|
1
|
Breitling S, Ravindran K, Goldenberg NM
and Kuebler WM: The pathophysiology of pulmonary hypertension in
left heart disease. Am J Physiol Lung Cell Mol Physiol.
309:L924–L941. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lundgren J and Rådegran G: Pathophysiology
and potential treatments of pulmonary hypertension due to systolic
left heart failure. Acta Physiol (Oxf). 211:314–333. 2014.
View Article : Google Scholar
|
|
3
|
Raiesdana A and Loscalzo J: Pulmonary
arterial hypertension. Ann Med. 38:95–110. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
van Duin RWB, Houweling B, Uitterdijk A,
Duncker DJ and Merkus D: Pulmonary vasodilation by
phosphodiesterase 5 inhibition is enhanced and nitric oxide
independent in early pulmonary hypertension after myocardial
infarction. Am J Physiol Heart Circ Physiol. 314:H170–H179. 2018.
View Article : Google Scholar
|
|
5
|
Hunt JM, Bethea B, Liu X, Gandjeva A,
Mammen PP, Stacher E, Gandjeva MR, Parish E, Perez M, Smith L, et
al: Pulmonary veins in the normal lung and pulmonary hypertension
due to left heart disease. Am J Physiol Lung Cell Mol Physiol.
305:L725–L736. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fujimoto Y, Urashima T, Kawachi F, Akaike
T, Kusakari Y, Ida H and Minamisawa S: Pulmonary hypertension due
to left heart disease causes intrapulmonary venous arterialization
in rats. J Thorac Cardiovasc Surg. 154:1742–1753.e8. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ghio S, Gavazzi A, Campana C, Inserra C,
Klersy C, Sebastiani R, Arbustini E, Recusani F and Tavazzi L:
Independent and additive prognostic value of right ventricular
systolic function and pulmonary artery pressure in patients with
chronic heart failure. J Am Coll Cardiol. 37:183–188. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lipworth BJ and Dagg KD: Vasoconstrictor
effects of angiotensin II on the pulmonary vascular bed. Chest.
105:1360–1364. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Morrell NW, Upton PD, Higham MA, Yacoub
MH, Polak JM and Wharton J: Angiotensin II stimulates proliferation
of human pulmonary artery smooth muscle cells via the AT1 receptor.
Chest. 114(1 Suppl): 90S–91S. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Houweling B, Merkus D, Sorop O, Boomsma F
and Duncker DJ: Role of endothelin receptor activation in secondary
pulmonary hypertension in awake swine after myocardial infarction.
J Physiol. 574:615–626. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
de Man FS, Tu L, Handoko ML, Rain S,
Ruiter G, François C, Schalij I, Dorfmüller P, Simonneau G, Fadel
E, et al: Dysregulated renin-angiotensin-aldosterone system
contributes to pulmonary arterial hypertension. Am J Respir Crit
Care Med. 186:780–789. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bruce E, Shenoy V, Rathinasabapathy A,
Espejo A, Horowitz A, Oswalt A, Francis J, Nair A, Unger T, Raizada
MK, et al: Selective activation of angiotensin AT2 receptors
attenuates progression of pulmonary hypertension and inhibits
cardiopulmonary fibrosis. Br J Pharmacol. 172:2219–2231. 2015.
View Article : Google Scholar :
|
|
13
|
Strawn WB, Richmond RS, Ann Tallant E,
Gallagher PE and Ferrario CM: Renin-angiotensin system expression
in rat bone marrow haematopoietic and stromal cells. Br J Haematol.
126:120–126. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Liu C, Fan Y, Zhou L, Zhu HY, Song YC, Hu
L, Wang Y and Li QP: Pretreatment of mesenchymal stem cells with
angiotensin II enhances paracrine effects, angiogenesis, gap
junction formation and therapeutic efficacy for myocardial
infarction. Int J Cardiol. 188:22–32. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Mendoza-Torres E, Oyarzún A, Mondaca-Ruff
D, Azocar A, Castro PF, Jalil JE, Chiong M, Lavandero S and
Ocaranza MP: ACE2 and vasoactive peptides: Novel players in
cardiovascular/renal remodeling and hypertension. Ther Adv
Cardiovasc Dis. 9:217–237. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Santos RA, Ferreira AJ, Verano-Braga T and
Bader M: Angiotensin-converting enzyme 2, angiotensin-(1-7) and
Mas: New players of the renin-angiotensin system. J Endocrinol.
216:R1–R17. 2013. View Article : Google Scholar
|
|
17
|
Morrell NW, Atochina EN, Morris KG,
Danilov SM and Stenmark KR: Angiotensin converting enzyme
expression is increased in small pulmonary arteries of rats with
hypoxia-induced pulmonary hypertension. J Clin Invest.
96:1823–1833. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mann S, Bajulaiye A, Sturgeon K, Sabri A,
Muthukumaran G and Libonati JR: Effects of acute angiotensin II on
ischemia reperfusion injury following myocardial infarction. J
Renin Angiotensin Aldosterone Syst. 16:13–22. 2015. View Article : Google Scholar
|
|
19
|
Xu J, Carretero OA, Lin CX, Cavasin MA,
Shesely EG, Yang JJ, Reudelhuber TL and Yang XP: Role of cardiac
overexpression of ANG II in the regulation of cardiac function and
remodeling postmyocardial infarction. Am J Physiol Heart Circ
Physiol. 293:H1900–H1907. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Shenoy V, Qi Y, Katovich MJ and Raizada
MK: ACE2, a promising therapeutic target for pulmonary
hypertension. Curr Opin Pharmacol. 11:150–155. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lassègue B, San Martín A and Griendling
KK: Biochemistry, physiology, and pathophysiology of NADPH oxidases
in the cardiovascular system. Circ Res. 110:1364–1390. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhu X and Zuo L: Characterization of
oxygen radical formation mechanism at early cardiac ischemia. Cell
Death Dis. 4:e7872013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Shiomi T, Tsutsui H, Matsusaka H, Murakami
K, Hayashidani S, Ikeuchi M, Wen J, Kubota T, Utsumi H and
Takeshita A: Overexpression of glutathione peroxidase prevents left
ventricular remodeling and failure after myocardial infarction in
mice. Circulation. 109:544–549. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Bowers R, Cool C, Murphy RC, Tuder RM,
Hopken MW, Flores SC and Voelkel NF: Oxidative stress in severe
pulmonary hypertension. Am J Respir Crit Care Med. 169:764–769.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wang X, Shults NV and Suzuki YJ: Oxidative
profiling of the failing right heart in rats with pulmonary
hypertension. PLoS One. 12:e01768872017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Suresh K and Shimoda LA: Endothelial cell
reactive oxygen species and Ca2+ signaling in pulmonary
hypertension. Adv Exp Med Biol. 967:299–314. 2017. View Article : Google Scholar
|
|
27
|
Guo D, Gu J, Jiang H, Ahmed A, Zhang Z and
Gu Y: Inhibition of pyruvate kinase M2 by reactive oxygen species
contributes to the development of pulmonary arterial hypertension.
J Mol Cell Cardiol. 91:179–187. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Jaitovich A and Jourd'heuil D: A brief
overview of nitric oxide and reactive oxygen species signaling in
hypoxia-induced pulmonary hypertension. Adv Exp Med Biol.
967:71–81. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Shahzad S, Hasan A, Faizy AF, Mateen S,
Fatima N and Moin S: Elevated DNA damage, oxidative stress, and
impaired response defense system inflicted in patients with
myocardial infarction. Clin Appl Thromb Hemost. 24:780–789. 2018.
View Article : Google Scholar
|
|
30
|
Freund-Michel V, Guibert C, Dubois M,
Courtois A, Marthan R, Savineau JP and Muller B: Reactive oxygen
species as therapeutic targets in pulmonary hypertension. Ther Adv
Respir Dis. 7:175–200. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kedzierski RM and Yanagisawa M: Endothelin
system: The double-edged sword in health and disease. Annu Rev
Pharmacol Toxicol. 41:851–876. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Madonna R, Cocco N and De Caterina R:
Pathways and drugs in pulmonary arterial hypertension-focus on the
role of endothelin receptor antagonists. Cardiovasc Drugs Ther.
29:469–479. 2015. View Article : Google Scholar
|
|
33
|
Sato K, Oka M, Hasunuma K, Ohnishi M, Sato
K and Kira S: Effects of separate and combined ETA and ETB blockade
on ET-1-induced constriction in perfused rat lungs. Am J Physiol.
269:L668–L672. 1995.PubMed/NCBI
|
|
34
|
Taguchi K and Hattori Y: Unlooked-for
significance of cardiac versus vascular effects of endothelin-1 in
the pathophysiology of pulmonary arterial hypertension. Circ Res.
112:227–229. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Van Hung T, Emoto N, Vignon-Zellweger N,
Nakayama K, Yagi K, Suzuki Y and Hirata K: Inhibition of vascular
endothelial growth factor receptor under hypoxia causes severe,
human-like pulmonary arterial hypertension in mice: Potential roles
of interleukin-6 and endothelin. Life Sci. 118:313–328. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Merkus D, Houweling B, Mirza A, Boomsma F,
van den Meiracker AH and Duncker DJ: Contribution of endothelin and
its receptors to the regulation of vascular tone during exercise is
different in the systemic, coronary and pulmonary circulation.
Cardiovasc Res. 59:745–754. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Galiè N, Olschewski H, Oudiz RJ, Torres F,
Frost A, Ghofrani HA, Badesch DB, McGoon MD, McLaughlin VV, Roecker
EB, et al: Ambrisentan for the treatment of pulmonary arterial
hypertension: Results of the ambrisentan in pulmonary arterial
hypertension, randomized, double-blind, placebo-controlled,
multicenter, efficacy (ARIES) study 1-2. Circulation.
117:3010–3019. 2008. View Article : Google Scholar
|
|
38
|
Oudiz RJ, Galiè N, Olschewski H, Torres F,
Frost A, Ghofrani HA, Badesch DB, McGoon MD, McLaughlin VV, Roecker
EB, et al: Long-term ambrisentan therapy for the treatment of
pulmonary arterial hypertension. J Am Coll Cardiol. 54:1971–1981.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Tanaka Y, Hino M and Gemma A: Potential
benefit of bosentan therapy in borderline or less severe pulmonary
hypertension secondary to idiopathic pulmonary fibrosis-an interim
analysis of results from a prospective, single-center, randomized,
parallel-group study. BMC Pulm Med. 17:2002017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Skovsted GF, Kruse LS, Berchtold LA, Grell
AS, Warfvinge K and Edvinsson L: Myocardial ischemia-reperfusion
enhances transcriptional expression of endothelin-1 and
vasoconstrictor ETB receptors via the protein kinase MEK-ERK1/2
signaling pathway in rat. PLoS One. 12:e01741192017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
van Duin RWB, Stam K, Cai Z, Uitterdijk A,
Garcia-Alvarez A, Ibanez B, Danser AHJ, Reiss IKM, Duncker DJ and
Merkus D: Transition from post-capillary pulmonary hypertension to
combined pre- and post-capillary pulmonary hypertension in swine: A
key role for endothelin. J Physiol. 597:1157–1173. 2019. View Article : Google Scholar
|
|
42
|
Merkus D, Houweling B, de Beer VJ, Everon
Z and Duncker DJ: Alterations in endothelial control of the
pulmonary circulation in exercising swine with secondary pulmonary
hypertension after myocardial infarction. J Physiol. 580:907–923.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Satwiko MG, Ikeda K, Nakayama K, Yagi K,
Hocher B, Hirata K and Emoto N: Targeted activation of endothelin-1
exacerbates hypoxia-induced pulmonary hypertension. Biochem Biophys
Res Commun. 465:356–362. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hocher B, Thöne-Reineke C, Rohmeiss P,
Schmager F, Slowinski T, Burst V, Siegmund F, Quertermous T, Bauer
C, Neumayer HH, et al: Endothelin-1 transgenic mice develop
glomerulosclerosis, interstitial fibrosis, and renal cysts but not
hypertension. J Clin Invest. 99:1380–1389. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Giaid A, Yanagisawa M, Langleben D, Michel
RP, Levy R, Shennib H, Kimura S, Masaki T, Duguid WP and Stewart
DJ: Expression of endothelin-1 in the lungs of patients with
pulmonary hypertension. N Engl J Med. 328:1732–1739. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wackenfors A, Emilson M, Ingemansson R,
Hortobagyi T, Szok D, Tajti J, Vecsei L, Edvinsson L and Malmsjö M:
Ischemic heart disease induces upregulation of endothelin receptor
mRNA in human coronary arteries. Eur J Pharmacol. 484:103–109.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Tammela T, Enholm B, Alitalo K and
Paavonen K: The biology of vascular endothelial growth factors.
Cardiovasc Res. 65:550–563. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kikuchi R, Stevens M, Harada K, Oltean S
and Murohara T: Anti-angiogenic isoform of vascular endothelial
growth factor-A in cardiovascular and renal disease. Adv Clin Chem.
88:1–33. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ferrara N, Gerber HP and LeCouter J: The
biology of VEGF and its receptors. Nat Med. 9:669–676. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ruhrberg C, Gerhardt H, Golding M, Watson
R, Ioannidou S, Fujisawa H, Betsholtz C and Shima DT: Spatially
restricted patterning cues provided by heparin-binding VEGF-A
control blood vessel branching morphogenesis. Genes Dev.
16:2684–2698. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yang Y, Shi C, Hou X, Zhao Y, Chen B, Tan
B, Deng Z, Li Q, Liu J, Xiao Z, et al: Modified VEGF targets the
ischemic myocardium and promotes functional recovery after
myocardial infarction. J Control Release. 213:27–35. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Shi C, Zhao Y, Yang Y, Chen C, Hou X, Shao
J, Yao H, Li Q, Xia Y and Dai J: Collagen-binding VEGF targeting
the cardiac extracellular matrix promotes recovery in porcine
chronic myocardial infarction. Biomater Sci. 6:356–363. 2018.
View Article : Google Scholar
|
|
53
|
Oduk Y, Zhu W, Kannappan R, Zhao M,
Borovjagin AV, Oparil S and Zhang JJ: VEGF nanoparticles repair the
heart after myocardial infarction. Am J Physiol Heart Circ Physiol.
314:H278–H284. 2018. View Article : Google Scholar :
|
|
54
|
Henry TD, Annex BH, McKendall GR, Azrin
MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman
DS, et al: The VIVA trial: Vascular endothelial growth factor in
ischemia for vascular angiogenesis. Circulation. 107:1359–1365.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sato K, Wu T, Laham RJ, Johnson RB,
Douglas P, Li J, Sellke FW, Bunting S, Simons M and Post MJ:
Efficacy of intracoronary or intravenous VEGF165 in a pig model of
chronic myocardial ischemia. J Am Coll Cardiol. 37:616–623. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Bhatt AJ, Amin SB, Chess PR, Watkins RH
and Maniscalco WM: Expression of vascular endothelial growth factor
and Flk-1 in developing and glucocorticoid-treated mouse lung.
Pediatr Res. 47:606–613. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Eddahibi S, Humbert M, Sediame S, Chouaid
C, Partovian C, Maître B, Teiger E, Rideau D, Simonneau G, Sitbon O
and Adnot S: Imbalance between platelet vascular endothelial growth
factor and platelet-derived growth factor in pulmonary
hypertension. Effect of prostacyclin therapy. Am J Respir Crit Care
Med. 162:1493–1499. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Tuder RM, Flook BE and Voelkel NF:
Increased gene expression for VEGF and the VEGF receptors KDR/Flk
and Flt in lungs exposed to acute or to chronic hypoxia. Modulation
of gene expression by nitric oxide. J Clin Invest. 95:1798–1807.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Al-Husseini A, Kraskauskas D, Mezzaroma E,
Nordio A, Farkas D, Drake JI, Abbate A, Felty Q and Voelkel NF:
Vascular endothelial growth factor receptor 3 signaling contributes
to angioobliterative pulmonary hypertension. Pulm Circ. 5:101–116.
2015. View
Article : Google Scholar : PubMed/NCBI
|
|
60
|
Taraseviciene-Stewart L, Kasahara Y, Alger
L, Hirth P, Mc Mahon G, Waltenberger J, Voelkel NF and Tuder RM:
Inhibition of the VEGF receptor 2 combined with chronic hypoxia
causes cell death-dependent pulmonary endothelial cell
proliferation and severe pulmonary hypertension. FASEB J.
15:427–438. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Nicolls MR, Mizuno S,
Taraseviciene-Stewart L, Farkas L, Drake JI, Al Husseini A,
Gomez-Arroyo JG, Voelkel NF and Bogaard HJ: New models of pulmonary
hypertension based on VEGF receptor blockade-induced endothelial
cell apoptosis. Pulm Circ. 2:434–442. 2012. View Article : Google Scholar
|
|
62
|
Dean A, Gregorc T, Docherty CK, Harvey KY,
Nilsen M, Morrell NW and MacLean MR: Role of the Aryl hydrocarbon
receptor in sugen 5416-induced experimental pulmonary hypertension.
Am J Respir Cell Mol Biol. 58:320–330. 2018. View Article : Google Scholar :
|
|
63
|
Bates DO, Cui TG, Doughty JM, Winkler M,
Sugiono M, Shields JD, Peat D, Gillatt D and Harper SJ: VEGF165b,
an inhibitory splice variant of vascular endothelial growth factor,
is down-regulated in renal cell carcinoma. Cancer Res.
62:4123–4131. 2002.PubMed/NCBI
|
|
64
|
Suzuki S, Yoshihisa A, Yokokawa T, Misaka
T, Sakamoto N, Sugimoto K, Yamaki T, Kunii H, Nakazato K, Saitoh SI
and Takeishi Y: Association between levels of anti-angiogenic
isoform of vascular endothelial growth factor A and pulmonary
hypertension. Int J Cardiol. 222:416–420. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Olsson AK, Dimberg A, Kreuger J and
Claesson-Welsh L: VEGF receptor signaling-in control of vascular
function. Nat Rev Mol Cell Biol. 7:359–371. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yancopoulos GD, Davis S, Gale NW, Rudge
JS, Wiegand SJ and Holash J: Vascular-specific growth factors and
blood vessel formation. Nature. 407:242–248. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Jakkula M, Le Cras TD, Gebb S, Hirth KP,
Tuder RM, Voelkel NF and Abman SH: Inhibition of angiogenesis
decreases alveolarization in the developing rat lung. Am J Physiol
Lung Cell Mol Physiol. 279:L600–L607. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Le Cras TD, Markham NE, Tuder RM, Voelkel
NF and Abman SH: Treatment of newborn rats with a VEGF receptor
inhibitor causes pulmonary hypertension and abnormal lung
structure. Am J Physiol Lung Cell Mol Physiol. 283:L555–L562. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kunig AM, Balasubramaniam V, Markham NE,
Morgan D, Montgomery G, Grover TR and Abman SH: Recombinant human
VEGF treatment enhances alveolarization after hyperoxic lung injury
in neonatal rats. Am J Physiol Lung Cell Mol Physiol.
289:L529–L535. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Thébaud B, Ladha F, Michelakis ED, Sawicka
M, Thurston G, Eaton F, Hashimoto K, Harry G, Haromy A, Korbutt G
and Archer SL: Vascular endothelial growth factor gene therapy
increases survival, promotes lung angiogenesis, and prevents
alveolar damage in hyperoxia-induced lung injury: Evidence that
angiogenesis participates in alveolarization. Circulation.
112:2477–2486. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Mahlman M, Huusko JM, Karjalainen MK,
Kaukola T, Marttila R, Ojaniemi M, Haataja R, Lavoie PM, Rämet M
and Hallman M; Gen-BPD Study Group: Genes encoding vascular
endothelial growth factor A (VEGF-A) and VEGF receptor 2 (VEGFR-2)
and risk for bronchopulmonary dysplasia. Neonatology. 108:53–59.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Kivelä R, Hemanthakumar KA, Vaparanta K,
Robciuc M, Izumiya Y, Kidoya H, Takakura N, Peng X, Sawyer DB,
Elenius K, et al: Endothelial cells regulate physiological
cardiomyocyte growth via VEGFR2-mediated paracrine signaling.
Circulation. 139:2570–2584. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hedhli N, Huang Q, Kalinowski A, Palmeri
M, Hu X, Russell RR and Russell KS: Endothelium-derived neuregulin
protects the heart against ischemic injury. Circulation.
123:2254–2262. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Nagashima T, Li Q, Clementi C, Lydon JP,
DeMayo FJ and Matzuk MM: BMPR2 is required for postimplantation
uterine function and pregnancy maintenance. J Clin Invest.
123:2539–2550. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Morrell NW, Bloch DB, ten Dijke P, Goumans
MJ, Hata A, Smith J, Yu PB and Bloch KD: Targeting BMP signalling
in cardiovascular disease and anaemia. Nat Rev Cardiol. 13:106–120.
2016. View Article : Google Scholar :
|
|
76
|
Eblaghie MC, Reedy M, Oliver T, Mishina Y
and Hogan BL: Evidence that autocrine signaling through Bmpr1a
regulates the proliferation, survival and morphogenetic behavior of
distal lung epithelial cells. Dev Biol. 291:67–82. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Trembath RC, Thomson JR, Machado RD,
Morgan NV, Atkinson C, Winship I, Simonneau G, Galie N, Loyd JE,
Humbert M, et al: Clinical and molecular genetic features of
pulmonary hypertension in patients with hereditary hemorrhagic
telangiectasia. N Engl J Med. 345:325–334. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Upton PD, Long L, Trembath RC and Morrell
NW: Functional characterization of bone morphogenetic protein
binding sites and Smad1/5 activation in human vascular cells. Mol
Pharmacol. 73:539–552. 2008. View Article : Google Scholar
|
|
79
|
Atkinson C, Stewart S, Upton PD, Machado
R, Thomson JR, Trembath RC and Morrell NW: Primary pulmonary
hypertension is associated with reduced pulmonary vascular
expression of type II bone morphogenetic protein receptor.
Circulation. 105:1672–1678. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Southwood M, Jeffery TK, Yang X, Upton PD,
Hall SM, Atkinson C, Haworth SG, Stewart S, Reynolds PN, Long L, et
al: Regulation of bone morphogenetic protein signalling in human
pulmonary vascular development. J Pathol. 214:85–95. 2008.
View Article : Google Scholar
|
|
81
|
Brazil DP, Church RH, Surae S, Godson C
and Martin F: BMP signalling: Agony and antagony in the family.
Trends Cell Biol. 25:249–264. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lories RJ and Luyten FP: Bone
morphogenetic protein signaling in joint homeostasis and disease.
Cytokine Growth Factor Rev. 16:287–298. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Deng Z, Morse JH, Slager SL, Cuervo N,
Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ,
et al: Familial primary pulmonary hypertension (gene PPH1) is
caused by mutations in the bone morphogenetic protein receptor-II
gene. Am J Hum Genet. 67:737–744. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Frank DB, Abtahi A, Yamaguchi DJ, Manning
S, Shyr Y, Pozzi A, Baldwin HS, Johnson JE and de Caestecker MP:
Bone morphogenetic protein 4 promotes pulmonary vascular remodeling
in hypoxic pulmonary hypertension. Circ Res. 97:496–504. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Sylvester JT, Shimoda LA, Aaronson PI and
Ward JP: Hypoxic pulmonary vasoconstriction. Physiol Rev.
92:367–520. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wang J, Fu X, Yang K, Jiang Q, Chen Y, Jia
J, Duan X, Wang EW, He J, Ran P, et al: Hypoxia inducible
factor-1-dependent up-regulation of BMP4 mediates hypoxia-induced
increase of TRPC expression in PASMCs. Cardiovasc Res. 107:108–118.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Han C, Hong KH, Kim YH, Kim MJ, Song C,
Kim MJ, Kim SJ, Raizada MK and Oh SP: SMAD1 deficiency in either
endothelial or smooth muscle cells can predispose mice to pulmonary
hypertension. Hypertension. 61:1044–1052. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Li X, Lu W, Fu X, Zhang Y, Yang K, Zhong
N, Ran P and Wang J: BMP4 increases canonical transient receptor
potential protein expression by activating p38 MAPK and ERK1/2
signaling pathways in pulmonary arterial smooth muscle cells. Am J
Respir Cell Mol Biol. 49:212–220. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yang X, Long L, Reynolds PN and Morrell
NW: Expression of mutant BMPR-II in pulmonary endothelial cells
promotes apoptosis and a release of factors that stimulate
proliferation of pulmonary arterial smooth muscle cells. Pulm Circ.
1:103–110. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Tokola H, Rysä J, Pikkarainen S, Hautala
N, Leskinen H, Kerkelä R, Ilves M, Aro J, Vuolteenaho O, Ritvos O
and Ruskoaho H: Bone morphogenetic protein-2-a potential
auto-crine/paracrine factor in mediating the stretch activated
B-type and atrial natriuretic peptide expression in cardiac
myocytes. Mol Cell Endocrinol. 399:9–21. 2015. View Article : Google Scholar
|
|
91
|
Pachori AS, Custer L, Hansen D, Clapp S,
Kemppa E and Klingensmith J: Bone morphogenetic protein 4 mediates
myocardial ischemic injury through JNK-dependent signaling pathway.
J Mol Cell Cardiol. 48:1255–1265. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wang YL, Zhang G, Wang HJ, Tan YZ and Wang
XY: Preinduction with bone morphogenetic protein-2 enhances
cardiomyogenic differentiation of c-kit+ mesenchymal
stem cells and repair of infarcted myocardium. Int J Cardiol.
265:173–180. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Sanders LN, Schoenhard JA, Saleh MA,
Mukherjee A, Ryzhov S, McMaster WG Jr, Nolan K, Gumina RJ, Thompson
TB, Magnuson MA, et al: BMP antagonist gremlin 2 limits
inflammation after myocardial infarction. Circ Res. 119:434–449.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Chen H, Montagnani M, Funahashi T,
Shimomura I and Quon MJ: Adiponectin stimulates production of
nitric oxide in vascular endothelial cells. J Biol Chem.
278:45021–45026. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Chow WS, Cheung BM, Tso AW, Xu A, Wat NM,
Fong CH, Ong LH, Tam S, Tan KC, Janus ED, et al:
Hypoadiponectinemia as a predictor for the development of
hypertension: A 5-year prospective study. Hypertension.
49:1455–1461. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Amin RH, Mathews ST, Alli A and Leff T:
Endogenously produced adiponectin protects cardiomyocytes from
hypertrophy by a PPARgamma-dependent autocrine mechanism. Am J
Physiol Heart Circ Physiol. 299:H690–H698. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Natarajan R, Salloum FN, Fisher BJ,
Kukreja RC and Fowler AA III: Hypoxia inducible factor-1
upregulates adipo-nectin in diabetic mouse hearts and attenuates
post-ischemic injury. J Cardiovasc Pharmacol. 51:178–187. 2008.
View Article : Google Scholar : PubMed/NCBI
|