Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2020 Volume 46 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 46 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

A dissection of SARS‑CoV2 with clinical implications (Review)

  • Authors:
    • Felician Stancioiu
    • Georgios Z. Papadakis
    • Stelios Kteniadakis
    • Boris Nikovaevich Izotov
    • Michael D. Coleman
    • Demetrios A. Spandidos
    • Aristidis Tsatsakis
  • View Affiliations / Copyright

    Affiliations: Bio‑Forum Foundation, 030121 Bucharest, Romania, Department of Radiology, Medical School, University of Crete, 71003 Heraklion, Greece, Emergency Department, Venizeleion General Hospital, 71409 Heraklion, Greece, Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119991 Moscow, Russia, School of Life and Health Sciences, Aston University, B4 7ET Birmingham, UK, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
    Copyright: © Stancioiu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 489-508
    |
    Published online on: June 10, 2020
       https://doi.org/10.3892/ijmm.2020.4636
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

We are being confronted with the most consequential pandemic since the Spanish flu of 1918‑1920 to the extent that never before have 4 billion people quarantined simultaneously; to address this global challenge we bring to the forefront the options for medical treatment and summarize SARS‑CoV2 structure and functions, immune responses and known treatments. Based on literature and our own experience we propose new interventions, including the use of amiodarone, simvastatin, pioglitazone and curcumin. In mild infections (sore throat, cough) we advocate prompt local treatment for the naso‑pharynx (inhalations; aerosols; nebulizers); for moderate to severe infections we propose a tried‑and‑true treatment: the combination of arginine and ascorbate, administered orally or intravenously. The material is organized in three sections: i) Clinical aspects of COVID‑19; acute respiratory distress syndrome (ARDS); known treatments; ii) Structure and functions of SARS‑CoV2 and proposed antiviral drugs; iii) The combination of arginine‑ascorbate.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Wu Z and McGoogan JM: Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 323:1239–1242. 2020. View Article : Google Scholar

2 

Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, et al: Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med. 8:475–481. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Li JY, You Z, Wang Q, Zhou ZJ, Qiu Y, Luo R and Ge XY: The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future. Microbes Infect. 22:80–85. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Li Zhang, L Zhou X, Du C, et al: Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. Mar 13–2020.2020 (Epub ahead of print). View Article : Google Scholar :

5 

Grasselli G, Pesenti A and Cecconi M: Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: Early experience and forecast during an emergency response. JAMA. 323:15452020. View Article : Google Scholar

6 

Goumenou M, Sarigiannis D, Tsatsakis A, Anesti O, Docea AO, Petrakis D, Tsoukalas D, Kostoff R, Rakitskii V, Spandidos DA, et al: COVID-19 in Northern Italy: An integrative overview of factors possibly influencing the sharp increase of the outbreak (Review). Mol Med Rep. 22:20–32. 2020.PubMed/NCBI

7 

Petrakis D, Margină D, Tsarouhas K, Tekos F, Stan M, Nikitovic D, Kouretas D, Spandidos DA and Tsatsakis A: Obesity - a risk factor for increased COVID-19 prevalence, severity and lethality (Review). Mol Med Rep. 22:9–19. 2020.PubMed/NCBI

8 

Docea AO, Tsatsakis A, Albulescu D, Cristea O, Zlatian O, Vinceti M, Moschos SA, Tsoukalas D, Goumenou M, Drakoulis N, et al: A new threat from an old enemy: Re-emergence of coronavirus (Review). Int J Mol Med. 45:1631–1643. 2020.PubMed/NCBI

9 

Kluge S, Janssens U, Welte T, Weber-Carstens S, Marx G and Karagiannidis C: German recommendations for critically ill patients with COVID-19. Med Klin Intensivmed Notfmed. Apr 14–2020.Epub ahead of print. View Article : Google Scholar

10 

Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, Greninger AL, Pipavath S, Wurfel MM, Evans L, et al: Covid-19 in critically ill patients in the Seattle region - case series. N Engl J Med. 382:2012–2022. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Farsalinos K, Niaura R, Le Houezec J, Barbouni A, Tsatsakis A, Kouretas D, Vantarakis A and Poulas K: Editorial: Nicotine and SARS-CoV-2: COVID-19 may be a disease of the nicotinic cholinergic system. Toxicol Rep. 7:658–663. 2020. View Article : Google Scholar :

12 

Calfee CS, Delucchi K, Parsons PE, Thompson BT and Ware LB: Subphenotypes in acute respiratory distress syndrome: Latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2:611–620. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Wilson JG and Calfee CS: ARDS subphenotypes: Understanding a heterogeneous syndrome. Crit Care. 24:1022020. View Article : Google Scholar : PubMed/NCBI

14 

Famous KR, Delucchi K, Ware LB, Kangelaris KN, Liu KD and Thompson BT: Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 195:331–338. 2017. View Article : Google Scholar :

15 

Calfee CS, Delucchi KL, Sinha P, Matthay MA, Hackett J, Shankar-Hari M, McDowell C, Laffey JG, O′Kane CM, McAuley DF, et al Irish Critical Care Trials Group: Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: Secondary analysis of a randomised controlled trial. Lancet Respir Med. 6:691–698. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Sinha P, Delucchi KL, Thompson BT, McAuley DF and Matthay MA: Latent class analysis of ARDS subphenotypes: A secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Med. 44:1859–1869. 2018. View Article : Google Scholar : PubMed/NCBI

17 

de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van Nieuwkoop S, Bestebroer TM, van den Hoogen BG, Neyts J and Snijder EJ: Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. 58:4875–4884. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Cascella M, Rajnik M, Cuomo A, Dulebohn SC and Di Napoli R: Features, evaluation and treatment coronavirus (COVID-19). StatPearls [Internet] Treasure Island (FL): StatPearls Publishing; 2020 Jan. PubMed/NCBIhttps://www.ncbi.nlm.nih.gov/books/NBK554776.

19 

Neagu M, Bostan M and Constantin C: Protein microarray technology: Assisting personalized medicine in oncology (Review). World Acad Sci J. 1:113–124. 2019.

20 

Levitt JE and Rogers AJ: Proteomic study of acute respiratory distress syndrome: Current knowledge and implications for drug development. Expert Rev Proteomics. 13:457–469. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Meyer NJ, Reilly JP, Anderson BJ, Palakshappa JA, Jones TK, Dunn TG, Shashaty MGS, Feng R, Christie JD and Opal SM: Mortality benefit of recombinant human interleukin-1 receptor antagonist for sepsis varies by initial interleukin-1 receptor antagonist plasma concentration. Crit Care Med. 46:21–28. 2018. View Article : Google Scholar

22 

Brandes M, Klauschen F, Kuchen S and Germain RN: A systems analysis identifies a feed forward inflammatory circuit leading to lethal influenza infection. Cell. 154:197–212. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Bowen JR, Ferris MT and Suthar MS: Systems biology: A tool for charting the antiviral landscape. Virus Res. 218:2–9. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Kindler E, Thiel V and Weber F: Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res. 96:219–243. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK and Perlman S: Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 19:181–193. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Baughman RP, Gunther KL, Rashkin MC, Keeton DA and Pattishall EN: Changes in the inflammatory response of the lung during acute respiratory distress syndrome: Prognostic indicators. Am J Respir Crit Care Med. 154:76–81. 1996. View Article : Google Scholar : PubMed/NCBI

27 

Kast RE: Dapsone as treatment adjunct in ARDS. Exp Lung Res. 46:157–161. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Coleman MD, Rhodes LE, Scott AK, Verbov JL, Friedmann PS, Breckenridge AM and Park BK: The use of cimetidine to reduce dapsone-dependent methaemoglobinaemia in dermatitis herpetiformis patients. Br J Clin Pharmacol. 34:244–249. 1992. View Article : Google Scholar : PubMed/NCBI

29 

Meo SA, Alhowikan AM, Al-Khlaiwi T, Meo IM, Halepoto DM, Iqbal M, Usmani AM, Hajjar W and Ahmed N: Novel coronavirus 2019-nCoV: Prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci. 24:2012–2019. 2020.PubMed/NCBI

30 

Nitulescu GM, Paunescu H, Moschos SA, Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK, Drakoulis N and Tsatsakis A: Comprehensive analysis of drugs to treat SARS-CoV-2 infection: Mechanistic insights into current COVID-19 therapies (Review). Int J Mol Med. 46:467–488. 2020.

31 

Tsatsakis A, Petrakis D, Nikolouzakis TK, Docea AO, Calina D, Vinceti M, Goumenou M, Kostoff RN, Mamoulakis C, Aschner M, et al: COVID-19, an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. Food Chem Toxicol. 141:1114182020. View Article : Google Scholar : PubMed/NCBI

32 

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al: Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 395:565–574. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J, et al: Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 27:325–328. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Sah R, Rodriguez-Morales AJ, Jha R, Chu DKW, Gu H, Peiris M, Bastola A, Lal BK, Ojha HC, Rabaan AA, et al: Complete genome sequence of a 2019 novel coronavirus (SARS-CoV-2) strain isolated in Nepal. Microbiol Resour Announc. 9:92020. View Article : Google Scholar

35 

Cui J, Li F and Shi ZL: Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 17:181–192. 2019. View Article : Google Scholar

36 

Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, Wang Y and Guo X: Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses. 12:122020. View Article : Google Scholar

37 

Liu W and Li H: COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv. 2020, Preprint. https://doi.org/10.26434/chemrxiv.11938173.v8.

38 

Yang Q, Bai S-Y, Li L-F, Li S, Zhang Y, Munir M and Qiu H-J: Human hemoglobin subunit beta functions as a pleiotropic regulator of RIG-I/MDA5-mediated antiviral innate immune responses. J Virol. 93:932019. View Article : Google Scholar

39 

Li T, Lu H and Zhang W: Clinical observation and management of COVID-19 patients. Emerg Microbes Infect. 9:687–690. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Wan Y, Shang J, Graham R, Baric RS and Li F: Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J Virol. 94:942020. View Article : Google Scholar

41 

Xie M and Chen Q: Insight into 2019 novel coronavirus - An updated interim review and lessons from SARS-CoV and MERS-CoV. Int J Infect Dis. 94:119–124. 2020. View Article : Google Scholar : PubMed/NCBI

42 

Hwang SS, Lim J, Yu Z, Kong P, Sefik E, Xu H, Harman CCD, Kim LK, Lee GR, Li HB and Flavell RA: mRNA destabilization by BTG1 and BTG2 maintains T cell quiescence. Science. 367:1255–1260. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG and Decroly E: The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 176:1047422020. View Article : Google Scholar : PubMed/NCBI

44 

Kawase M, Shirato K, van der Hoek L, Taguchi F and Matsuyama S: Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol. 86:6537–6545. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–280.e8. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, et al: Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 30:343–355. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Millet JK and Whittaker GR: Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology. 517:3–8. 2018. View Article : Google Scholar

48 

Totura AL and Bavari S: Broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov. 14:397–412. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Amatngalim GD and Hiemstra PS: Airway epithelial cell function and respiratory host defense in chronic obstructive pulmonary disease. Chin Med J (Engl). 131:1099–1107. 2018. View Article : Google Scholar

50 

Chiang JJ, Davis ME and Gack MU: Regulation of RIG-I-like receptor signaling by host and viral proteins. Cytokine Growth Factor Rev. 25:491–505. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Schneider WM, Chevillotte MD and Rice CM: Interferonstimulated genes: A complex web of host defenses. Annu Rev Immunol. 32:513–545. 2014. View Article : Google Scholar

52 

Takeuchi O and Akira S: Pattern recognition receptors and inflammation. Cell. 140:805–820. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, et al: Peroxisomes are signaling platforms for antiviral innate immunity. Cell. 141:668–681. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Kindler E, Gil-Cruz C, Spanier J, Li Y, Wilhelm J, Rabouw HH, Züst R, Hwang M, V'kovski P, Stalder H, et al: Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathog. 13:e10061952017. View Article : Google Scholar : PubMed/NCBI

55 

Cao W, Bao C, Padalko E and Lowenstein CJ: Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J Exp Med. 205:1491–1503. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Zhou Y, He C, Wang L and Ge B: Post-translational regulation of antiviral innate signaling. Eur J Immunol. 47:1414–1426. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Quicke KM, Diamond MS and Suthar MS: Negative regulators of the RIG-I-like receptor signaling pathway. Eur J Immunol. 47:615–628. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG and Nichol ST: Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2:692005. View Article : Google Scholar : PubMed/NCBI

59 

Samarth S and McGregor K: Energetics based modeling of hydroxychloroquine and azithromycin binding to the SARS-CoV-2 spike (S)protein - ACE2 complex. ChemRxiv. 2020, Preprint. https://doi.org/10.26434/chemrxiv.12015792.v2.

60 

Arya R, Das A, Prashar V and Kumar M: Potential inhibitors against papain-like protease of novel coronavirus (SARS-CoV-2) from FDA approved drugs. ChemrxivOrg. 1–8. 2020. View Article : Google Scholar

61 

Dyall J, Gross R, Kindrachuk J, Johnson RF, Olinger GG Jr, Hensley LE, Frieman MB and Jahrling PB: Middle East respiratory syndrome and severe acute respiratory syndrome: Current therapeutic options and potential targets for novel therapies. Drugs. 77:1935–1966. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Choudhary S, Malik YS and Tomar S: Identification of SARS-CoV-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach. ChemRxiv. 2020. View Article : Google Scholar

63 

Farag A, Wang P, Boys IN, Eitson J, Ohlson MB, Fan W, McDougal MB, Ahmed M and Schoggins JW: Identification of atovaquone, quabain and mebendazole as FDA approved drugs Tar-geting SARS-CoV-2 (Version 4). 2020, ChemRxiv. Preprint https://doi.org/10.26434/chemrxiv.12003930.v4.

64 

Navan C: Possible Drug Candidates for COVID-19. ChemRxiv. 2020, Preprint. https://doi.org/10.26434/chemrxiv.11985231.v1.

65 

Bag A and Bag A: Treatment of COVID-19 patients: Justicia adhatoda leaves extract is a strong remedy for COVID-19- Case report analysis and docking based study. ChemRxiv. 2020, Preprint. https://doi.org/10.26434/chemrxiv.12038604.v1.

66 

Coleman CM, Sisk JM, Mingo RM, Nelson EA, White JM and Frieman MB: Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion. J Virol. 90:8924–8933. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Sisk JM, Frieman MB and Machamer CE: Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. J Gen Virol. 99:619–630. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Salim B and Noureddine M: Identification of compounds from Nigella sativa as new potential inhibitors of 2019 novel corona virus (Covid-19): Molecular docking study. ChemRxiv. 2020, Preprint. https://doi.org/10.26434/chemrxiv.12055716.v1.

69 

Pendyala B and Patras A: In silico screening of food bioactive compounds to predict potential inhibitors of COVID-19 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). ChemRxiv Preprint. https://doi.org/10.26434/chemrxiv.12051927.v2.

70 

Mohammadi N: Inhibitory effect of eight secondary metabolites from conventional medicinal plants on COVID-19 virus protease by molecular docking analysis. ChemRxiv. 2020, Preprint. https://doi.org/10.26434/chemrxiv.11987475.v1.

71 

Bosch BJ, Martina BEE, Van Der Zee R, Lepault J, Haijema BJ, Versluis C, Heck AJ, De Groot R, Osterhaus AD and Rottier PJ: Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc Natl Acad Sci USA. 101:8455–8460. 2004. View Article : Google Scholar : PubMed/NCBI

72 

Yang Z-Y, Huang Y, Ganesh L, Leung K, Kong WP, Schwartz O, Subbarao K and Nabel GJ: pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol. 78:5642–5650. 2004. View Article : Google Scholar : PubMed/NCBI

73 

Zhao J, Wohlford-Lenane C, Zhao J, Fleming E, Lane TE, McCray PB Jr and Perlman S: Intranasal treatment with poly(I•C) protects aged mice from lethal respiratory virus infections. J Virol. 86:11416–11424. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Mian MF, Ahmed AN, Rad M, Babaian A, Bowdish D and Ashkar AA: Length of dsRNA (poly I:C) drives distinct innate immune responses, depending on the cell type. J Leukoc Biol. 94:1025–1036. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Cameron A, Appel J, Houghten RA and Lindberg I: Polyarginines are potent furin inhibitors. J Biol Chem. 275:36741–36749. 2000. View Article : Google Scholar : PubMed/NCBI

76 

Channappanavar R, Lu L, Xia S, Du L, Meyerholz DK, Perlman S and Jiang S: Protective effect of intranasal regimens containing peptidic Middle East respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection. - Abstract - Europe PMC. https://europepmc.org/article/med/26164863.

77 

Zhou H, Zhao J and Perlman S: Autocrine interferon priming in macrophages but not dendritic cells results in enhanced cytokine and chemokine production after coronavirus infection. MBio. 1:12010. View Article : Google Scholar

78 

Iwasaki A and Medzhitov R: Regulation of adaptive immunity by the innate immune system. Science. 327:291–295. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Sainz B Jr, Mossel EC, Peters CJ and Garry RF: Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology. 329:11–17. 2004. View Article : Google Scholar : PubMed/NCBI

80 

Der SD, Zhou A, Williams BRG and Silverman RH: Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proc Natl Acad Sci USA. 95:15623–15628. 1998. View Article : Google Scholar

81 

Bauman DR, Bitmansour AD, McDonald JG, Thompson BM, Liang G and Russell DW: 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proc Natl Acad Sci USA. 106:16764–16769. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Mantovani A, Biswas SK, Galdiero MR, Sica A and Locati M: Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 229:176–185. 2013. View Article : Google Scholar

83 

Gralinski LE and Baric RS: Molecular pathology of emerging coronavirus infections. J Pathol. 235:185–195. 2015. View Article : Google Scholar

84 

de Wilde AH, Wannee KF, Scholte FEM, Goeman JJ, Ten Dijke P, Snijder EJ, Kikkert M and van Hemert MJ: A kinome-wide small interfering RNA screen identifies proviral and antiviral host factors in severe acute respiratory syndrome coronavirus replication, including double-stranded RNA-activated protein kinase and early secretory pathway proteins. J Virol. 89:8318–8333. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Newton DA, Rao KMK, Dluhy RA and Baatz JE: Hemoglobin is expressed by alveolar epithelial cells. J Biol Chem. 281:5668–5676. 2006. View Article : Google Scholar : PubMed/NCBI

86 

Aldajani WA, Salazar F, Sewell HF, Knox A and Ghaemmaghami AM: Expression and regulation of immunemodulatory enzyme indoleamine 2,3-dioxygenase (IDO) by human airway epithelial cells and its effect on T cell activation. Oncotarget. 7:57606–57617. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Mondanelli G, Bianchi R, Pallotta MT, Orabona C, Albini E, Iacono A, Belladonna ML, Vacca C, Fallarino F, Macchiarulo A, et al: A relay pathway between arginine and tryptophan metabolism confers immunosuppressive properties on dendritic cells. Immunity. 46:233–244. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Nordgren M and Fransen M: Peroxisomal metabolism and oxidative stress. Biochimie. 98:56–62. 2014. View Article : Google Scholar

89 

Titorenko VI and Terlecky SR: Peroxisome metabolism and cellular aging. Traffic. 12:252–259. 2011. View Article : Google Scholar :

90 

Xu Z, Lodge R, Power C, Cohen EA and Hobman TC: The HIV-1 accessory protein vpu downregulates peroxisome biogenesis. MBio. 11:112020. View Article : Google Scholar

91 

Zheng C and Su C: Herpes simplex virus 1 infection dampens the immediate early antiviral innate immunity signaling from peroxisomes by tegument protein VP16. Virol J. 14:352017. View Article : Google Scholar : PubMed/NCBI

92 

Ferreira AR, Marques M and Ribeiro D: Peroxisomes and innate immunity: Antiviral response and beyond. Int J Mol Sci. 20:202019. View Article : Google Scholar

93 

Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, Spandidos DA, Aaseth J, et al: Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). Int J Mol Med. 46:17–26. 2020.

94 

Gastaminza P, Whitten-Bauer C and Chisari FV: Unbiased probing of the entire hepatitis C virus life cycle identifies clinical compounds that target multiple aspects of the infection. Proc Natl Acad Sci USA. 107:291–296. 2010. View Article : Google Scholar

95 

Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL and Bates P: Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA. 102:11876–11881. 2005. View Article : Google Scholar : PubMed/NCBI

96 

Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C and Rouillé Y: Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol. 80:6964–6972. 2006. View Article : Google Scholar : PubMed/NCBI

97 

Trevani AS, Andonegui G, Giordano M, López DH, Gamberale R, Minucci F and Geffner JR: Extracellular acidification induces human neutrophil activation. J Immunol. 162:4849–4857. 1999.PubMed/NCBI

98 

Rotstein OD, Fiegel VD, Simmons RL and Knighton DR: The deleterious effect of reduced pH and hypoxia on neutrophil migration in vitro. J Surg Res. 45:298–303. 1988. View Article : Google Scholar : PubMed/NCBI

99 

Lardner A: The effects of extracellular pH on immune function. J Leukoc Biol. 69:522–530. 2001.PubMed/NCBI

100 

Simchowitz L: Intracellular pH modulates the generation of superoxide radicals by human neutrophils. J Clin Invest. 76:1079–1089. 1985. View Article : Google Scholar : PubMed/NCBI

101 

Severin T, Müller B, Giese G, Uhl B, Wolf B, Hauschildt S and Kreutz W: pH-dependent LAK cell cytotoxicity. Tumour Biol. 15:304–310. 1994. View Article : Google Scholar : PubMed/NCBI

102 

Kellum JA, Song M and Li J: Science review: extracellular acidosis and the immune response: clinical and physiologic implications. Crit Care. 8:331–336. 2004. View Article : Google Scholar : PubMed/NCBI

103 

Hamdullah KS, Tanzila A, Zainab Sher M, Iqra A and Mohtasheemul H: pH dependent differential binding behavior of protease inhibitor molecular drugs for SARS-COV-2. ChemRxiv. 2020, Preprint. https://doi.org/10.26434/chemrxiv.12009018.v1.

104 

Leneva IA, Russell RJ, Boriskin YS and Hay AJ: Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antiviral Res. 81:132–140. 2009. View Article : Google Scholar

105 

Bhargava M, Becker TL, Viken KJ, Jagtap PD, Dey S, Steinbach MS, Wu B, Kumar V, Bitterman PB, Ingbar DH, et al: Proteomic profiles in acute respiratory distress syndrome differentiates survivors from non-survivors. PLoS One. 9:e1097132014. View Article : Google Scholar : PubMed/NCBI

106 

Shortt K, Chaudhary S, Grigoryev D, Heruth DP, Venkitachalam L, Zhang LQ and Ye SQ: Identification of novel single nucleotide polymorphisms associated with acute respiratory distress syndrome by exome-seq. PLoS One. 9:e1119532014. View Article : Google Scholar : PubMed/NCBI

107 

Tejera P, Meyer NJ, Chen F, Feng R, Zhao Y, O′Mahony DS, Li L, Sheu CC, Zhai R, Wang Z, et al: Distinct and replicable genetic risk factors for acute respiratory distress syndrome of pulmonary or extrapulmonary origin. J Med Genet. 49:671–680. 2012. View Article : Google Scholar : PubMed/NCBI

108 

Lynn H, Sun X, Casanova N, Gonzales-Garay M, Bime C and Garcia JGN: Genomic and genetic approaches to deciphering acute respiratory distress syndrome risk and mortality. Antioxid Redox Signal. 31:1027–1052. 2019. View Article : Google Scholar : PubMed/NCBI

109 

Marshall RP, Webb S, Bellingan GJ, Montgomery HE, Chaudhari B, McAnulty RJ, Humphries SE, Hill MR and Laurent GJ: Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med. 166:646–650. 2002. View Article : Google Scholar : PubMed/NCBI

110 

Itoyama S, Keicho N, Quy T, Phi NC, Long HT, Ha LD, Ban VV, Ohashi J, Hijikata M, Matsushita I, et al: ACE1 polymorphism and progression of SARS. Biochem Biophys Res Commun. 323:1124–1129. 2004. View Article : Google Scholar : PubMed/NCBI

111 

Chan KCA, Tang NLS, Hui DSC, Chung GT, Wu AK, Chim SS, Chiu RW, Lee N, Choi KW, Sung YM, et al: Absence of association between angiotensin converting enzyme polymorphism and development of adult respiratory distress syndrome in patients with severe acute respiratory syndrome: A case control study. BMC Infect Dis. 5:262005. View Article : Google Scholar : PubMed/NCBI

112 

Fourrier F, Chopin C, Wallaert B, Wattre P, Mangalaboyi J, Durocher A, Dubois D and Wattel F: Angiotensin-converting enzyme in human adult respiratory distress syndrome. Chest. 83:593–597. 1983. View Article : Google Scholar : PubMed/NCBI

113 

Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, et al: Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 436:112–116. 2005. View Article : Google Scholar : PubMed/NCBI

114 

Arndt PG, Young SK, Poch KR, Nick JA, Falk S, Schrier RW and Worthen GS: Systemic inhibition of the angiotensin-converting enzyme limits lipopolysaccharide-induced lung neutrophil recruitment through both bradykinin and angiotensin II-regulated pathways. J Immunol. 177:7233–7241. 2006. View Article : Google Scholar : PubMed/NCBI

115 

Kim J, Choi SM, Lee J, Park YS, Lee CH, Yim JJ, Yoo CG, Kim YW, Han SK and Lee SM: Effect of renin-angiotensin system blockage in patients with acute respiratory distress syndrome: A retrospective case control study. Korean J Crit Care Med. 32:154–163. 2017. View Article : Google Scholar : PubMed/NCBI

116 

Wevers BA and van der Hoek L: Renin-angiotensin system in human coronavirus pathogenesis. Future Virol. 5:145–161. 2010. View Article : Google Scholar : PubMed/NCBI

117 

Chappell MC: Angiotensin-(17) and the regulation of anti-fibrotic signaling pathways. J Cell Signal. 2:1342017. View Article : Google Scholar

118 

El-Hashim AZ, Renno WM, Raghupathy R, Abduo HT, Akhtar S and Benter IF: Angiotensin-(17) inhibits allergic inflammation, via the MAS1 receptor, through suppression of ERK1/2- and NF-κB-dependent pathways. Br J Pharmacol. 166:1964–1976. 2012. View Article : Google Scholar : PubMed/NCBI

119 

Manolis AJ, Marketou ME, Gavras I and Gavras H: Cardioprotective properties of bradykinin: Role of the B(2) receptor. Hypertens Res. 33:772–777. 2010. View Article : Google Scholar : PubMed/NCBI

120 

Adam A, Cugno M, Molinaro G, Perez M, Lepage Y and Agostoni A: Aminopeptidase P in individuals with a history of angio-oedema on ACE inhibitors. Lancet. 359:2088–2089. 2002. View Article : Google Scholar : PubMed/NCBI

121 

Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT and Holmes KV: Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 357:420–422. 1992. View Article : Google Scholar : PubMed/NCBI

122 

Morris SM Jr: Arginine: Master and commander in innate immune responses. Sci Signal. 3:pe272010. View Article : Google Scholar : PubMed/NCBI

123 

Keyaerts E, Vijgen L, Chen L, Maes P, Hedenstierna G and Van Ranst M: Inhibition of SARS-coronavirus infection in vitro by S-nitroso-N- acetylpenicillamine, a nitric oxide donor compound. International Journal of Infectious Diseases Int J Infect Dis. 8:223–226. 2004. View Article : Google Scholar

124 

Akerström S, Mousavi-Jazi M, Klingström J, Leijon M, Lundkvist A and Mirazimi A: Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol. 79:1966–1969. 2005. View Article : Google Scholar : PubMed/NCBI

125 

Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H and Doerr HW: Treatment of SARS with human interferons. Lancet. 362:293–294. 2003. View Article : Google Scholar : PubMed/NCBI

126 

Karupiah G, Xie QW, Buller RML, Nathan C, Duarte C and MacMicking JD: Inhibition of viral replication by interferon-γ-induced nitric oxide synthase. Science. 261:1445–1448. 1993. View Article : Google Scholar : PubMed/NCBI

127 

Burrack KS and Morrison TE: The role of myeloid cell activation and arginine metabolism in the pathogenesis of virus-induced diseases. Front Immunol. 5:4282014. View Article : Google Scholar : PubMed/NCBI

128 

Munder M, Schneider H, Luckner C, Giese T, Langhans CD, Fuentes JM, Kropf P, Mueller I, Kolb A, Modolell M, et al: Suppression of T-cell functions by human granulocyte arginase. Blood. 108:1627–1634. 2006. View Article : Google Scholar : PubMed/NCBI

129 

Racké K and Warnken M: L-Arginine metabolic pathways. The Open Nitric Oxide Journal. 2:pp. 9–19. 2010, https://benthamopen.com/contents/pdf/TONOJ/TONOJ-2-9.pdf. View Article : Google Scholar

130 

Gournas C, Papageorgiou I and Diallinas G: The nucleobaseascorbate transporter (NAT) family: Genomics, evolution, structure-function relationships and physiological role. Mol Biosyst. 4:404–416. 2008. View Article : Google Scholar : PubMed/NCBI

131 

Carr AC and Maggini S: Vitamin C and immune function. Nutrients. 9:92017. View Article : Google Scholar

132 

García-Bailo B, Roke K, Mutch DM, El-Sohemy A and Badawi A: Association between circulating ascorbic acid, α-tocopherol, 25-hydroxyvitamin D, and plasma cytokine concentrations in young adults: A cross-sectional study. Nutr Metab (Lond). 9:1022012. View Article : Google Scholar

133 

Wu G and Morris SM Jr: Arginine metabolism: Nitric oxide and beyond. Biochem J. 336:1–17. 1998. View Article : Google Scholar : PubMed/NCBI

134 

Scheit K and Bauer G: Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis. Anticancer Res. 34:5337–5350. 2014.PubMed/NCBI

135 

Thomas SR, Mohr D and Stocker R: Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-gamma primed mononuclear phagocytes. J Biol Chem. 269:14457–14464. 1994.PubMed/NCBI

136 

Shi HP, Efron DT, Most D, Tantry US and Barbul A: Supplemental dietary arginine enhances wound healing in normal but not inducible nitric oxide synthase knockout mice. Surgery. 128:374–378. 2000. View Article : Google Scholar : PubMed/NCBI

137 

Rodriguez PC, Quiceno DG and Ochoa AC: L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood. 109:1568–1573. 2007. View Article : Google Scholar

138 

Ochoa JB, Strange J, Kearney P, Gellin G, Endean E and Fitzpatrick E: Effects of L-arginine on the proliferation of T lymphocyte subpopulations. JPEN J Parenter Enteral Nutr. 25:23–29. 2001. View Article : Google Scholar : PubMed/NCBI

139 

de Jonge WJ, Kwikkers KL, te Velde AA, van Deventer SJ, Nolte MA, Mebius RE, Ruijter JM, Lamers MC and Lamers WH: Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J Clin Invest. 110:1539–1548. 2002. View Article : Google Scholar : PubMed/NCBI

140 

Manning J, Mitchell B, Appadurai DA, Shakya A, Pierce LJ, Wang H, Nganga V, Swanson PC, May JM, Tantin D, et al: Vitamin C promotes maturation of T-cells. Antioxid Redox Signal. 19:2054–2067. 2013. View Article : Google Scholar :

141 

Dahl H and Degré M: The effect of ascorbic acid on production of human interferon and the antiviral activity in vitro. Acta Pathol Microbiol Scand B. 84B:B280–B284. 1976.

142 

Huijskens MJAJ, Walczak M, Sarkar S, Atrafi F, Senden-Gijsbers BL, Tilanus MG, Bos GM, Wieten L and Germeraad WT: Ascorbic acid promotes proliferation of natural killer cell populations in culture systems applicable for natural killer cell therapy. Cytotherapy. 17:613–620. 2015. View Article : Google Scholar : PubMed/NCBI

143 

Anderson R: Assessment of oral ascorbate in three children with chronic granulomatous disease and defective neutrophil motility over a 2-year period. Clin Exp Immunol. 43:180–188. 1981.PubMed/NCBI

144 

Patrone F, Dallegri F, Bonvini E, Minervini F and Sacchetti C: Effects of ascorbic acid on neutrophil function. Studies on normal and chronic granulomatous disease neutrophils. Acta Vitaminol Enzymol. 4:163–168. 1982.PubMed/NCBI

145 

Moraes MP, de Los Santos T, Koster M, Turecek T, Wang H, Andreyev VG and Grubman MJ: Enhanced antiviral activity against foot-and-mouth disease virus by a combination of type I and II porcine interferons. J Virol. 81:7124–7135. 2007. View Article : Google Scholar : PubMed/NCBI

146 

Peng T, Zhu J, Hwangbo Y, Corey L and Bumgarner RE: Independent and cooperative antiviral actions of beta interferon and gamma interferon against herpes simplex virus replication in primary human fibroblasts. J Virol. 82:1934–1945. 2008. View Article : Google Scholar :

147 

Bartee E, Mohamed MR, Lopez MC, Baker HV and McFadden G: The addition of tumor necrosis factor plus beta interferon induces a novel synergistic antiviral state against poxviruses in primary human fibroblasts. J Virol. 83:498–511. 2009. View Article : Google Scholar :

148 

Page C, Goicochea L, Matthews K, Zhang Y, Klover P, Holtzman MJ, Hennighausen L and Frieman M: Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection. J Virol. 86:13334–13349. 2012. View Article : Google Scholar : PubMed/NCBI

149 

Block G, Jensen CD, Dalvi TB, Norkus EP, Hudes M, Crawford PB, Holland N, Fung EB, Schumacher L and Harmatz P: Vitamin C treatment reduces elevated C-reactive protein. Free Radic Biol Med. 46:70–77. 2009. View Article : Google Scholar :

150 

Kim WY, Jung JW, Choi JC, Shin JW and Kim JY: Subphenotypes in patients with septic shock receiving vitamin C, hydrocortisone, and thiamine: A retrospective cohort analysis. Nutrients. 11:112019. View Article : Google Scholar

151 

Grahame Hardie D: Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B. 6:1–19. 2016. View Article : Google Scholar : PubMed/NCBI

152 

Pagé EL, Chan DA, Giaccia AJ, Levine M and Richard DE: Hypoxia-inducible factor-1α stabilization in nonhypoxic conditions: Role of oxidation and intracellular ascorbate depletion. Mol Biol Cell. 19:86–94. 2008. View Article : Google Scholar

153 

Witte MB and Barbul A: Arginine physiology and its implication for wound healing. Wound Repair Regen. 11:419–423. 2003. View Article : Google Scholar : PubMed/NCBI

154 

Padayatty SJ, Sun H, Wang Y, Riordan HD, Hewitt SM, Katz A, Wesley RA and Levine M: Vitamin C pharmacokinetics: Implications for oral and intravenous use. Ann Intern Med. 140:533–537. 2004. View Article : Google Scholar : PubMed/NCBI

155 

Stancioiu F: Antiviral activity of L-arginine and extended-release Vitamin C. AASCIT J Health. 3:13–16. 2016.

156 

Bertolini G, Iapichino G, Radrizzani D, Facchini R, Simini B, Bruzzone P, Zanforlin G and Tognoni G: Early enteral immunonutrition in patients with severe sepsis: Results of an interim analysis of a randomized multicentre clinical trial. Intensive Care Med. 29:834–840. 2003. View Article : Google Scholar : PubMed/NCBI

157 

Heyland DK, Novak F, Drover JW, Jain M, Su X and Suchner U: Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA. 286:944–953. 2001. View Article : Google Scholar : PubMed/NCBI

158 

Rosenthal MD, Rosenthal C, Patel J, Jordan J and Go K: Arginine in the critically ill: Can we finally push past the controversy? Int J Crit Care Emerg Med. 2:0172016. View Article : Google Scholar

159 

Galbán C, Montejo JC, Mesejo A, Marco P, Celaya S, Sánchez-Segura JM, Farré M and Bryg DJ: An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med. 28:643–648. 2000. View Article : Google Scholar

160 

Luiking YC, Poeze M and Deutz NE: Arginine infusion in patients with septic shock increases nitric oxide production without haemodynamic instability. Clin Sci (Lond). 128:57–67. 2015. View Article : Google Scholar

161 

Gough MS, Morgan MAM, Mack CM, Darling DC, Frasier LM, Doolin KP, Apostolakos MJ, Stewart JC, Graves BT, Arning E, et al: The ratio of arginine to dimethylarginines is reduced and predicts outcomes in patients with severe sepsis. Crit Care Med. 39:1351–1358. 2011. View Article : Google Scholar : PubMed/NCBI

162 

Visser M, Davids M, Verberne HJ, Kok WE, Tepaske R, Cocchieri R, Kemper EM, Teerlink T, Jonker MA, Wisselink W, et al: Nutrition before, during, and after surgery increases the arginine:asymmetric dimethylarginine ratio and relates to improved myocardial glucose metabolism: a randomized controlled trial. Am J Clin Nutr. 99:1440–1449. 2014. View Article : Google Scholar : PubMed/NCBI

163 

Visser M, Vermeulen MAR, Richir MC, Teerlink T, Houdijk AP, Kostense PJ, Wisselink W, de Mol BA, van Leeuwen PA and Oudemans-van Straaten HM: Imbalance of arginine and asymmetric dimethylarginine is associated with markers of circulatory failure, organ failure and mortality in shock patients. Br J Nutr. 107:1458–1465. 2012. View Article : Google Scholar

164 

Arora TK, Malhotra AK, Ivatury R and Mangino MJ: L-arginine infusion during resuscitation for hemorrhagic shock: Impact and mechanism. J Trauma Acute Care Surg. 72:397–402. 2012. View Article : Google Scholar : PubMed/NCBI

165 

Wu F, Wilson JX and Tyml K: Ascorbate protects against impaired arteriolar constriction in sepsis by inhibiting inducible nitric oxide synthase expression. Free Radic Biol Med. 37:1282–1289. 2004. View Article : Google Scholar : PubMed/NCBI

166 

Wang Y, Lin H, Lin BW and Lin JD: Effects of different ascorbic acid doses on the mortality of critically ill patients: a meta-analysis. Ann Intensive Care. 9:582019. View Article : Google Scholar : PubMed/NCBI

167 

Fowler AA III, Truwit JD, Hite RD, Morris PE, DeWilde C, Priday A, Fisher B, Thacker LR II, Natarajan R, Brophy DF, et al: Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: The CITRIS-ALI Randomized Clinical Trial. JAMA. 322:1261–1270. 2019. View Article : Google Scholar : PubMed/NCBI

168 

Calina D, Docea AO, Petrakis D, Egorov AM, Ishmukhametov AA, Gabibov AG, Shtilman MI, Kostoff R, Carvalho F, Vinceti M, et al: Towards effective COVID-19 vaccines: Updates, perspectives and challenges (Review). Int J Mol Med. 46:3–16. 2020.

169 

Chan MHM, Wong VWS, Wong CK, Chan PK, Chu CM, Hui DS, Suen MW, Sung JJ, Chung SS and Lam CW: Serum LD1 isoenzyme and blood lymphocyte subsets as prognostic indicators for severe acute respiratory syndrome. J Intern Med. 255:512–518. 2004. View Article : Google Scholar : PubMed/NCBI

170 

Hicks CW, Wang D, Daya NR, Windham BG, Ballantyne CM, Matsushita K and Selvin E: Associations of cardiac, kidney, and diabetes biomarkers with peripheral neuropathy among older adults in the atherosclerosis risk in communities (ARIC) study. Clin Chem. 66:686–696. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Stancioiu F, Papadakis GZ, Kteniadakis S, Izotov BN, Coleman MD, Spandidos DA and Tsatsakis A: A dissection of SARS‑CoV2 with clinical implications (Review). Int J Mol Med 46: 489-508, 2020.
APA
Stancioiu, F., Papadakis, G.Z., Kteniadakis, S., Izotov, B.N., Coleman, M.D., Spandidos, D.A., & Tsatsakis, A. (2020). A dissection of SARS‑CoV2 with clinical implications (Review). International Journal of Molecular Medicine, 46, 489-508. https://doi.org/10.3892/ijmm.2020.4636
MLA
Stancioiu, F., Papadakis, G. Z., Kteniadakis, S., Izotov, B. N., Coleman, M. D., Spandidos, D. A., Tsatsakis, A."A dissection of SARS‑CoV2 with clinical implications (Review)". International Journal of Molecular Medicine 46.2 (2020): 489-508.
Chicago
Stancioiu, F., Papadakis, G. Z., Kteniadakis, S., Izotov, B. N., Coleman, M. D., Spandidos, D. A., Tsatsakis, A."A dissection of SARS‑CoV2 with clinical implications (Review)". International Journal of Molecular Medicine 46, no. 2 (2020): 489-508. https://doi.org/10.3892/ijmm.2020.4636
Copy and paste a formatted citation
x
Spandidos Publications style
Stancioiu F, Papadakis GZ, Kteniadakis S, Izotov BN, Coleman MD, Spandidos DA and Tsatsakis A: A dissection of SARS‑CoV2 with clinical implications (Review). Int J Mol Med 46: 489-508, 2020.
APA
Stancioiu, F., Papadakis, G.Z., Kteniadakis, S., Izotov, B.N., Coleman, M.D., Spandidos, D.A., & Tsatsakis, A. (2020). A dissection of SARS‑CoV2 with clinical implications (Review). International Journal of Molecular Medicine, 46, 489-508. https://doi.org/10.3892/ijmm.2020.4636
MLA
Stancioiu, F., Papadakis, G. Z., Kteniadakis, S., Izotov, B. N., Coleman, M. D., Spandidos, D. A., Tsatsakis, A."A dissection of SARS‑CoV2 with clinical implications (Review)". International Journal of Molecular Medicine 46.2 (2020): 489-508.
Chicago
Stancioiu, F., Papadakis, G. Z., Kteniadakis, S., Izotov, B. N., Coleman, M. D., Spandidos, D. A., Tsatsakis, A."A dissection of SARS‑CoV2 with clinical implications (Review)". International Journal of Molecular Medicine 46, no. 2 (2020): 489-508. https://doi.org/10.3892/ijmm.2020.4636
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team