A dissection of SARS‑CoV2 with clinical implications (Review)
- Authors:
- Felician Stancioiu
- Georgios Z. Papadakis
- Stelios Kteniadakis
- Boris Nikovaevich Izotov
- Michael D. Coleman
- Demetrios A. Spandidos
- Aristidis Tsatsakis
-
Affiliations: Bio‑Forum Foundation, 030121 Bucharest, Romania, Department of Radiology, Medical School, University of Crete, 71003 Heraklion, Greece, Emergency Department, Venizeleion General Hospital, 71409 Heraklion, Greece, Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119991 Moscow, Russia, School of Life and Health Sciences, Aston University, B4 7ET Birmingham, UK, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece - Published online on: June 10, 2020 https://doi.org/10.3892/ijmm.2020.4636
- Pages: 489-508
-
Copyright: © Stancioiu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Wu Z and McGoogan JM: Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 323:1239–1242. 2020. View Article : Google Scholar | |
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, et al: Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med. 8:475–481. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li JY, You Z, Wang Q, Zhou ZJ, Qiu Y, Luo R and Ge XY: The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future. Microbes Infect. 22:80–85. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Li Zhang, L Zhou X, Du C, et al: Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. Mar 13–2020.2020 (Epub ahead of print). View Article : Google Scholar : | |
Grasselli G, Pesenti A and Cecconi M: Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: Early experience and forecast during an emergency response. JAMA. 323:15452020. View Article : Google Scholar | |
Goumenou M, Sarigiannis D, Tsatsakis A, Anesti O, Docea AO, Petrakis D, Tsoukalas D, Kostoff R, Rakitskii V, Spandidos DA, et al: COVID-19 in Northern Italy: An integrative overview of factors possibly influencing the sharp increase of the outbreak (Review). Mol Med Rep. 22:20–32. 2020.PubMed/NCBI | |
Petrakis D, Margină D, Tsarouhas K, Tekos F, Stan M, Nikitovic D, Kouretas D, Spandidos DA and Tsatsakis A: Obesity - a risk factor for increased COVID-19 prevalence, severity and lethality (Review). Mol Med Rep. 22:9–19. 2020.PubMed/NCBI | |
Docea AO, Tsatsakis A, Albulescu D, Cristea O, Zlatian O, Vinceti M, Moschos SA, Tsoukalas D, Goumenou M, Drakoulis N, et al: A new threat from an old enemy: Re-emergence of coronavirus (Review). Int J Mol Med. 45:1631–1643. 2020.PubMed/NCBI | |
Kluge S, Janssens U, Welte T, Weber-Carstens S, Marx G and Karagiannidis C: German recommendations for critically ill patients with COVID-19. Med Klin Intensivmed Notfmed. Apr 14–2020.Epub ahead of print. View Article : Google Scholar | |
Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, Greninger AL, Pipavath S, Wurfel MM, Evans L, et al: Covid-19 in critically ill patients in the Seattle region - case series. N Engl J Med. 382:2012–2022. 2020. View Article : Google Scholar : PubMed/NCBI | |
Farsalinos K, Niaura R, Le Houezec J, Barbouni A, Tsatsakis A, Kouretas D, Vantarakis A and Poulas K: Editorial: Nicotine and SARS-CoV-2: COVID-19 may be a disease of the nicotinic cholinergic system. Toxicol Rep. 7:658–663. 2020. View Article : Google Scholar : | |
Calfee CS, Delucchi K, Parsons PE, Thompson BT and Ware LB: Subphenotypes in acute respiratory distress syndrome: Latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2:611–620. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wilson JG and Calfee CS: ARDS subphenotypes: Understanding a heterogeneous syndrome. Crit Care. 24:1022020. View Article : Google Scholar : PubMed/NCBI | |
Famous KR, Delucchi K, Ware LB, Kangelaris KN, Liu KD and Thompson BT: Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 195:331–338. 2017. View Article : Google Scholar : | |
Calfee CS, Delucchi KL, Sinha P, Matthay MA, Hackett J, Shankar-Hari M, McDowell C, Laffey JG, O′Kane CM, McAuley DF, et al Irish Critical Care Trials Group: Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: Secondary analysis of a randomised controlled trial. Lancet Respir Med. 6:691–698. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sinha P, Delucchi KL, Thompson BT, McAuley DF and Matthay MA: Latent class analysis of ARDS subphenotypes: A secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Med. 44:1859–1869. 2018. View Article : Google Scholar : PubMed/NCBI | |
de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van Nieuwkoop S, Bestebroer TM, van den Hoogen BG, Neyts J and Snijder EJ: Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. 58:4875–4884. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cascella M, Rajnik M, Cuomo A, Dulebohn SC and Di Napoli R: Features, evaluation and treatment coronavirus (COVID-19). StatPearls [Internet] Treasure Island (FL): StatPearls Publishing; 2020 Jan. PubMed/NCBIhttps://www.ncbi.nlm.nih.gov/books/NBK554776. | |
Neagu M, Bostan M and Constantin C: Protein microarray technology: Assisting personalized medicine in oncology (Review). World Acad Sci J. 1:113–124. 2019. | |
Levitt JE and Rogers AJ: Proteomic study of acute respiratory distress syndrome: Current knowledge and implications for drug development. Expert Rev Proteomics. 13:457–469. 2016. View Article : Google Scholar : PubMed/NCBI | |
Meyer NJ, Reilly JP, Anderson BJ, Palakshappa JA, Jones TK, Dunn TG, Shashaty MGS, Feng R, Christie JD and Opal SM: Mortality benefit of recombinant human interleukin-1 receptor antagonist for sepsis varies by initial interleukin-1 receptor antagonist plasma concentration. Crit Care Med. 46:21–28. 2018. View Article : Google Scholar | |
Brandes M, Klauschen F, Kuchen S and Germain RN: A systems analysis identifies a feed forward inflammatory circuit leading to lethal influenza infection. Cell. 154:197–212. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bowen JR, Ferris MT and Suthar MS: Systems biology: A tool for charting the antiviral landscape. Virus Res. 218:2–9. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kindler E, Thiel V and Weber F: Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res. 96:219–243. 2016. View Article : Google Scholar : PubMed/NCBI | |
Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK and Perlman S: Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 19:181–193. 2016. View Article : Google Scholar : PubMed/NCBI | |
Baughman RP, Gunther KL, Rashkin MC, Keeton DA and Pattishall EN: Changes in the inflammatory response of the lung during acute respiratory distress syndrome: Prognostic indicators. Am J Respir Crit Care Med. 154:76–81. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kast RE: Dapsone as treatment adjunct in ARDS. Exp Lung Res. 46:157–161. 2020. View Article : Google Scholar : PubMed/NCBI | |
Coleman MD, Rhodes LE, Scott AK, Verbov JL, Friedmann PS, Breckenridge AM and Park BK: The use of cimetidine to reduce dapsone-dependent methaemoglobinaemia in dermatitis herpetiformis patients. Br J Clin Pharmacol. 34:244–249. 1992. View Article : Google Scholar : PubMed/NCBI | |
Meo SA, Alhowikan AM, Al-Khlaiwi T, Meo IM, Halepoto DM, Iqbal M, Usmani AM, Hajjar W and Ahmed N: Novel coronavirus 2019-nCoV: Prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci. 24:2012–2019. 2020.PubMed/NCBI | |
Nitulescu GM, Paunescu H, Moschos SA, Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK, Drakoulis N and Tsatsakis A: Comprehensive analysis of drugs to treat SARS-CoV-2 infection: Mechanistic insights into current COVID-19 therapies (Review). Int J Mol Med. 46:467–488. 2020. | |
Tsatsakis A, Petrakis D, Nikolouzakis TK, Docea AO, Calina D, Vinceti M, Goumenou M, Kostoff RN, Mamoulakis C, Aschner M, et al: COVID-19, an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. Food Chem Toxicol. 141:1114182020. View Article : Google Scholar : PubMed/NCBI | |
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al: Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 395:565–574. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J, et al: Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 27:325–328. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sah R, Rodriguez-Morales AJ, Jha R, Chu DKW, Gu H, Peiris M, Bastola A, Lal BK, Ojha HC, Rabaan AA, et al: Complete genome sequence of a 2019 novel coronavirus (SARS-CoV-2) strain isolated in Nepal. Microbiol Resour Announc. 9:92020. View Article : Google Scholar | |
Cui J, Li F and Shi ZL: Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 17:181–192. 2019. View Article : Google Scholar | |
Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, Wang Y and Guo X: Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses. 12:122020. View Article : Google Scholar | |
Liu W and Li H: COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv. 2020, Preprint. https://doi.org/10.26434/chemrxiv.11938173.v8. | |
Yang Q, Bai S-Y, Li L-F, Li S, Zhang Y, Munir M and Qiu H-J: Human hemoglobin subunit beta functions as a pleiotropic regulator of RIG-I/MDA5-mediated antiviral innate immune responses. J Virol. 93:932019. View Article : Google Scholar | |
Li T, Lu H and Zhang W: Clinical observation and management of COVID-19 patients. Emerg Microbes Infect. 9:687–690. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wan Y, Shang J, Graham R, Baric RS and Li F: Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J Virol. 94:942020. View Article : Google Scholar | |
Xie M and Chen Q: Insight into 2019 novel coronavirus - An updated interim review and lessons from SARS-CoV and MERS-CoV. Int J Infect Dis. 94:119–124. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hwang SS, Lim J, Yu Z, Kong P, Sefik E, Xu H, Harman CCD, Kim LK, Lee GR, Li HB and Flavell RA: mRNA destabilization by BTG1 and BTG2 maintains T cell quiescence. Science. 367:1255–1260. 2020. View Article : Google Scholar : PubMed/NCBI | |
Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG and Decroly E: The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 176:1047422020. View Article : Google Scholar : PubMed/NCBI | |
Kawase M, Shirato K, van der Hoek L, Taguchi F and Matsuyama S: Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol. 86:6537–6545. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–280.e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, et al: Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 30:343–355. 2020. View Article : Google Scholar : PubMed/NCBI | |
Millet JK and Whittaker GR: Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology. 517:3–8. 2018. View Article : Google Scholar | |
Totura AL and Bavari S: Broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov. 14:397–412. 2019. View Article : Google Scholar : PubMed/NCBI | |
Amatngalim GD and Hiemstra PS: Airway epithelial cell function and respiratory host defense in chronic obstructive pulmonary disease. Chin Med J (Engl). 131:1099–1107. 2018. View Article : Google Scholar | |
Chiang JJ, Davis ME and Gack MU: Regulation of RIG-I-like receptor signaling by host and viral proteins. Cytokine Growth Factor Rev. 25:491–505. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schneider WM, Chevillotte MD and Rice CM: Interferonstimulated genes: A complex web of host defenses. Annu Rev Immunol. 32:513–545. 2014. View Article : Google Scholar | |
Takeuchi O and Akira S: Pattern recognition receptors and inflammation. Cell. 140:805–820. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, et al: Peroxisomes are signaling platforms for antiviral innate immunity. Cell. 141:668–681. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kindler E, Gil-Cruz C, Spanier J, Li Y, Wilhelm J, Rabouw HH, Züst R, Hwang M, V'kovski P, Stalder H, et al: Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathog. 13:e10061952017. View Article : Google Scholar : PubMed/NCBI | |
Cao W, Bao C, Padalko E and Lowenstein CJ: Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J Exp Med. 205:1491–1503. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, He C, Wang L and Ge B: Post-translational regulation of antiviral innate signaling. Eur J Immunol. 47:1414–1426. 2017. View Article : Google Scholar : PubMed/NCBI | |
Quicke KM, Diamond MS and Suthar MS: Negative regulators of the RIG-I-like receptor signaling pathway. Eur J Immunol. 47:615–628. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG and Nichol ST: Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2:692005. View Article : Google Scholar : PubMed/NCBI | |
Samarth S and McGregor K: Energetics based modeling of hydroxychloroquine and azithromycin binding to the SARS-CoV-2 spike (S)protein - ACE2 complex. ChemRxiv. 2020, Preprint. https://doi.org/10.26434/chemrxiv.12015792.v2. | |
Arya R, Das A, Prashar V and Kumar M: Potential inhibitors against papain-like protease of novel coronavirus (SARS-CoV-2) from FDA approved drugs. ChemrxivOrg. 1–8. 2020. View Article : Google Scholar | |
Dyall J, Gross R, Kindrachuk J, Johnson RF, Olinger GG Jr, Hensley LE, Frieman MB and Jahrling PB: Middle East respiratory syndrome and severe acute respiratory syndrome: Current therapeutic options and potential targets for novel therapies. Drugs. 77:1935–1966. 2017. View Article : Google Scholar : PubMed/NCBI | |
Choudhary S, Malik YS and Tomar S: Identification of SARS-CoV-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach. ChemRxiv. 2020. View Article : Google Scholar | |
Farag A, Wang P, Boys IN, Eitson J, Ohlson MB, Fan W, McDougal MB, Ahmed M and Schoggins JW: Identification of atovaquone, quabain and mebendazole as FDA approved drugs Tar-geting SARS-CoV-2 (Version 4). 2020, ChemRxiv. Preprint https://doi.org/10.26434/chemrxiv.12003930.v4. | |
Navan C: Possible Drug Candidates for COVID-19. ChemRxiv. 2020, Preprint. https://doi.org/10.26434/chemrxiv.11985231.v1. | |
Bag A and Bag A: Treatment of COVID-19 patients: Justicia adhatoda leaves extract is a strong remedy for COVID-19- Case report analysis and docking based study. ChemRxiv. 2020, Preprint. https://doi.org/10.26434/chemrxiv.12038604.v1. | |
Coleman CM, Sisk JM, Mingo RM, Nelson EA, White JM and Frieman MB: Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion. J Virol. 90:8924–8933. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sisk JM, Frieman MB and Machamer CE: Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. J Gen Virol. 99:619–630. 2018. View Article : Google Scholar : PubMed/NCBI | |
Salim B and Noureddine M: Identification of compounds from Nigella sativa as new potential inhibitors of 2019 novel corona virus (Covid-19): Molecular docking study. ChemRxiv. 2020, Preprint. https://doi.org/10.26434/chemrxiv.12055716.v1. | |
Pendyala B and Patras A: In silico screening of food bioactive compounds to predict potential inhibitors of COVID-19 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). ChemRxiv Preprint. https://doi.org/10.26434/chemrxiv.12051927.v2. | |
Mohammadi N: Inhibitory effect of eight secondary metabolites from conventional medicinal plants on COVID-19 virus protease by molecular docking analysis. ChemRxiv. 2020, Preprint. https://doi.org/10.26434/chemrxiv.11987475.v1. | |
Bosch BJ, Martina BEE, Van Der Zee R, Lepault J, Haijema BJ, Versluis C, Heck AJ, De Groot R, Osterhaus AD and Rottier PJ: Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc Natl Acad Sci USA. 101:8455–8460. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yang Z-Y, Huang Y, Ganesh L, Leung K, Kong WP, Schwartz O, Subbarao K and Nabel GJ: pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol. 78:5642–5650. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Wohlford-Lenane C, Zhao J, Fleming E, Lane TE, McCray PB Jr and Perlman S: Intranasal treatment with poly(I•C) protects aged mice from lethal respiratory virus infections. J Virol. 86:11416–11424. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mian MF, Ahmed AN, Rad M, Babaian A, Bowdish D and Ashkar AA: Length of dsRNA (poly I:C) drives distinct innate immune responses, depending on the cell type. J Leukoc Biol. 94:1025–1036. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cameron A, Appel J, Houghten RA and Lindberg I: Polyarginines are potent furin inhibitors. J Biol Chem. 275:36741–36749. 2000. View Article : Google Scholar : PubMed/NCBI | |
Channappanavar R, Lu L, Xia S, Du L, Meyerholz DK, Perlman S and Jiang S: Protective effect of intranasal regimens containing peptidic Middle East respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection. - Abstract - Europe PMC. https://europepmc.org/article/med/26164863. | |
Zhou H, Zhao J and Perlman S: Autocrine interferon priming in macrophages but not dendritic cells results in enhanced cytokine and chemokine production after coronavirus infection. MBio. 1:12010. View Article : Google Scholar | |
Iwasaki A and Medzhitov R: Regulation of adaptive immunity by the innate immune system. Science. 327:291–295. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sainz B Jr, Mossel EC, Peters CJ and Garry RF: Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology. 329:11–17. 2004. View Article : Google Scholar : PubMed/NCBI | |
Der SD, Zhou A, Williams BRG and Silverman RH: Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proc Natl Acad Sci USA. 95:15623–15628. 1998. View Article : Google Scholar | |
Bauman DR, Bitmansour AD, McDonald JG, Thompson BM, Liang G and Russell DW: 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proc Natl Acad Sci USA. 106:16764–16769. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Biswas SK, Galdiero MR, Sica A and Locati M: Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 229:176–185. 2013. View Article : Google Scholar | |
Gralinski LE and Baric RS: Molecular pathology of emerging coronavirus infections. J Pathol. 235:185–195. 2015. View Article : Google Scholar | |
de Wilde AH, Wannee KF, Scholte FEM, Goeman JJ, Ten Dijke P, Snijder EJ, Kikkert M and van Hemert MJ: A kinome-wide small interfering RNA screen identifies proviral and antiviral host factors in severe acute respiratory syndrome coronavirus replication, including double-stranded RNA-activated protein kinase and early secretory pathway proteins. J Virol. 89:8318–8333. 2015. View Article : Google Scholar : PubMed/NCBI | |
Newton DA, Rao KMK, Dluhy RA and Baatz JE: Hemoglobin is expressed by alveolar epithelial cells. J Biol Chem. 281:5668–5676. 2006. View Article : Google Scholar : PubMed/NCBI | |
Aldajani WA, Salazar F, Sewell HF, Knox A and Ghaemmaghami AM: Expression and regulation of immunemodulatory enzyme indoleamine 2,3-dioxygenase (IDO) by human airway epithelial cells and its effect on T cell activation. Oncotarget. 7:57606–57617. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mondanelli G, Bianchi R, Pallotta MT, Orabona C, Albini E, Iacono A, Belladonna ML, Vacca C, Fallarino F, Macchiarulo A, et al: A relay pathway between arginine and tryptophan metabolism confers immunosuppressive properties on dendritic cells. Immunity. 46:233–244. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nordgren M and Fransen M: Peroxisomal metabolism and oxidative stress. Biochimie. 98:56–62. 2014. View Article : Google Scholar | |
Titorenko VI and Terlecky SR: Peroxisome metabolism and cellular aging. Traffic. 12:252–259. 2011. View Article : Google Scholar : | |
Xu Z, Lodge R, Power C, Cohen EA and Hobman TC: The HIV-1 accessory protein vpu downregulates peroxisome biogenesis. MBio. 11:112020. View Article : Google Scholar | |
Zheng C and Su C: Herpes simplex virus 1 infection dampens the immediate early antiviral innate immunity signaling from peroxisomes by tegument protein VP16. Virol J. 14:352017. View Article : Google Scholar : PubMed/NCBI | |
Ferreira AR, Marques M and Ribeiro D: Peroxisomes and innate immunity: Antiviral response and beyond. Int J Mol Sci. 20:202019. View Article : Google Scholar | |
Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, Spandidos DA, Aaseth J, et al: Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). Int J Mol Med. 46:17–26. 2020. | |
Gastaminza P, Whitten-Bauer C and Chisari FV: Unbiased probing of the entire hepatitis C virus life cycle identifies clinical compounds that target multiple aspects of the infection. Proc Natl Acad Sci USA. 107:291–296. 2010. View Article : Google Scholar | |
Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL and Bates P: Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA. 102:11876–11881. 2005. View Article : Google Scholar : PubMed/NCBI | |
Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C and Rouillé Y: Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol. 80:6964–6972. 2006. View Article : Google Scholar : PubMed/NCBI | |
Trevani AS, Andonegui G, Giordano M, López DH, Gamberale R, Minucci F and Geffner JR: Extracellular acidification induces human neutrophil activation. J Immunol. 162:4849–4857. 1999.PubMed/NCBI | |
Rotstein OD, Fiegel VD, Simmons RL and Knighton DR: The deleterious effect of reduced pH and hypoxia on neutrophil migration in vitro. J Surg Res. 45:298–303. 1988. View Article : Google Scholar : PubMed/NCBI | |
Lardner A: The effects of extracellular pH on immune function. J Leukoc Biol. 69:522–530. 2001.PubMed/NCBI | |
Simchowitz L: Intracellular pH modulates the generation of superoxide radicals by human neutrophils. J Clin Invest. 76:1079–1089. 1985. View Article : Google Scholar : PubMed/NCBI | |
Severin T, Müller B, Giese G, Uhl B, Wolf B, Hauschildt S and Kreutz W: pH-dependent LAK cell cytotoxicity. Tumour Biol. 15:304–310. 1994. View Article : Google Scholar : PubMed/NCBI | |
Kellum JA, Song M and Li J: Science review: extracellular acidosis and the immune response: clinical and physiologic implications. Crit Care. 8:331–336. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hamdullah KS, Tanzila A, Zainab Sher M, Iqra A and Mohtasheemul H: pH dependent differential binding behavior of protease inhibitor molecular drugs for SARS-COV-2. ChemRxiv. 2020, Preprint. https://doi.org/10.26434/chemrxiv.12009018.v1. | |
Leneva IA, Russell RJ, Boriskin YS and Hay AJ: Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antiviral Res. 81:132–140. 2009. View Article : Google Scholar | |
Bhargava M, Becker TL, Viken KJ, Jagtap PD, Dey S, Steinbach MS, Wu B, Kumar V, Bitterman PB, Ingbar DH, et al: Proteomic profiles in acute respiratory distress syndrome differentiates survivors from non-survivors. PLoS One. 9:e1097132014. View Article : Google Scholar : PubMed/NCBI | |
Shortt K, Chaudhary S, Grigoryev D, Heruth DP, Venkitachalam L, Zhang LQ and Ye SQ: Identification of novel single nucleotide polymorphisms associated with acute respiratory distress syndrome by exome-seq. PLoS One. 9:e1119532014. View Article : Google Scholar : PubMed/NCBI | |
Tejera P, Meyer NJ, Chen F, Feng R, Zhao Y, O′Mahony DS, Li L, Sheu CC, Zhai R, Wang Z, et al: Distinct and replicable genetic risk factors for acute respiratory distress syndrome of pulmonary or extrapulmonary origin. J Med Genet. 49:671–680. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lynn H, Sun X, Casanova N, Gonzales-Garay M, Bime C and Garcia JGN: Genomic and genetic approaches to deciphering acute respiratory distress syndrome risk and mortality. Antioxid Redox Signal. 31:1027–1052. 2019. View Article : Google Scholar : PubMed/NCBI | |
Marshall RP, Webb S, Bellingan GJ, Montgomery HE, Chaudhari B, McAnulty RJ, Humphries SE, Hill MR and Laurent GJ: Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med. 166:646–650. 2002. View Article : Google Scholar : PubMed/NCBI | |
Itoyama S, Keicho N, Quy T, Phi NC, Long HT, Ha LD, Ban VV, Ohashi J, Hijikata M, Matsushita I, et al: ACE1 polymorphism and progression of SARS. Biochem Biophys Res Commun. 323:1124–1129. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chan KCA, Tang NLS, Hui DSC, Chung GT, Wu AK, Chim SS, Chiu RW, Lee N, Choi KW, Sung YM, et al: Absence of association between angiotensin converting enzyme polymorphism and development of adult respiratory distress syndrome in patients with severe acute respiratory syndrome: A case control study. BMC Infect Dis. 5:262005. View Article : Google Scholar : PubMed/NCBI | |
Fourrier F, Chopin C, Wallaert B, Wattre P, Mangalaboyi J, Durocher A, Dubois D and Wattel F: Angiotensin-converting enzyme in human adult respiratory distress syndrome. Chest. 83:593–597. 1983. View Article : Google Scholar : PubMed/NCBI | |
Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, et al: Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 436:112–116. 2005. View Article : Google Scholar : PubMed/NCBI | |
Arndt PG, Young SK, Poch KR, Nick JA, Falk S, Schrier RW and Worthen GS: Systemic inhibition of the angiotensin-converting enzyme limits lipopolysaccharide-induced lung neutrophil recruitment through both bradykinin and angiotensin II-regulated pathways. J Immunol. 177:7233–7241. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Choi SM, Lee J, Park YS, Lee CH, Yim JJ, Yoo CG, Kim YW, Han SK and Lee SM: Effect of renin-angiotensin system blockage in patients with acute respiratory distress syndrome: A retrospective case control study. Korean J Crit Care Med. 32:154–163. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wevers BA and van der Hoek L: Renin-angiotensin system in human coronavirus pathogenesis. Future Virol. 5:145–161. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chappell MC: Angiotensin-(17) and the regulation of anti-fibrotic signaling pathways. J Cell Signal. 2:1342017. View Article : Google Scholar | |
El-Hashim AZ, Renno WM, Raghupathy R, Abduo HT, Akhtar S and Benter IF: Angiotensin-(17) inhibits allergic inflammation, via the MAS1 receptor, through suppression of ERK1/2- and NF-κB-dependent pathways. Br J Pharmacol. 166:1964–1976. 2012. View Article : Google Scholar : PubMed/NCBI | |
Manolis AJ, Marketou ME, Gavras I and Gavras H: Cardioprotective properties of bradykinin: Role of the B(2) receptor. Hypertens Res. 33:772–777. 2010. View Article : Google Scholar : PubMed/NCBI | |
Adam A, Cugno M, Molinaro G, Perez M, Lepage Y and Agostoni A: Aminopeptidase P in individuals with a history of angio-oedema on ACE inhibitors. Lancet. 359:2088–2089. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT and Holmes KV: Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 357:420–422. 1992. View Article : Google Scholar : PubMed/NCBI | |
Morris SM Jr: Arginine: Master and commander in innate immune responses. Sci Signal. 3:pe272010. View Article : Google Scholar : PubMed/NCBI | |
Keyaerts E, Vijgen L, Chen L, Maes P, Hedenstierna G and Van Ranst M: Inhibition of SARS-coronavirus infection in vitro by S-nitroso-N- acetylpenicillamine, a nitric oxide donor compound. International Journal of Infectious Diseases Int J Infect Dis. 8:223–226. 2004. View Article : Google Scholar | |
Akerström S, Mousavi-Jazi M, Klingström J, Leijon M, Lundkvist A and Mirazimi A: Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol. 79:1966–1969. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H and Doerr HW: Treatment of SARS with human interferons. Lancet. 362:293–294. 2003. View Article : Google Scholar : PubMed/NCBI | |
Karupiah G, Xie QW, Buller RML, Nathan C, Duarte C and MacMicking JD: Inhibition of viral replication by interferon-γ-induced nitric oxide synthase. Science. 261:1445–1448. 1993. View Article : Google Scholar : PubMed/NCBI | |
Burrack KS and Morrison TE: The role of myeloid cell activation and arginine metabolism in the pathogenesis of virus-induced diseases. Front Immunol. 5:4282014. View Article : Google Scholar : PubMed/NCBI | |
Munder M, Schneider H, Luckner C, Giese T, Langhans CD, Fuentes JM, Kropf P, Mueller I, Kolb A, Modolell M, et al: Suppression of T-cell functions by human granulocyte arginase. Blood. 108:1627–1634. 2006. View Article : Google Scholar : PubMed/NCBI | |
Racké K and Warnken M: L-Arginine metabolic pathways. The Open Nitric Oxide Journal. 2:pp. 9–19. 2010, https://benthamopen.com/contents/pdf/TONOJ/TONOJ-2-9.pdf. View Article : Google Scholar | |
Gournas C, Papageorgiou I and Diallinas G: The nucleobaseascorbate transporter (NAT) family: Genomics, evolution, structure-function relationships and physiological role. Mol Biosyst. 4:404–416. 2008. View Article : Google Scholar : PubMed/NCBI | |
Carr AC and Maggini S: Vitamin C and immune function. Nutrients. 9:92017. View Article : Google Scholar | |
García-Bailo B, Roke K, Mutch DM, El-Sohemy A and Badawi A: Association between circulating ascorbic acid, α-tocopherol, 25-hydroxyvitamin D, and plasma cytokine concentrations in young adults: A cross-sectional study. Nutr Metab (Lond). 9:1022012. View Article : Google Scholar | |
Wu G and Morris SM Jr: Arginine metabolism: Nitric oxide and beyond. Biochem J. 336:1–17. 1998. View Article : Google Scholar : PubMed/NCBI | |
Scheit K and Bauer G: Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis. Anticancer Res. 34:5337–5350. 2014.PubMed/NCBI | |
Thomas SR, Mohr D and Stocker R: Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-gamma primed mononuclear phagocytes. J Biol Chem. 269:14457–14464. 1994.PubMed/NCBI | |
Shi HP, Efron DT, Most D, Tantry US and Barbul A: Supplemental dietary arginine enhances wound healing in normal but not inducible nitric oxide synthase knockout mice. Surgery. 128:374–378. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez PC, Quiceno DG and Ochoa AC: L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood. 109:1568–1573. 2007. View Article : Google Scholar | |
Ochoa JB, Strange J, Kearney P, Gellin G, Endean E and Fitzpatrick E: Effects of L-arginine on the proliferation of T lymphocyte subpopulations. JPEN J Parenter Enteral Nutr. 25:23–29. 2001. View Article : Google Scholar : PubMed/NCBI | |
de Jonge WJ, Kwikkers KL, te Velde AA, van Deventer SJ, Nolte MA, Mebius RE, Ruijter JM, Lamers MC and Lamers WH: Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J Clin Invest. 110:1539–1548. 2002. View Article : Google Scholar : PubMed/NCBI | |
Manning J, Mitchell B, Appadurai DA, Shakya A, Pierce LJ, Wang H, Nganga V, Swanson PC, May JM, Tantin D, et al: Vitamin C promotes maturation of T-cells. Antioxid Redox Signal. 19:2054–2067. 2013. View Article : Google Scholar : | |
Dahl H and Degré M: The effect of ascorbic acid on production of human interferon and the antiviral activity in vitro. Acta Pathol Microbiol Scand B. 84B:B280–B284. 1976. | |
Huijskens MJAJ, Walczak M, Sarkar S, Atrafi F, Senden-Gijsbers BL, Tilanus MG, Bos GM, Wieten L and Germeraad WT: Ascorbic acid promotes proliferation of natural killer cell populations in culture systems applicable for natural killer cell therapy. Cytotherapy. 17:613–620. 2015. View Article : Google Scholar : PubMed/NCBI | |
Anderson R: Assessment of oral ascorbate in three children with chronic granulomatous disease and defective neutrophil motility over a 2-year period. Clin Exp Immunol. 43:180–188. 1981.PubMed/NCBI | |
Patrone F, Dallegri F, Bonvini E, Minervini F and Sacchetti C: Effects of ascorbic acid on neutrophil function. Studies on normal and chronic granulomatous disease neutrophils. Acta Vitaminol Enzymol. 4:163–168. 1982.PubMed/NCBI | |
Moraes MP, de Los Santos T, Koster M, Turecek T, Wang H, Andreyev VG and Grubman MJ: Enhanced antiviral activity against foot-and-mouth disease virus by a combination of type I and II porcine interferons. J Virol. 81:7124–7135. 2007. View Article : Google Scholar : PubMed/NCBI | |
Peng T, Zhu J, Hwangbo Y, Corey L and Bumgarner RE: Independent and cooperative antiviral actions of beta interferon and gamma interferon against herpes simplex virus replication in primary human fibroblasts. J Virol. 82:1934–1945. 2008. View Article : Google Scholar : | |
Bartee E, Mohamed MR, Lopez MC, Baker HV and McFadden G: The addition of tumor necrosis factor plus beta interferon induces a novel synergistic antiviral state against poxviruses in primary human fibroblasts. J Virol. 83:498–511. 2009. View Article : Google Scholar : | |
Page C, Goicochea L, Matthews K, Zhang Y, Klover P, Holtzman MJ, Hennighausen L and Frieman M: Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection. J Virol. 86:13334–13349. 2012. View Article : Google Scholar : PubMed/NCBI | |
Block G, Jensen CD, Dalvi TB, Norkus EP, Hudes M, Crawford PB, Holland N, Fung EB, Schumacher L and Harmatz P: Vitamin C treatment reduces elevated C-reactive protein. Free Radic Biol Med. 46:70–77. 2009. View Article : Google Scholar : | |
Kim WY, Jung JW, Choi JC, Shin JW and Kim JY: Subphenotypes in patients with septic shock receiving vitamin C, hydrocortisone, and thiamine: A retrospective cohort analysis. Nutrients. 11:112019. View Article : Google Scholar | |
Grahame Hardie D: Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B. 6:1–19. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pagé EL, Chan DA, Giaccia AJ, Levine M and Richard DE: Hypoxia-inducible factor-1α stabilization in nonhypoxic conditions: Role of oxidation and intracellular ascorbate depletion. Mol Biol Cell. 19:86–94. 2008. View Article : Google Scholar | |
Witte MB and Barbul A: Arginine physiology and its implication for wound healing. Wound Repair Regen. 11:419–423. 2003. View Article : Google Scholar : PubMed/NCBI | |
Padayatty SJ, Sun H, Wang Y, Riordan HD, Hewitt SM, Katz A, Wesley RA and Levine M: Vitamin C pharmacokinetics: Implications for oral and intravenous use. Ann Intern Med. 140:533–537. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stancioiu F: Antiviral activity of L-arginine and extended-release Vitamin C. AASCIT J Health. 3:13–16. 2016. | |
Bertolini G, Iapichino G, Radrizzani D, Facchini R, Simini B, Bruzzone P, Zanforlin G and Tognoni G: Early enteral immunonutrition in patients with severe sepsis: Results of an interim analysis of a randomized multicentre clinical trial. Intensive Care Med. 29:834–840. 2003. View Article : Google Scholar : PubMed/NCBI | |
Heyland DK, Novak F, Drover JW, Jain M, Su X and Suchner U: Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA. 286:944–953. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rosenthal MD, Rosenthal C, Patel J, Jordan J and Go K: Arginine in the critically ill: Can we finally push past the controversy? Int J Crit Care Emerg Med. 2:0172016. View Article : Google Scholar | |
Galbán C, Montejo JC, Mesejo A, Marco P, Celaya S, Sánchez-Segura JM, Farré M and Bryg DJ: An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med. 28:643–648. 2000. View Article : Google Scholar | |
Luiking YC, Poeze M and Deutz NE: Arginine infusion in patients with septic shock increases nitric oxide production without haemodynamic instability. Clin Sci (Lond). 128:57–67. 2015. View Article : Google Scholar | |
Gough MS, Morgan MAM, Mack CM, Darling DC, Frasier LM, Doolin KP, Apostolakos MJ, Stewart JC, Graves BT, Arning E, et al: The ratio of arginine to dimethylarginines is reduced and predicts outcomes in patients with severe sepsis. Crit Care Med. 39:1351–1358. 2011. View Article : Google Scholar : PubMed/NCBI | |
Visser M, Davids M, Verberne HJ, Kok WE, Tepaske R, Cocchieri R, Kemper EM, Teerlink T, Jonker MA, Wisselink W, et al: Nutrition before, during, and after surgery increases the arginine:asymmetric dimethylarginine ratio and relates to improved myocardial glucose metabolism: a randomized controlled trial. Am J Clin Nutr. 99:1440–1449. 2014. View Article : Google Scholar : PubMed/NCBI | |
Visser M, Vermeulen MAR, Richir MC, Teerlink T, Houdijk AP, Kostense PJ, Wisselink W, de Mol BA, van Leeuwen PA and Oudemans-van Straaten HM: Imbalance of arginine and asymmetric dimethylarginine is associated with markers of circulatory failure, organ failure and mortality in shock patients. Br J Nutr. 107:1458–1465. 2012. View Article : Google Scholar | |
Arora TK, Malhotra AK, Ivatury R and Mangino MJ: L-arginine infusion during resuscitation for hemorrhagic shock: Impact and mechanism. J Trauma Acute Care Surg. 72:397–402. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu F, Wilson JX and Tyml K: Ascorbate protects against impaired arteriolar constriction in sepsis by inhibiting inducible nitric oxide synthase expression. Free Radic Biol Med. 37:1282–1289. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Lin H, Lin BW and Lin JD: Effects of different ascorbic acid doses on the mortality of critically ill patients: a meta-analysis. Ann Intensive Care. 9:582019. View Article : Google Scholar : PubMed/NCBI | |
Fowler AA III, Truwit JD, Hite RD, Morris PE, DeWilde C, Priday A, Fisher B, Thacker LR II, Natarajan R, Brophy DF, et al: Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: The CITRIS-ALI Randomized Clinical Trial. JAMA. 322:1261–1270. 2019. View Article : Google Scholar : PubMed/NCBI | |
Calina D, Docea AO, Petrakis D, Egorov AM, Ishmukhametov AA, Gabibov AG, Shtilman MI, Kostoff R, Carvalho F, Vinceti M, et al: Towards effective COVID-19 vaccines: Updates, perspectives and challenges (Review). Int J Mol Med. 46:3–16. 2020. | |
Chan MHM, Wong VWS, Wong CK, Chan PK, Chu CM, Hui DS, Suen MW, Sung JJ, Chung SS and Lam CW: Serum LD1 isoenzyme and blood lymphocyte subsets as prognostic indicators for severe acute respiratory syndrome. J Intern Med. 255:512–518. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hicks CW, Wang D, Daya NR, Windham BG, Ballantyne CM, Matsushita K and Selvin E: Associations of cardiac, kidney, and diabetes biomarkers with peripheral neuropathy among older adults in the atherosclerosis risk in communities (ARIC) study. Clin Chem. 66:686–696. 2020. View Article : Google Scholar : PubMed/NCBI |