Wnt signaling drives asymmetric gut morphogenesis via Daam2. Dev Cell. 26:629–644. 2013. View Article : Google Scholar : PubMed/NCBI

126 

Gupta R, Soni V, Valse PD, Goyal RB, Gupta AK and Mathur P: Neonatal intestinal obstruction associated with situs inversus totalis: Two case reports and a review of the literature. J Med Case Rep. 11:2642017. View Article : Google Scholar : PubMed/NCBI

127 

Morgan D, Turnpenny L, Goodship J, Dai W, Majumder K, Matthews L, Gardner A, Schuster G, Vien L, Harrison W, et al: Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet. 20:149–156. 1998. View Article : Google Scholar : PubMed/NCBI

128 

Mochizuki T, Saijoh Y, Tsuchiya K, Shirayoshi Y, Takai S, Taya C, Yonekawa H, Yamada K, Nihei H, Nakatsuji N, et al: Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature. 395:177–181. 1998. View Article : Google Scholar : PubMed/NCBI

129 

Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M and Hirokawa N: Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell. 95:829–837. 1998. View Article : Google Scholar : PubMed/NCBI

130 

Hashimoto M, Shinohara K, Wang J, Ikeuchi S, Yoshiba S, Meno C, Nonaka S, Takada S, Hatta K, Wynshaw-Boris A and Hamada H: Planar polarization of node cells determines the rotational axis of node cilia. Nat Cell Biol. 12:170–176. 2010. View Article : Google Scholar : PubMed/NCBI

131 

Song H, Hu J, Chen W, Elliott G, Andre P, Gao B and Yang Y: Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning. Nature. 466:378–382. 2010. View Article : Google Scholar : PubMed/NCBI

132 

Mahaffey JP, Grego-Bessa J, Liem KF Jr and Anderson KV: Cofilin and Vangl2 cooperate in the initiation of planar cell polarity in the mouse embryo. Development. 140:1262–1271. 2013. View Article : Google Scholar : PubMed/NCBI

133 

Yoshiba S, Shiratori H, Kuo IY, Kawasumi A, Shinohara K, Nonaka S, Asai Y, Sasaki G, Belo JA, Sasaki H, et al: Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science. 338:226–231. 2012. View Article : Google Scholar : PubMed/NCBI

134 

Gottschalk I, Stressig R, Ritgen J, Herberg U, Breuer J, Vorndamme A, Strizek B, Willruth A, Geipel A, Gembruch U and Berg C: Extracardiac anomalies in prenatally diagnosed hetero-taxy syndrome. Ultrasound Obstet Gynecol. 47:443–449. 2016. View Article : Google Scholar

135 

Applegate KE, Anderson JM and Klatte EC: Intestinal malrotation in children: A problem-solving approach to the upper gastrointestinal series. Radiographics. 26:1485–1500. 2006. View Article : Google Scholar : PubMed/NCBI

136 

Nagel BH, Williams H, Stewart L, Paul J and Stumper O: Splenic state in surviving patients with visceral heterotaxy. Cardiol Young. 15:469–473. 2005. View Article : Google Scholar : PubMed/NCBI

137 

Mahalik SK, Khanna S and Menon P: Malrotation and volvulus associated with heterotaxy syndrome. J Indian Assoc Pediatr Surg. 17:138–140. 2012. View Article : Google Scholar : PubMed/NCBI

138 

Sedik A, Bar EA and Ismail M: Cecal volvulus: Case report and review of literature. Saudi Surg J. 3:47–49. 2015. View Article : Google Scholar

139 

Tsai EA, Grochowski CM, Falsey AM, Rajagopalan R, Wendel D, Devoto M, Krantz ID, Loomes KM and Spinner NB: Heterozygous deletion of FOXA2 segregates with disease in a family with heterotaxy, panhypopituitarism, and biliary atresia. Hum Mutat. 36:631–637. 2015. View Article : Google Scholar : PubMed/NCBI

140 

Hagen EM, Sicko RJ, Kay DM, Rigler SL, Dimopoulos A, Ahmad S, Doleman MH, Fan R, Romitti PA, Browne ML, et al: Copy-number variant analysis of classic heterotaxy highlights the importance of body patterning pathways. Hum Genet. 135:1355–1364. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Martin V and Shaw-Smith C: Review of genetic factors in intestinal malrotation. Pediatr Surg Int. 26:769–781. 2010. View Article : Google Scholar : PubMed/NCBI

142 

Straus WL Jr: The thoracic and abdominal viscera of primates with special reference to the orangutan. Proc Am Philo Soc. 76:1–85. 1936.

143 

Bresalier RS, Boland CR and Kim YS: Regional differences in normal and cancer-associated glycoconjugates of the human colon. J Natl Cancer Inst. 75:249–260. 1985.PubMed/NCBI

144 

Congdon ED, Blumberg R and Henry W: Fasciae of fusion and elements of the fused enteric mesenteries in the human adult. Am J Anat. 70:251–279. 1942. View Article : Google Scholar

145 

Smith GM: A statistical review of the variations in the anatomic positions of the caecum and the processus vermiformis in the infant. Anat Rec. 5:549–566. 1911. View Article : Google Scholar

146 

Uhlenhuth E, Wolfe WM, Smith EM and Middleton EB: The rectogenital septum. Surg Gynecol Obstet. 76:148–163. 1948.

147 

Tobin CE and Benjamin JA: Anatomical and surgical restudy of Denonvilliers' fascia. Surg Gynec Obst. 80:373–388. 1945.

148 

Schumpelick V, Dreuw B, Ophoff K and Prescher A: Appendix and cecum. Embryology, anatomy, and surgical applications. Surg Clin North Am. 80:295–318. 2000. View Article : Google Scholar : PubMed/NCBI

149 

Torres AM and Ziegler MM: Malrotation of the intestine. World J Surg. 17:326–331. 1993. View Article : Google Scholar : PubMed/NCBI

150 

Roux M and Delavierre P: Mesocelial abscess of probable sigmoid diverticular origin. Hyper-rotation of the intestinal lopp with the cecum at the left. Concours Med. 87:47–48. 1965.In French. PubMed/NCBI

151 

Garude K and Rao S: Mobile cecum: An incidental finding. Indian J Surg. 75:265–267. 2013. View Article : Google Scholar :

152 

Rogers RL and Harford FJ: Mobile cecum syndrome. Dis Colon Rectum. 27:399–402. 1984. View Article : Google Scholar : PubMed/NCBI

153 

Collins DC: Agenesis of the vermiform appendix. Am J Surg. 82:689–696. 1951. View Article : Google Scholar : PubMed/NCBI

154 

Karam SM: Lineage commitment and maturation of epithelial cells in the gut. Front Biosci. 4:D286–D298. 1999. View Article : Google Scholar : PubMed/NCBI

155 

Tandler J: Zur entwicklungsgeschichte des Menschlichen Duodenum in Fruhen Embryonalstadien. Morph Jahrb. 29:187–216. 1900.

156 

Cheng W and Tam PK: Murine duodenum does not go through a 'solid core' stage in its embryological development. Eur J Pediatr Surg. 8:212–215. 1998. View Article : Google Scholar : PubMed/NCBI

157 

Dalla Vecchia LK, Grosfeld JL, West KW, Rescorla FJ, Scherer LR and Engum SA: Intestinal atresia and stenosis: A 25-year experience with 277 cases. Arch Surg. 133:490–497. 1998. View Article : Google Scholar : PubMed/NCBI

158 

Louw JH: Jejunoileal atresia and stenosis. J Pediatr Surg. 1:8–23. 1966. View Article : Google Scholar

159 

Abdullah F, Arnold MA, Nabaweesi R, Fischer AC, Colombani PM, Anderson KD, Lau H and Chang DC: Gastroschisis in the United States 1988-2003: Analysis and risk categorization of 4344 patients. J Perinatol. 27:50–55. 2007. View Article : Google Scholar

160 

Baglaj M, Carachi R and MacCormack B: Colonic atresia: A clinicopathological insight into its etiology. Eur J Pediatr Surg. 20:102–105. 2010. View Article : Google Scholar

161 

Barnard CN and Louw JH: The genesis of intestinal atresia. Minn Med. 39:7451956.PubMed/NCBI

162 

Louw JH and Barnard CN: Congenital intestinal atresia; observations on its origin. Lancet. 269:1065–1067. 1955. View Article : Google Scholar : PubMed/NCBI

163 

Black PR, Mueller D, Crow J, Morris RC and Husain AN: Mesenteric defects as a cause of intestinal volvulus without malrotation and as the possible primary etiology of intestinal atresia. J Pediatr Surg. 29:1339–1343. 1994. View Article : Google Scholar : PubMed/NCBI

164 

Stollman TH, Wijnen RM and Draaisma JM: Investigation for cystic fibrosis in infants with jejunoileal atresia in the Netherlands: A 35-year experience with 114 cases. Eur J Pediatr. 166:989–990. 2007. View Article : Google Scholar

165 

Erskine JM: Colonic stenosis in the newborn: The possible thromboembolic etiology of intestinal stenosis and atresia. J Pediatr Surg. 5:321–333. 1970. View Article : Google Scholar : PubMed/NCBI

166 

Johnson SM and Meyers RL: Inherited thrombophilia: A possible cause of in utero vascular thrombosis in children with intestinal atresia. J Pediatr Surg. 36:1146–1149. 2001. View Article : Google Scholar : PubMed/NCBI

167 

Cooley BC, Chen CY and Schmeling G: Increased venous versus arterial thrombosis in the Factor V Leiden mouse. Thromb Res. 119:747–751. 2007. View Article : Google Scholar

168 

Greer FR: Vitamin K the basics-what's new? Early Hum Dev. 86(Suppl 1): S43–S47. 2010. View Article : Google Scholar

169 

Cortese MG, Morra I, Marchese C, Costantino S, Forni M and Canavese F: Association between multiple intestinal atresia and omphalocele: A case report. Pediatr Pathol Mol Med. 20:203–207. 2001. View Article : Google Scholar : PubMed/NCBI

170 

Pameijer CR, Hubbard AM, Coleman B and Flake AW: Combined pure esophageal atresia, duodenal atresia, biliary atresia, and pancreatic ductal atresia: Prenatal diagnostic features and review of the literature. J Pediatr Surg. 35:745–747. 2000. View Article : Google Scholar : PubMed/NCBI

171 

Fairbanks TJ, Sala FG, Kanard R, Curtis JL, Del Moral PM, De Langhe S, Warburton D, Anderson KD, Bellusci S and Burns RC: The fibroblast growth factor pathway serves a regulatory role in proliferation and apoptosis in the pathogenesis of intestinal atresia. J Pediatr Surg. 41:132–136. 2006. View Article : Google Scholar : PubMed/NCBI

172 

Ornitz DM and Itoh N: Fibroblast growth factors. Genome Biol. 2:REVIEWS30052001. View Article : Google Scholar : PubMed/NCBI

173 

Botham RA, Franco M, Reeder AL, Lopukhin A, Shiota K, Yamada S and Nichol PF: Formation of duodenal atresias in fibroblast growth factor receptor 2IIIb-/- mouse embryos occurs in the absence of an endodermal plug. J Pediatr Surg. 47:1369–1379. 2012. View Article : Google Scholar : PubMed/NCBI

174 

Reeder AL, Botham RA, Franco M, Zaremba KM and Nichol PF: Formation of intestinal atresias in the Fgfr2IIIb-/- mice is not associated with defects in notochord development or alterations in Shh expression. J Surg Res. 177:139–145. 2012. View Article : Google Scholar : PubMed/NCBI

175 

Reeder AL, Zaremba KM, Liebl RM, Kowalkowski A and Nichol PF: Exogenous Sonic hedgehog protein does not rescue cultured intestine from atresia formation. J Surg Res. 187:14–18. 2014. View Article : Google Scholar : PubMed/NCBI

176 

Nichol PF, Tyrrell JD and Saijoh Y: Retinaldehyde dehydroge-nase 2 is down-regulated during duodenal atresia formation in Fgfr2IIIb-/- mice. J Surg Res. 175:82–87. 2012. View Article : Google Scholar

177 

Reeder AL, Botham RA, Zaremba KM and Nichol PF: Haploinsufficiency of retinaldehyde dehydrogenase 2 decreases the severity and incidence of duodenal atresia in the fibroblast growth factor receptor 2IIIb-/- mouse model. Surgery. 152:768–776. 2012. View Article : Google Scholar : PubMed/NCBI

178 

Ramalho-Santos M, Melton DA and McMahon AP: Hedgehog signals regulate multiple aspects of gastrointestinal development. Development. 127:2763–2772. 2000.PubMed/NCBI

179 

Mo R, Kim JH, Zhang J, Chiang C, Hui CC and Kim PC: Anorectal malformations caused by defects in sonic hedgehog signaling. Am J Pathol. 159:765–774. 2001. View Article : Google Scholar : PubMed/NCBI

180 

Al-Jaroof AH, Al-Zayer F and Meshikhes AW: A case of sigmoid colon duplication in an adult woman. BMJ Case Rep. 2014:pii: bcr2014203874. 2014. View Article : Google Scholar : PubMed/NCBI

181 

Ramakrishna HK: Intestinal duplication. Indian J Surg. 70:270–273. 2008. View Article : Google Scholar : PubMed/NCBI

182 

Favara BE, Franciosi RA and Akers DR: Enteric duplications. Thirty-seven cases: A vascular theory of pathogenesis. Am J Dis Child. 122:501–506. 1971. View Article : Google Scholar : PubMed/NCBI

183 

Colony PC, Kois JM and Peiffer LP: Structural and enzymatic changes during colonic maturation in the fetal and suckling rat. Gastroenterology. 97:338–347. 1989. View Article : Google Scholar : PubMed/NCBI

184 

Helander HF: Morphological studies on the development of the rat colonic mucosa. Acta Anat (Basel). 85. pp. 155–176. 1973, View Article : Google Scholar

185 

Bell L and Williams L: A scanning and transmission electron microscopical study of the morphogenesis of human colonic villi. Anat Embryol (Berl). 165:437–455. 1982. View Article : Google Scholar

186 

Lev R and Orlic D: Histochemical and radioautographic studies of normal human fetal colon. Histochemistry. 39:301–311. 1974. View Article : Google Scholar : PubMed/NCBI

187 

Saotome I, Curto M and McClatchey AI: Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev Cell. 6:855–864. 2004. View Article : Google Scholar : PubMed/NCBI

188 

Ratineau C, Duluc I, Pourreyron C, Kedinger M, Freund JN and Roche C: Endoderm- and mesenchyme-dependent commitment of the differentiated epithelial cell types in the developing intestine of rat. Differentiation. 71:163–169. 2003. View Article : Google Scholar : PubMed/NCBI

189 

Fritsch C, Swietlicki EA, Lefebvre O, Kedinger M, Iordanov H, Levin MS and Rubin DC: Epimorphin expression in intestinal myofibroblasts induces epithelial morphogenesis. J Clin Invest. 110:1629–1641. 2002. View Article : Google Scholar : PubMed/NCBI

190 

Shaker A, Swietlicki EA, Wang L, Jiang S, Onal B, Bala S, DeSchryver K, Newberry R, Levin MS and Rubin DC: Epimorphin deletion protects mice from inflammation-induced colon carcinogenesis and alters stem cell niche myofibroblast secretion. J Clin Invest. 120:2081–2093. 2010. View Article : Google Scholar : PubMed/NCBI

191 

Hirai Y, Takebe K, Takashina M, Kobayashi S and Takeichi M: Epimorphin: A mesenchymal protein essential for epithelial morphogenesis. Cell. 69:471–481. 1992. View Article : Google Scholar : PubMed/NCBI

192 

Kolterud A, Grosse AS, Zacharias WJ, Walton KD, Kretovich KE, Madison BB, Waghray M, Ferris JE, Hu C, Merchant JL, et al: Paracrine Hedgehog signaling in stomach and intestine: New roles for hedgehog in gastrointestinal patterning. Gastroenterology. 137:618–628. 2009. View Article : Google Scholar : PubMed/NCBI

193 

Madison BB, Braunstein K, Kuizon E, Portman K, Qiao XT and Gumucio DL: Epithelial hedgehog signals pattern the intestinal crypt-villus axis. Development. 132:279–289. 2005. View Article : Google Scholar

194 

Karlsson L, Lindahl P, Heath JK and Betsholtz C: Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development. 127:3457–3466. 2000.PubMed/NCBI

195 

Wang LC, Nassir F, Liu ZY, Ling L, Kuo F, Crowell T, Olson D, Davidson NO and Burkly LC: Disruption of hedgehog signaling reveals a novel role in intestinal morphogenesis and intestinal-specific lipid metabolism in mice. Gastroenterology. 122:469–482. 2002. View Article : Google Scholar : PubMed/NCBI

196 

Madison BB, McKenna LB, Dolson D, Epstein DJ and Kaestner KH: FoxF1 and FoxL1 link hedgehog signaling and the control of epithelial proliferation in the developing stomach and intestine. J Biol Chem. 284:5936–5944. 2009. View Article : Google Scholar :

197 

Kaestner KH, Silberg DG, Traber PG and Schutz G: The mesenchymal winged helix transcription factor Fkh6 is required for the control of gastrointestinal proliferation and differentiation. Genes Dev. 11:1583–1595. 1997. View Article : Google Scholar : PubMed/NCBI

198 

Ormestad M, Astorga J, Landgren H, Wang T, Johansson BR, Miura N and Carlsson P: Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production. Development. 133:833–843. 2006. View Article : Google Scholar : PubMed/NCBI

199 

De Santa Barbara P, Williams J, Goldstein AM, Doyle AM, Nielsen C, Winfield S, Faure S and Roberts DJ: Bone morpho-genetic protein signaling pathway plays multiple roles during gastrointestinal tract development. Dev Dyn. 234:312–322. 2005. View Article : Google Scholar : PubMed/NCBI

200 

He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, Tian Q, Zeng X, He X, Wiedemann LM, et al: BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet. 36:1117–1121. 2004. View Article : Google Scholar : PubMed/NCBI

201 

Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA, Petersen GM, Velculescu VE, Traverso G and Vogelstein B: Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet. 28:184–187. 2001. View Article : Google Scholar : PubMed/NCBI

202 

Shroyer NF and Wong MH: BMP signaling in the intestine: Cross-talk is key. Gastroenterology. 133:1035–1038. 2007. View Article : Google Scholar : PubMed/NCBI

203 

Batts LE, Polk DB, Dubois RN and Kulessa H: Bmp signaling is required for intestinal growth and morphogenesis. Dev Dyn. 235:1563–1570. 2006. View Article : Google Scholar : PubMed/NCBI

204 

Flentjar N, Chu PY, Ng AY, Johnstone CN, Heath JK, Ernst M, Hertzog PJ and Pritchard MA: TGF-betaRII rescues development of small intestinal epithelial cells in Elf3-deficient mice. Gastroenterology. 132:1410–1419. 2007. View Article : Google Scholar : PubMed/NCBI

205 

Jedlicka P and Gutierrez-Hartmann A: Ets transcription factors in intestinal morphogenesis, homeostasis and disease. Histol Histopathol. 23:1417–1424. 2008.PubMed/NCBI

206 

Kwon MC, Koo BK, Kim YY, Lee SH, Kim NS, Kim JH and Kong YY: Essential role of CR6-interacting factor 1 (Crif1) in E74-like factor 3 (ELF3)-mediated intestinal development. J Biol Chem. 284:33634–33641. 2009. View Article : Google Scholar : PubMed/NCBI

207 

Pabst O, Zweigerdt R and Arnold HH: Targeted disruption of the homeobox transcription factor Nkx2-3 in mice results in postnatal lethality and abnormal development of small intestine and spleen. Development. 126:2215–2225. 1999.PubMed/NCBI

208 

Shikama N, Lutz W, Kretzschmar R, Sauter N, Roth JF, Marino S, Wittwer J, Scheidweiler A and Eckner R: Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. EMBO J. 22:5175–5185. 2003. View Article : Google Scholar : PubMed/NCBI

209 

Tou L, Liu Q and Shivdasani RA: Regulation of mammalian epithelial differentiation and intestine development by class I histone deacetylases. Mol Cell Biol. 24:3132–3139. 2004. View Article : Google Scholar : PubMed/NCBI

210 

Grand RJ, Watkins JB and Torti FM: Development of the human gastrointestinal tract. A review. Gastroenterology. 70:790–810. 1976. View Article : Google Scholar : PubMed/NCBI

211 

Kim BM, Mao J, Taketo MM and Shivdasani RA: Phases of canonical Wnt signaling during the development of mouse intestinal epithelium. Gastroenterology. 133:529–538. 2007. View Article : Google Scholar : PubMed/NCBI

212 

Pinto D, Gregorieff A, Begthel H and Clevers H: Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 17:1709–1713. 2003. View Article : Google Scholar : PubMed/NCBI

213 

Kuhnert F, Davis CR, Wang HT, Chu P, Lee M, Yuan J, Nusse R and Kuo CJ: Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci USA. 101:266–271. 2004. View Article : Google Scholar

214 

Sinner D, Kordich JJ, Spence JR, Opoka R, Rankin S, Lin SC, Jonatan D, Zorn AM and Wells JM: Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol Cell Biol. 27:7802–7815. 2007. View Article : Google Scholar : PubMed/NCBI

215 

Wong MH, Huelsken J, Birchmeier W and Gordon JI: Selection of multipotent stem cells during morphogenesis of small intestinal crypts of Lieberkuhn is perturbed by stimulation of Lef-1/beta-catenin signaling. J Biol Chem. 277:15843–15850. 2002. View Article : Google Scholar : PubMed/NCBI

216 

Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P and Madsen OD: Control of endodermal endocrine development by Hes-1. Nat Genet. 24:36–44. 2000. View Article : Google Scholar

217 

Shroyer NF, Helmrath MA, Wang VY, Antalffy B, Henning SJ and Zoghbi HY: Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology. 132:2478–2488. 2007. View Article : Google Scholar : PubMed/NCBI

218 

van Es JH, de Geest N, van de Born M, Clevers H and Hassan BA: Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors. Nat Commun. 1:182010. View Article : Google Scholar : PubMed/NCBI

219 

VanDussen KL and Samuelson LC: Mouse atonal homolog 1 directs intestinal progenitors to secretory cell rather than absorptive cell fate. Dev Biol. 346:215–223. 2010. View Article : Google Scholar : PubMed/NCBI

220 

Koo BK, Lim HS, Chang HJ, Yoon MJ, Choi Y, Kong MP, Kim CH, Kim JM, Park JG and Kong YY: Notch signaling promotes the generation of EphrinB1-positive intestinal epithelial cells. Gastroenterology. 137:145–155. 2009. View Article : Google Scholar : PubMed/NCBI

221 

Tian H, Biehs B, Chiu C, Siebel CW, Wu Y, Costa M, de Sauvage FJ and Klein OD: Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis. Cell Rep. 11:33–42. 2015. View Article : Google Scholar : PubMed/NCBI

222 

Peignon G, Durand A, Cacheux W, Ayrault O, Terris B, Laurent-Puig P, Shroyer NF, Van Seuningen I, Honjo T, Perret C and Romagnolo B: Complex interplay between β-catenin signalling and Notch effectors in intestinal tumorigenesis. Gut. 60:166–176. 2011. View Article : Google Scholar : PubMed/NCBI

223 

Tsuchiya K, Nakamura T, Okamoto R, Kanai T and Watanabe M: Reciprocal targeting of Hath1 and beta-catenin by Wnt glycogen synthase kinase 3beta in human colon cancer. Gastroenterology. 132:208–220. 2007. View Article : Google Scholar : PubMed/NCBI

224 

Coant N, Ben Mkaddem S, Pedruzzi E, Guichard C, Treton X, Ducroc R, Freund JN, Cazals-Hatem D, Bouhnik Y, Woerther PL, et al: NADPH oxidase 1 modulates WNT and NOTCH1 signaling to control the fate of proliferative progenitor cells in the colon. Mol Cell Biol. 30:2636–2650. 2010. View Article : Google Scholar : PubMed/NCBI

225 

Calvert R, Beaulieu JF and Ménard D: Epidermal growth factor (EGF) accelerates the maturation of fetal mouse intestinal mucosa in utero. Experientia. 38:1096–1097. 1982. View Article : Google Scholar : PubMed/NCBI

226 

Griffiths DF, Davies SJ, Williams D, Williams GT and Williams ED: Demonstration of somatic mutation and colonic crypt clonality by X-linked enzyme histochemistry. Nature. 333:461–463. 1988. View Article : Google Scholar : PubMed/NCBI

227 

Tian Q, He XC, Hood L and Li L: Bridging the BMP and Wnt pathways by PI3 kinase/Akt and 143-3zeta. Cell Cycle. 4:215–216. 2005. View Article : Google Scholar : PubMed/NCBI

228 

Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, Meeldijk J, Robertson J, van de Wetering M, Pawson T and Clevers H: Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell. 111:251–263. 2002. View Article : Google Scholar : PubMed/NCBI

229 

van der Flier LG and Clevers H: Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 71:241–260. 2009. View Article : Google Scholar

230 

Schemann M: Control of gastrointestinal motility by the 'gut brain'-the enteric nervous system. J Pediatr Gastroenterol Nutr. 41(Suppl 1): S4–S6. 2005. View Article : Google Scholar

231 

Furness JB: Types of neurons in the enteric nervous system. J Auton Nerv Syst. 81:87–96. 2000. View Article : Google Scholar : PubMed/NCBI

232 

Goldstein AM, Thapar N, Karunaratne TB and De Giorgio R: Clinical aspects of neurointestinal disease: Pathophysiology, diagnosis, and treatment. Dev Biol. 417:217–228. 2016. View Article : Google Scholar : PubMed/NCBI

233 

Kapur RP: Practical pathology and genetics of Hirschsprung's disease. Semin Pediatr Surg. 18:212–223. 2009. View Article : Google Scholar : PubMed/NCBI

234 

Amiel J and Lyonnet S: Hirschsprung disease, associated syndromes, and genetics: A review. J Med Genet. 38:729–739. 2001. View Article : Google Scholar : PubMed/NCBI

235 

Bronner ME and LeDouarin NM: Development and evolution of the neural crest: An overview. Dev Biol. 366:2–9. 2012. View Article : Google Scholar : PubMed/NCBI

236 

Le Douarin NM and Teillet MA: The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol. 30:31–48. 1973.PubMed/NCBI

237 

Yntema CL and Hammond WS: The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol. 101:515–541. 1954. View Article : Google Scholar : PubMed/NCBI

238 

Kuo BR and Erickson CA: Regional differences in neural crest morphogenesis. Cell Adh Migr. 4:567–585. 2010. View Article : Google Scholar : PubMed/NCBI

239 

Burns AJ and Le Douarin NM: Enteric nervous system development: Analysis of the selective developmental potentialities of vagal and sacral neural crest cells using quail-chick chimeras. Anat Rec. 262:16–28. 2001. View Article : Google Scholar : PubMed/NCBI

240 

Burns AJ, Champeval D and Le Douarin NM: Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia. Dev Biol. 219:30–43. 2000. View Article : Google Scholar : PubMed/NCBI

241 

Fu M, Lui VC, Sham MH, Cheung AN and Tam PK: HOXB5 expression is spatially and temporarily regulated in human embryonic gut during neural crest cell colonization and differentiation of enteric neuroblasts. Dev Dyn. 228:1–10. 2003. View Article : Google Scholar : PubMed/NCBI

242 

De Bellard ME, Rao Y and Bronner-Fraser M: Dual function of Slit2 in repulsion and enhanced migration of trunk, but not vagal, neural crest cells. J Cell Biol. 162:269–279. 2003. View Article : Google Scholar : PubMed/NCBI

243 

Zuhdi N, Ortega B, Giovannone D, Ra H, Reyes M, Asención V, McNicoll I, Ma L and de Bellard ME: Slit molecules prevent entrance of trunk neural crest cells in developing gut. Int J Dev Neurosci. 41:8–16. 2015. View Article : Google Scholar :

244 

Nagy N, Brewer KC, Mwizerwa O and Goldstein AM: Pelvic plexus contributes ganglion cells to the hindgut enteric nervous system. Dev Dyn. 236:73–83. 2007. View Article : Google Scholar

245 

Young HM, Bergner AJ, Anderson RB, Enomoto H, Milbrandt J, Newgreen DF and Whitington PM: Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Dev Biol. 270:455–473. 2004. View Article : Google Scholar : PubMed/NCBI

246 

Allan IJ and Newgreen DF: The origin and differentiation of enteric neurons of the intestine of the fowl embryo. Am J Anat. 157:137–154. 1980. View Article : Google Scholar : PubMed/NCBI

247 

Young HM and Newgreen D: Enteric neural crest-derived cells: Origin, identification, migration, and differentiation. Anat Rec. 262:1–15. 2001. View Article : Google Scholar : PubMed/NCBI

248 

Wallace AS and Burns AJ: Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res. 319:367–382. 2005. View Article : Google Scholar : PubMed/NCBI

249 

Burns AJ and Douarin NM: The sacral neural crest contributes neurons and glia to the post-umbilical gut: Spatiotemporal analysis of the development of the enteric nervous system. Development. 125:4335–4347. 1998.PubMed/NCBI

250 

Delalande JM, Barlow AJ, Thomas AJ, Wallace AS, Thapar N, Erickson CA and Burns AJ: The receptor tyrosine kinase RET regulates hindgut colonization by sacral neural crest cells. Dev Biol. 313:279–292. 2008. View Article : Google Scholar

251 

Burns AJ, Delalande JM and Le Douarin NM: In ovo transplantation of enteric nervous system precursors from vagal to sacral neural crest results in extensive hindgut colonisation. Development. 129:2785–2796. 2002.PubMed/NCBI

252 

Uesaka T, Nagashimada M and Enomoto H: Neuronal differentiation in schwann cell lineage underlies postnatal neurogenesis in the enteric nervous system. J Neurosci. 35:9879–9888. 2015. View Article : Google Scholar : PubMed/NCBI

253 

Nishiyama C, Uesaka T, Manabe T, Yonekura Y, Nagasawa T, Newgreen DF, Young HM and Enomoto H: Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system. Nat Neurosci. 15:1211–1218. 2012. View Article : Google Scholar : PubMed/NCBI

254 

Peters-van der Sanden MJ, Kirby ML, Gittenberger-de Groot A, Tibboel D, Mulder MP and Meijers C: Ablation of various regions within the avian vagal neural crest has differential effects on ganglion formation in the fore-, mid- and hindgut. Dev Dyn. 196:183–194. 1993. View Article : Google Scholar : PubMed/NCBI

255 

Druckenbrod NR and Epstein ML: The pattern of neural crest advance in the cecum and colon. Dev Biol. 287:125–133. 2005. View Article : Google Scholar : PubMed/NCBI

256 

Young HM, Bergner AJ, Simpson MJ, McKeown SJ, Hao MM, Anderson CR and Enomoto H: Colonizing while migrating: How do individual enteric neural crest cells behave? BMC Biol. 12:232014. View Article : Google Scholar : PubMed/NCBI

257 

Anderson RB, Turner KN, Nikonenko AG, Hemperly J, Schachner M and Young HM: The cell adhesion molecule l1 is required for chain migration of neural crest cells in the developing mouse gut. Gastroenterology. 130:1221–1232. 2006. View Article : Google Scholar : PubMed/NCBI

258 

Druckenbrod NR and Epstein ML: Age-dependent changes in the gut environment restrict the invasion of the hindgut by enteric neural progenitors. Development. 136:3195–3203. 2009. View Article : Google Scholar : PubMed/NCBI

259 

Simpson MJ, Zhang DC, Mariani M, Landman KA and Newgreen DF: Cell proliferation drives neural crest cell invasion of the intestine. Dev Biol. 302:553–568. 2007. View Article : Google Scholar

260 

Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, Stern CD and Mayor R: Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature. 456:957–961. 2008. View Article : Google Scholar : PubMed/NCBI

261 

Nagy N and Goldstein AM: Enteric nervous system development: A crest cell's journey from neural tube to colon. Semin Cell Dev Biol. 66:94–106. 2017. View Article : Google Scholar : PubMed/NCBI

262 

Gabriel SB, Salomon R, Pelet A, Angrist M, Amiel J, Fornage M, Attié-Bitach T, Olson JM, Hofstra R, Buys C, et al: Segregation at three loci explains familial and population risk in Hirschsprung disease. Nat Genet. 31:89–93. 2002. View Article : Google Scholar : PubMed/NCBI

263 

Emison ES, McCallion AS, Kashuk CS, Bush RT, Grice E, Lin S, Portnoy ME, Cutler DJ, Green ED and Chakravarti A: A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature. 434:857–863. 2005. View Article : Google Scholar : PubMed/NCBI

264 

Southard-Smith EM, Kos L and Pavan WJ: Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet. 18:60–64. 1998. View Article : Google Scholar : PubMed/NCBI

265 

Pattyn A, Morin X, Cremer H, Goridis C and Brunet JF: The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature. 399:366–370. 1999. View Article : Google Scholar : PubMed/NCBI

266 

Asai N, Fukuda T, Wu Z, Enomoto A, Pachnis V, Takahashi M and Costantini F: Targeted mutation of serine 697 in the Ret tyrosine kinase causes migration defect of enteric neural crest cells. Development. 133:4507–4516. 2006. View Article : Google Scholar : PubMed/NCBI

267 

Liu P, Cheng H, Roberts TM and Zhao JJ: Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 8:627–644. 2009. View Article : Google Scholar : PubMed/NCBI

268 

Mograbi B, Bocciardi R, Bourget I, Busca R, Rochet N, Farahi-Far D, Juhel T and Rossi B: Glial cell line-derived neurotrophic factor-stimulated phosphatidylinositol 3-kinase and Akt activities exert opposing effects on the ERK pathway: Importance for the rescue of neuroectodermic cells. J Biol Chem. 276:45307–45319. 2001. View Article : Google Scholar : PubMed/NCBI

269 

Natarajan D, Marcos-Gutierrez C, Pachnis V and de Graaff E: Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor cells during mammalian embryogenesis. Development. 129:5151–5160. 2002.PubMed/NCBI

270 

Fu M, Sato Y, Lyons-Warren A, Zhang B, Kane MA, Napoli JL and Heuckeroth RO: Vitamin A facilitates enteric nervous system precursor migration by reducing Pten accumulation. Development. 137:631–640. 2010. View Article : Google Scholar : PubMed/NCBI

271 

Simkin JE, Zhang D, Rollo BN and Newgreen DF: Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut. PLoS One. 8:e640772013. View Article : Google Scholar : PubMed/NCBI

272 

Taketomi T, Yoshiga D, Taniguchi K, Kobayashi T, Nonami A, Kato R, Sasaki M, Sasaki A, Ishibashi H, Moriyama M, et al: Loss of mammalian Sprouty2 leads to enteric neuronal hyper-plasia and esophageal achalasia. Nat Neurosci. 8:855–857. 2005. View Article : Google Scholar : PubMed/NCBI

273 

Zhou R, Niwa S, Homma N, Takei Y and Hirokawa N: KIF26A is an unconventional kinesin and regulates GDNF-Ret signaling in enteric neuronal development. Cell. 139:802–813. 2009. View Article : Google Scholar : PubMed/NCBI

274 

Barlow A, de Graaff E and Pachnis V: Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron. 40:905–916. 2003. View Article : Google Scholar : PubMed/NCBI

275 

Taraviras S, Marcos-Gutierrez CV, Durbec P, Jani H, Grigoriou M, Sukumaran M, Wang LC, Hynes M, Raisman G and Pachnis V: Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Development. 126:2785–2797. 1999.PubMed/NCBI

276 

Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F and Pachnis V: Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 367:380–383. 1994. View Article : Google Scholar : PubMed/NCBI

277 

Uesaka T, Nagashimada M, Yonemura S and Enomoto H: Diminished Ret expression compromises neuronal survival in the colon and causes intestinal aganglionosis in mice. J Clin Invest. 118:1890–1898. 2008. View Article : Google Scholar : PubMed/NCBI

278 

Mwizerwa O, Das P, Nagy N, Akbareian SE, Mably JD and Goldstein AM: Gdnf is mitogenic, neurotrophic, and chemoattractive to enteric neural crest cells in the embryonic colon. Dev Dyn. 240:1402–1411. 2011. View Article : Google Scholar : PubMed/NCBI

279 

Uesaka T, Nagashimada M and Enomoto H: GDNF signaling levels control migration and neuronal differentiation of enteric ganglion precursors. J Neurosci. 33:16372–16382. 2013. View Article : Google Scholar : PubMed/NCBI

280 

Flynn B, Bergner AJ, Turner KN, Young HM and Anderson RB: Effect of Gdnf haploinsufficiency on rate of migration and number of enteric neural crest-derived cells. Dev Dyn. 236:134–141. 2007. View Article : Google Scholar

281 

Nagy N and Goldstein AM: Endothelin-3 regulates neural crest cell proliferation and differentiation in the hindgut enteric nervous system. Dev Biol. 293:203–217. 2006. View Article : Google Scholar : PubMed/NCBI

282 

Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE and Yanagisawa M: Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 79:1277–1285. 1994. View Article : Google Scholar : PubMed/NCBI

283 

Carrasquillo MM, McCallion AS, Puffenberger EG, Kashuk CS, Nouri N and Chakravarti A: Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nat Genet. 32:237–244. 2002. View Article : Google Scholar : PubMed/NCBI

284 

McCallion AS, Stames E, Conlon RA and Chakravarti A: Phenotype variation in two-locus mouse models of Hirschsprung disease: Tissue-specific interaction between Ret and Ednrb. Proc Natl Acad Sci USA. 100:1826–1831. 2003. View Article : Google Scholar : PubMed/NCBI

285 

Hearn CJ, Murphy M and Newgreen D: GDNF and ET-3 differentially modulate the numbers of avian enteric neural crest cells and enteric neurons in vitro. Dev Biol. 197:93–105. 1998. View Article : Google Scholar : PubMed/NCBI

286 

Paratore C, Eichenberger C, Suter U and Sommer L: Sox10 haploinsufficiency affects maintenance of progenitor cells in a mouse model of Hirschsprung disease. Hum Mol Genet. 11:3075–3085. 2002. View Article : Google Scholar : PubMed/NCBI

287 

Kapur RP: Early death of neural crest cells is responsible for total enteric aganglionosis in Sox10(Dom)/Sox10(Dom) mouse embryos. Pediatr Dev Pathol. 2:559–569. 1999. View Article : Google Scholar : PubMed/NCBI

288 

Lang D, Chen F, Milewski R, Li J, Lu MM and Epstein JA: Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret. J Clin Invest. 106:963–971. 2000. View Article : Google Scholar : PubMed/NCBI

289 

Zhu L, Lee HO, Jordan CS, Cantrell VA, Southard-Smith EM and Shin MK: Spatiotemporal regulation of endothelin receptor-B by SOX10 in neural crest-derived enteric neuron precursors. Nat Genet. 36:732–737. 2004. View Article : Google Scholar : PubMed/NCBI

290 

Anderson RB, Stewart AL and Young HM: Phenotypes of neural-crest-derived cells in vagal and sacral pathways. Cell Tissue Res. 323:11–25. 2006. View Article : Google Scholar

291 

Sasselli V, Pachnis V and Burns AJ: The enteric nervous system. Dev Biol. 366:64–73. 2012. View Article : Google Scholar : PubMed/NCBI

292 

Nagashimada M, Ohta H, Li C, Nakao K, Uesaka T, Brunet JF, Amiel J, Trochet D, Wakayama T and Enomoto H: Autonomic neurocristopathy-associated mutations in PHOX2B dysregulate Sox10 expression. J Clin Invest. 122:3145–3158. 2012. View Article : Google Scholar : PubMed/NCBI

293 

D'Autréaux F, Morikawa Y, Cserjesi P and Gershon MD: Hand2 is necessary for terminal differentiation of enteric neurons from crest-derived precursors but not for their migration into the gut or for formation of glia. Development. 134:2237–2249. 2007. View Article : Google Scholar : PubMed/NCBI

294 

D'Autréaux F, Margolis KG, Roberts J, Stevanovic K, Mawe G, Li Z, Karamooz N, Ahuja A, Morikawa Y, Cserjesi P, et al: Expression level of Hand2 affects specification of enteric neurons and gastrointestinal function in mice. Gastroenterology. 141:576–587. 587.e1–e6. 2011. View Article : Google Scholar : PubMed/NCBI

295 

Fu M, Vohra BP, Wind D and Heuckeroth RO: BMP signaling regulates murine enteric nervous system precursor migration, neurite fasciculation, and patterning via altered Ncam1 polysialic acid addition. Dev Biol. 299:137–150. 2006. View Article : Google Scholar : PubMed/NCBI

296 

Chalazonitis A, Pham TD, Li Z, Roman D, Guha U, Gomes W, Kan L, Kessler JA and Gershon MD: Bone morphogenetic protein regulation of enteric neuronal phenotypic diversity: Relationship to timing of cell cycle exit. J Comp Neurol. 509:474–492. 2008. View Article : Google Scholar : PubMed/NCBI

297 

Chalazonitis A, D'Autréaux F, Pham TD, Kessler JA and Gershon MD: Bone morphogenetic proteins regulate enteric gliogenesis by modulating ErbB3 signaling. Dev Biol. 350:64–79. 2011. View Article : Google Scholar :

298 

Chalazonitis A, Pham TD, Rothman TP, DiStefano PS, Bothwell M, Blair-Flynn J, Tessarollo L and Gershon MD: Neurotrophin-3 is required for the survival-differentiation of subsets of developing enteric neurons. J Neurosci. 21:5620–5636. 2001. View Article : Google Scholar : PubMed/NCBI

299 

Payette RF, Tennyson VM, Pomeranz HD, Pham TD, Rothman TP and Gershon MD: Accumulation of components of basal laminae: Association with the failure of neural crest cells to colonize the presumptive aganglionic bowel of ls/ls mutant mice. Dev Biol. 125:341–360. 1988. View Article : Google Scholar : PubMed/NCBI

300 

Parikh DH, Tam PK, Van Velzen D and Edgar D: Abnormalities in the distribution of laminin and collagen type IV in Hirschsprung's disease. Gastroenterology. 102:1236–1241. 1992. View Article : Google Scholar : PubMed/NCBI

301 

Akbareian SE, Nagy N, Steiger CE, Mably JD, Miller SA, Hotta R, Molnar D and Goldstein AM: Enteric neural crest-derived cells promote their migration by modifying their microenvironment through tenascin-C production. Dev Biol. 382:446–456. 2013. View Article : Google Scholar : PubMed/NCBI

302 

Nagy N, Mwizerwa O, Yaniv K, Carmel L, Pieretti-Vanmarcke R, Weinstein BM and Goldstein AM: Endothelial cells promote migration and proliferation of enteric neural crest cells via beta1 integrin signaling. Dev Biol. 330:263–272. 2009. View Article : Google Scholar : PubMed/NCBI

303 

Breau MA, Dahmani A, Broders-Bondon F, Thiery JP and Dufour S: Beta1 integrins are required for the invasion of the caecum and proximal hindgut by enteric neural crest cells. Development. 136:2791–2801. 2009. View Article : Google Scholar : PubMed/NCBI

304 

Soret R, Mennetrey M, Bergeron KF, Dariel A, Neunlist M, Grunder F, Faure C, Silversides DW and Pilon N: A collagen VI-dependent pathogenic mechanism for Hirschsprung's disease. J Clin Invest. 125:4483–4496. 2015. View Article : Google Scholar : PubMed/NCBI

305 

Nagy N, Barad C, Graham HK, Hotta R, Cheng LS, Fejszak N and Goldstein AM: Sonic hedgehog controls enteric nervous system development by patterning the extracellular matrix. Development. 143:264–275. 2016. View Article : Google Scholar :

306 

Chevalier NR, Gazguez E, Bidault L, Guilbert T, Vias C, Vian E, Watanabe Y, Muller L, Germain S, Bondurand N, et al: How tissue mechanical properties affect enteric neural crest cell migration. Sci Rep. 6:209272016. View Article : Google Scholar : PubMed/NCBI

307 

Anderson RB: Matrix metalloproteinase-2 is involved in the migration and network formation of enteric neural crest-derived cells. Int J Dev Biol. 54:63–69. 2010. View Article : Google Scholar

308 

Nagy N, Burns AJ and Goldstein AM: Immunophenotypic char-acterization of enteric neural crest cells in the developing avian colorectum. Dev Dyn. 241:842–851. 2012. View Article : Google Scholar : PubMed/NCBI

309 

Jackson SR, Guner YS, Woo R, Randolph LM, Ford H and Shin CE: L1CAM mutation in association with X-linked hydrocephalus and Hirschsprung's disease. Pediatr Surg Int. 25:823–825. 2009. View Article : Google Scholar : PubMed/NCBI

310 

Broders-Bondon F, Paul-Gilloteaux P, Carlier C, Radice GL and Dufour S: N-cadherin and β1-integrins cooperate during the development of the enteric nervous system. Dev Biol. 364:178–191. 2012. View Article : Google Scholar : PubMed/NCBI

311 

Jiang Y, Liu MT and Gershon MD: Netrins and DCC in the guidance of migrating neural crest-derived cells in the developing bowel and pancreas. Dev Biol. 258:364–384. 2003. View Article : Google Scholar : PubMed/NCBI

312 

Spouge D and Baird PA: Hirschsprung disease in a large birth cohort. Teratology. 32:171–177. 1985. View Article : Google Scholar : PubMed/NCBI

313 

Brooks AS, Oostra BA and Hofstra RM: Studying the genetics of Hirschsprung's disease: Unraveling an oligogenic disorder. Clin Genet. 67:6–14. 2005. View Article : Google Scholar

314 

Griseri P, Lantieri F, Puppo F, Bachetti T, Di Duca M, Ravazzolo R and Ceccherini I: A common variant located in the 3'UTR of the RET gene is associated with protection from Hirschsprung disease. Hum Mutat. 28:168–176. 2007. View Article : Google Scholar

315 

Gianino S, Grider JR, Cresswell J, Enomoto H and Heuckeroth RO: GDNF availability determines enteric neuron number by controlling precursor proliferation. Development. 130:2187–2198. 2003. View Article : Google Scholar : PubMed/NCBI

316 

Bondurand N, Natarajan D, Barlow A, Thapar N and Pachnis V: Maintenance of mammalian enteric nervous system progenitors by SOX10 and endothelin 3 signalling. Development. 133:2075–2086. 2006. View Article : Google Scholar : PubMed/NCBI

317 

Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A and Yanagisawa M: Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell. 79:1267–1276. 1994. View Article : Google Scholar : PubMed/NCBI

318 

Leibl MA, Ota T, Woodward MN, Kenny SE, Lloyd DA, Vaillant CR and Edgar DH: Expression of endothelin 3 by mesenchymal cells of embryonic mouse caecum. Gut. 44:2461999. View Article : Google Scholar : PubMed/NCBI

319 

Stanchina L, Baral V, Robert F, Pingault V, Lemort N, Pachnis V, Goossens M and Bondurand N: Interactions between Sox10, Edn3 and Ednrb during enteric nervous system and melanocyte development. Dev Biol. 295:232–249. 2006. View Article : Google Scholar : PubMed/NCBI

320 

Barlow AJ, Dixon J, Dixon M and Trainor PA: Tcof1 acts as a modifier of Pax3 during enteric nervous system development and in the pathogenesis of colonic aganglionosis. Hum Mol Genet. 22:1206–1217. 2013. View Article : Google Scholar : PubMed/NCBI

321 

Yamada K, Yamada Y, Nomura N, Miura K, Wakako R, Hayakawa C, Matsumoto A, Kumagai T, Yoshimura I, Miyazaki S, et al: Nonsense and frameshift mutations in ZFHX1B, encoding Smad-interacting protein 1, cause a complex developmental disorder with a great variety of clinical features. Am J Hum Genet. 69:1178–1185. 2001. View Article : Google Scholar : PubMed/NCBI

322 

Elworthy S, Pinto JP, Pettifer A, Cancela ML and Kelsh RN: Phox2b function in the enteric nervous system is conserved in zebrafish and is sox10-dependent. Mech Dev. 122:659–669. 2005. View Article : Google Scholar : PubMed/NCBI

323 

Goldstein AM, Brewer KC, Doyle AM, Nagy N and Roberts DJ: BMP signaling is necessary for neural crest cell migration and ganglion formation in the enteric nervous system. Mech Dev. 122:821–833. 2005. View Article : Google Scholar : PubMed/NCBI

324 

Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Préhu MO, Puliti A, Herbarth B, Hermans-Borgmeyer I, Legius E, Matthijs G, et al: SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet. 18:171–173. 1998. View Article : Google Scholar : PubMed/NCBI

325 

Niederreither K, Vermot J, Le Roux I, Schuhbaur B, Chambon P and Dollé P: The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development. 130:2525–2534. 2003. View Article : Google Scholar : PubMed/NCBI

326 

Xiao JB, Leng AM, Zhang YQ, Wen Z, He J and Ye GN: CUEDC2: Multifunctional roles in carcinogenesis. Front Biosci (Landmark Ed). 24:935–946. 2019. View Article : Google Scholar

327 

DeBerardinis RJ, Lum JJ, Hatzivassiliou G and Thompson CB: The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008. View Article : Google Scholar : PubMed/NCBI

328 

Sokic-Milutinovic A: Appropriate management of attenuated familial adenomatous polyposis: Report of a case and review of the literature. Dig Dis. 37:400–405. 2019. View Article : Google Scholar : PubMed/NCBI

329 

Schuster-Böckler B and Lehner B: Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature. 488:504–507. 2012. View Article : Google Scholar : PubMed/NCBI

330 

Khavari DA, Sen GL and Rinn JL: DNA methylation and epigenetic control of cellular differentiation. Cell Cycle. 9:3880–3883. 2010. View Article : Google Scholar : PubMed/NCBI

331 

Aranda P, Agirre X, Ballestar E, Andreu EJ, Román-Gómez J, Prieto I, Martin-Subero JI, Cigudosa JC, Siebert R, Esteller M and Prosper F: Epigenetic signatures associated with different levels of differentiation potential in human stem cells. PLoS One. 4:e78092009. View Article : Google Scholar : PubMed/NCBI

332 

Pierce GB: Neoplasms, differentiations and mutations. Am J Pathol. 77:103–118. 1974.PubMed/NCBI

333 

Pierce GB: The cancer cell and its control by the embryo. Rous-whipple award lecture. Am J Pathol. 113:117–124. 1983.PubMed/NCBI

334 

Hu M and Shivdasani RA: Overlapping gene expression in fetal mouse intestine development and human colorectal cancer. Cancer Res. 65:8715–8722. 2005. View Article : Google Scholar : PubMed/NCBI

335 

Kaiser S, Park YK, Franklin JL, Halberg RB, Yu M, Jessen WJ, Freudenberg J, Chen X, Haigis K, Jegga AG, et al: Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer. Genome Biol. 8:R1312007. View Article : Google Scholar : PubMed/NCBI

336 

Micalizzi DS, Farabaugh SM and Ford HL: Epithelial-mesenchymal transition in cancer: Parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 15:117–134. 2010. View Article : Google Scholar : PubMed/NCBI

337 

Arney KL and Fisher AG: Epigenetic aspects of differentiation. J Cell Sci. 117:4355–4363. 2004. View Article : Google Scholar : PubMed/NCBI

338 

Lemaire P, Darras S, Caillol D and Kodjabachian L: A role for the vegetally expressed Xenopus gene Mix.1 in endoderm formation and in the restriction of mesoderm to the marginal zone. Development. 125:2371–2380. 1998.PubMed/NCBI

339 

Costello I, Biondi CA, Taylor JM, Bikoff EK and Robertson EJ: Smad4-dependent pathways control basement membrane deposition and endodermal cell migration at early stages of mouse development. BMC Dev Biol. 9:542009. View Article : Google Scholar : PubMed/NCBI

340 

Abdul Khalek FJ, Gallicano GI and Mishra L: Colon cancer stem cells. Gastrointest Cancer Res. (Suppl 1): S16–S23. 2010.

341 

Leedham SJ, Brittan M, McDonald SA and Wright NA: Intestinal stem cells. J Cell Mol Med. 9:11–24. 2005. View Article : Google Scholar : PubMed/NCBI

342 

Gostjeva EV, Zukerberg L, Chung D and Thilly WG: Bell-shaped nuclei dividing by symmetrical and asymmetrical nuclear fission have qualities of stem cells in human colonic embryogenesis and carcinogenesis. Cancer Genet Cytogenet. 164:16–24. 2006. View Article : Google Scholar

343 

Manzo G: Similarities between embryo development and cancer process suggest new strategies for research and therapy of tumors: A new point of view. Front Cell Dev Biol. 7:202019. View Article : Google Scholar : PubMed/NCBI

344 

Giles RH, van Es JH and Clevers H: Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. 1653:1–24. 2003.PubMed/NCBI

345 

Moon BS, Jeong WJ, Park J, Kim TI, Min do S and Choi KY: Role of oncogenic K-Ras in cancer stem cell activation by aberrant Wnt/β-catenin signaling. J atl Cancer Inst. 106:djt3732014.

346 

Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, Apuzzo T, Sperduti I, Volpe S, Cocorullo G, et al: CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. 14:342–356. 2014. View Article : Google Scholar : PubMed/NCBI

347 

Lopes EC, Valls E, Figueroa ME, Mazur A, Meng FG, Chiosis G, Laird PW, Schreiber-Agus N, Greally JM, Prokhortchouk E and Melnick A: Kaiso contributes to DNA methylation-dependent silencing of tumor suppressor genes in colon cancer cell lines. Cancer Res. 68:7258–7263. 2008. View Article : Google Scholar : PubMed/NCBI

348 

Ouko L, Ziegler TR, Gu LH, Eisenberg LM and Yang VW: Wnt11 signaling promotes proliferation, transformation, and migration of IEC6 intestinal epithelial cells. J Biol Chem. 279:26707–26715. 2004. View Article : Google Scholar : PubMed/NCBI

349 

Pan D: The hippo signaling pathway in development and cancer. Dev Cell. 19:491–505. 2010. View Article : Google Scholar : PubMed/NCBI

350 

Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin MF and Taketo MM: Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell. 92:645–656. 1998. View Article : Google Scholar : PubMed/NCBI

351 

Lombardo Y, Scopelliti A, Cammareri P, Todaro M, Iovino F, Ricci-Vitiani L, Gulotta G, Dieli F, de Maria R and Stassi G: Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology. 140:297–309. 2011. View Article : Google Scholar

352 

Peinado H, Olmeda D and Cano A: Snail, Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype? Nat Rev Cancer. 7:415–428. 2007. View Article : Google Scholar : PubMed/NCBI

353 

De Craene B, Gilbert B, Stove C, Bruyneel E, van Roy F and Berx G: The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res. 65:6237–6244. 2005. View Article : Google Scholar : PubMed/NCBI

354 

Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A and Weinberg RA: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 117:927–939. 2004. View Article : Google Scholar : PubMed/NCBI

355 

Pellegrinet L, Rodilla V, Liu Z, Chen S, Koch U, Espinosa L, Kaestner KH, Kopan R, Lewis J and Radtke F: Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology. 140:1230–1240. e1–e7. 2011. View Article : Google Scholar : PubMed/NCBI

356 

Hwang WL, Jiang JK, Yang SH, Huang TS, Lan HY, Teng HW, Yang CY, Tsai YP, Lin CH, Wang HW and Yang MH: MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 16:268–280. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A and Tsiaoussis J: Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int J Mol Med 46: 27-57, 2020.
APA
Kostouros, A., Koliarakis, I., Natsis, K., Spandidos, D.A., Tsatsakis, A., & Tsiaoussis, J. (2020). Large intestine embryogenesis: Molecular pathways and related disorders (Review). International Journal of Molecular Medicine, 46, 27-57. https://doi.org/10.3892/ijmm.2020.4583
MLA
Kostouros, A., Koliarakis, I., Natsis, K., Spandidos, D. A., Tsatsakis, A., Tsiaoussis, J."Large intestine embryogenesis: Molecular pathways and related disorders (Review)". International Journal of Molecular Medicine 46.1 (2020): 27-57.
Chicago
Kostouros, A., Koliarakis, I., Natsis, K., Spandidos, D. A., Tsatsakis, A., Tsiaoussis, J."Large intestine embryogenesis: Molecular pathways and related disorders (Review)". International Journal of Molecular Medicine 46, no. 1 (2020): 27-57. https://doi.org/10.3892/ijmm.2020.4583
Copy and paste a formatted citation
x
Spandidos Publications style
Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A and Tsiaoussis J: Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int J Mol Med 46: 27-57, 2020.
APA
Kostouros, A., Koliarakis, I., Natsis, K., Spandidos, D.A., Tsatsakis, A., & Tsiaoussis, J. (2020). Large intestine embryogenesis: Molecular pathways and related disorders (Review). International Journal of Molecular Medicine, 46, 27-57. https://doi.org/10.3892/ijmm.2020.4583
MLA
Kostouros, A., Koliarakis, I., Natsis, K., Spandidos, D. A., Tsatsakis, A., Tsiaoussis, J."Large intestine embryogenesis: Molecular pathways and related disorders (Review)". International Journal of Molecular Medicine 46.1 (2020): 27-57.
Chicago
Kostouros, A., Koliarakis, I., Natsis, K., Spandidos, D. A., Tsatsakis, A., Tsiaoussis, J."Large intestine embryogenesis: Molecular pathways and related disorders (Review)". International Journal of Molecular Medicine 46, no. 1 (2020): 27-57. https://doi.org/10.3892/ijmm.2020.4583
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team