Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
September-2020 Volume 46 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2020 Volume 46 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Heart‑lung crosstalk in pulmonary arterial hypertension following myocardial infarction (Review)

  • Authors:
    • Wenfeng Ye
    • Haixu Guo
    • Jinrong Xu
    • Shuyun Cai
    • Yuan He
    • Xiaorong Shui
    • Shian Huang
    • Hui Luo
    • Wei Lei
  • View Affiliations / Copyright

    Affiliations: Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China, Department of Cardiovascular Internal Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China, Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China, Laboratory of Vascular Surgery, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China, Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China, Southern Marine Science and Engineering Guangdong Laboratory‑Zhanjiang, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
    Copyright: © Ye et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 913-924
    |
    Published online on: June 18, 2020
       https://doi.org/10.3892/ijmm.2020.4650
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Left heart disease is the main cause of clinical pulmonary arterial hypertension (PAH). Common types of left heart disease that result in PAH include heart failure, left ventricular systolic dysfunction, left ventricular diastolic dysfunction and valvular disease. It is currently believed that mechanical pressure caused by high pulmonary venous pressure is the main cause of myocardial infarction (MI) in individuals with ischemic cardiomyopathy and left ventricular systolic dysfunction. In the presence of decreased cardiac function, vascular remodeling of pulmonary vessels in response to long‑term stimulation by high pressure in turn leads to exacerbation of PAH. However, the underlying pathological mechanisms remain unclear. Elucidating the association between the development of MI and PAH may lead to a better understanding of potential risk factors and better disease treatment. In this article, the pathophysiological effects of multiple systems in individuals with MI and PAH were reviewed in order to provide a general perspective on various potential interactions between cardiomyocytes and pulmonary vascular cells.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Breitling S, Ravindran K, Goldenberg NM and Kuebler WM: The pathophysiology of pulmonary hypertension in left heart disease. Am J Physiol Lung Cell Mol Physiol. 309:L924–L941. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Lundgren J and Rådegran G: Pathophysiology and potential treatments of pulmonary hypertension due to systolic left heart failure. Acta Physiol (Oxf). 211:314–333. 2014. View Article : Google Scholar

3 

Raiesdana A and Loscalzo J: Pulmonary arterial hypertension. Ann Med. 38:95–110. 2006. View Article : Google Scholar : PubMed/NCBI

4 

van Duin RWB, Houweling B, Uitterdijk A, Duncker DJ and Merkus D: Pulmonary vasodilation by phosphodiesterase 5 inhibition is enhanced and nitric oxide independent in early pulmonary hypertension after myocardial infarction. Am J Physiol Heart Circ Physiol. 314:H170–H179. 2018. View Article : Google Scholar

5 

Hunt JM, Bethea B, Liu X, Gandjeva A, Mammen PP, Stacher E, Gandjeva MR, Parish E, Perez M, Smith L, et al: Pulmonary veins in the normal lung and pulmonary hypertension due to left heart disease. Am J Physiol Lung Cell Mol Physiol. 305:L725–L736. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Fujimoto Y, Urashima T, Kawachi F, Akaike T, Kusakari Y, Ida H and Minamisawa S: Pulmonary hypertension due to left heart disease causes intrapulmonary venous arterialization in rats. J Thorac Cardiovasc Surg. 154:1742–1753.e8. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, Arbustini E, Recusani F and Tavazzi L: Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 37:183–188. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Lipworth BJ and Dagg KD: Vasoconstrictor effects of angiotensin II on the pulmonary vascular bed. Chest. 105:1360–1364. 1994. View Article : Google Scholar : PubMed/NCBI

9 

Morrell NW, Upton PD, Higham MA, Yacoub MH, Polak JM and Wharton J: Angiotensin II stimulates proliferation of human pulmonary artery smooth muscle cells via the AT1 receptor. Chest. 114(1 Suppl): 90S–91S. 1998. View Article : Google Scholar : PubMed/NCBI

10 

Houweling B, Merkus D, Sorop O, Boomsma F and Duncker DJ: Role of endothelin receptor activation in secondary pulmonary hypertension in awake swine after myocardial infarction. J Physiol. 574:615–626. 2006. View Article : Google Scholar : PubMed/NCBI

11 

de Man FS, Tu L, Handoko ML, Rain S, Ruiter G, François C, Schalij I, Dorfmüller P, Simonneau G, Fadel E, et al: Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension. Am J Respir Crit Care Med. 186:780–789. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Bruce E, Shenoy V, Rathinasabapathy A, Espejo A, Horowitz A, Oswalt A, Francis J, Nair A, Unger T, Raizada MK, et al: Selective activation of angiotensin AT2 receptors attenuates progression of pulmonary hypertension and inhibits cardiopulmonary fibrosis. Br J Pharmacol. 172:2219–2231. 2015. View Article : Google Scholar :

13 

Strawn WB, Richmond RS, Ann Tallant E, Gallagher PE and Ferrario CM: Renin-angiotensin system expression in rat bone marrow haematopoietic and stromal cells. Br J Haematol. 126:120–126. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Liu C, Fan Y, Zhou L, Zhu HY, Song YC, Hu L, Wang Y and Li QP: Pretreatment of mesenchymal stem cells with angiotensin II enhances paracrine effects, angiogenesis, gap junction formation and therapeutic efficacy for myocardial infarction. Int J Cardiol. 188:22–32. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Mendoza-Torres E, Oyarzún A, Mondaca-Ruff D, Azocar A, Castro PF, Jalil JE, Chiong M, Lavandero S and Ocaranza MP: ACE2 and vasoactive peptides: Novel players in cardiovascular/renal remodeling and hypertension. Ther Adv Cardiovasc Dis. 9:217–237. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Santos RA, Ferreira AJ, Verano-Braga T and Bader M: Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: New players of the renin-angiotensin system. J Endocrinol. 216:R1–R17. 2013. View Article : Google Scholar

17 

Morrell NW, Atochina EN, Morris KG, Danilov SM and Stenmark KR: Angiotensin converting enzyme expression is increased in small pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. J Clin Invest. 96:1823–1833. 1995. View Article : Google Scholar : PubMed/NCBI

18 

Mann S, Bajulaiye A, Sturgeon K, Sabri A, Muthukumaran G and Libonati JR: Effects of acute angiotensin II on ischemia reperfusion injury following myocardial infarction. J Renin Angiotensin Aldosterone Syst. 16:13–22. 2015. View Article : Google Scholar

19 

Xu J, Carretero OA, Lin CX, Cavasin MA, Shesely EG, Yang JJ, Reudelhuber TL and Yang XP: Role of cardiac overexpression of ANG II in the regulation of cardiac function and remodeling postmyocardial infarction. Am J Physiol Heart Circ Physiol. 293:H1900–H1907. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Shenoy V, Qi Y, Katovich MJ and Raizada MK: ACE2, a promising therapeutic target for pulmonary hypertension. Curr Opin Pharmacol. 11:150–155. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Lassègue B, San Martín A and Griendling KK: Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 110:1364–1390. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Zhu X and Zuo L: Characterization of oxygen radical formation mechanism at early cardiac ischemia. Cell Death Dis. 4:e7872013. View Article : Google Scholar : PubMed/NCBI

23 

Shiomi T, Tsutsui H, Matsusaka H, Murakami K, Hayashidani S, Ikeuchi M, Wen J, Kubota T, Utsumi H and Takeshita A: Overexpression of glutathione peroxidase prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation. 109:544–549. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Bowers R, Cool C, Murphy RC, Tuder RM, Hopken MW, Flores SC and Voelkel NF: Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med. 169:764–769. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Wang X, Shults NV and Suzuki YJ: Oxidative profiling of the failing right heart in rats with pulmonary hypertension. PLoS One. 12:e01768872017. View Article : Google Scholar : PubMed/NCBI

26 

Suresh K and Shimoda LA: Endothelial cell reactive oxygen species and Ca2+ signaling in pulmonary hypertension. Adv Exp Med Biol. 967:299–314. 2017. View Article : Google Scholar

27 

Guo D, Gu J, Jiang H, Ahmed A, Zhang Z and Gu Y: Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to the development of pulmonary arterial hypertension. J Mol Cell Cardiol. 91:179–187. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Jaitovich A and Jourd'heuil D: A brief overview of nitric oxide and reactive oxygen species signaling in hypoxia-induced pulmonary hypertension. Adv Exp Med Biol. 967:71–81. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Shahzad S, Hasan A, Faizy AF, Mateen S, Fatima N and Moin S: Elevated DNA damage, oxidative stress, and impaired response defense system inflicted in patients with myocardial infarction. Clin Appl Thromb Hemost. 24:780–789. 2018. View Article : Google Scholar

30 

Freund-Michel V, Guibert C, Dubois M, Courtois A, Marthan R, Savineau JP and Muller B: Reactive oxygen species as therapeutic targets in pulmonary hypertension. Ther Adv Respir Dis. 7:175–200. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Kedzierski RM and Yanagisawa M: Endothelin system: The double-edged sword in health and disease. Annu Rev Pharmacol Toxicol. 41:851–876. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Madonna R, Cocco N and De Caterina R: Pathways and drugs in pulmonary arterial hypertension-focus on the role of endothelin receptor antagonists. Cardiovasc Drugs Ther. 29:469–479. 2015. View Article : Google Scholar

33 

Sato K, Oka M, Hasunuma K, Ohnishi M, Sato K and Kira S: Effects of separate and combined ETA and ETB blockade on ET-1-induced constriction in perfused rat lungs. Am J Physiol. 269:L668–L672. 1995.PubMed/NCBI

34 

Taguchi K and Hattori Y: Unlooked-for significance of cardiac versus vascular effects of endothelin-1 in the pathophysiology of pulmonary arterial hypertension. Circ Res. 112:227–229. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Van Hung T, Emoto N, Vignon-Zellweger N, Nakayama K, Yagi K, Suzuki Y and Hirata K: Inhibition of vascular endothelial growth factor receptor under hypoxia causes severe, human-like pulmonary arterial hypertension in mice: Potential roles of interleukin-6 and endothelin. Life Sci. 118:313–328. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Merkus D, Houweling B, Mirza A, Boomsma F, van den Meiracker AH and Duncker DJ: Contribution of endothelin and its receptors to the regulation of vascular tone during exercise is different in the systemic, coronary and pulmonary circulation. Cardiovasc Res. 59:745–754. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Galiè N, Olschewski H, Oudiz RJ, Torres F, Frost A, Ghofrani HA, Badesch DB, McGoon MD, McLaughlin VV, Roecker EB, et al: Ambrisentan for the treatment of pulmonary arterial hypertension: Results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1-2. Circulation. 117:3010–3019. 2008. View Article : Google Scholar

38 

Oudiz RJ, Galiè N, Olschewski H, Torres F, Frost A, Ghofrani HA, Badesch DB, McGoon MD, McLaughlin VV, Roecker EB, et al: Long-term ambrisentan therapy for the treatment of pulmonary arterial hypertension. J Am Coll Cardiol. 54:1971–1981. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Tanaka Y, Hino M and Gemma A: Potential benefit of bosentan therapy in borderline or less severe pulmonary hypertension secondary to idiopathic pulmonary fibrosis-an interim analysis of results from a prospective, single-center, randomized, parallel-group study. BMC Pulm Med. 17:2002017. View Article : Google Scholar : PubMed/NCBI

40 

Skovsted GF, Kruse LS, Berchtold LA, Grell AS, Warfvinge K and Edvinsson L: Myocardial ischemia-reperfusion enhances transcriptional expression of endothelin-1 and vasoconstrictor ETB receptors via the protein kinase MEK-ERK1/2 signaling pathway in rat. PLoS One. 12:e01741192017. View Article : Google Scholar : PubMed/NCBI

41 

van Duin RWB, Stam K, Cai Z, Uitterdijk A, Garcia-Alvarez A, Ibanez B, Danser AHJ, Reiss IKM, Duncker DJ and Merkus D: Transition from post-capillary pulmonary hypertension to combined pre- and post-capillary pulmonary hypertension in swine: A key role for endothelin. J Physiol. 597:1157–1173. 2019. View Article : Google Scholar

42 

Merkus D, Houweling B, de Beer VJ, Everon Z and Duncker DJ: Alterations in endothelial control of the pulmonary circulation in exercising swine with secondary pulmonary hypertension after myocardial infarction. J Physiol. 580:907–923. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Satwiko MG, Ikeda K, Nakayama K, Yagi K, Hocher B, Hirata K and Emoto N: Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension. Biochem Biophys Res Commun. 465:356–362. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Hocher B, Thöne-Reineke C, Rohmeiss P, Schmager F, Slowinski T, Burst V, Siegmund F, Quertermous T, Bauer C, Neumayer HH, et al: Endothelin-1 transgenic mice develop glomerulosclerosis, interstitial fibrosis, and renal cysts but not hypertension. J Clin Invest. 99:1380–1389. 1997. View Article : Google Scholar : PubMed/NCBI

45 

Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, Kimura S, Masaki T, Duguid WP and Stewart DJ: Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med. 328:1732–1739. 1993. View Article : Google Scholar : PubMed/NCBI

46 

Wackenfors A, Emilson M, Ingemansson R, Hortobagyi T, Szok D, Tajti J, Vecsei L, Edvinsson L and Malmsjö M: Ischemic heart disease induces upregulation of endothelin receptor mRNA in human coronary arteries. Eur J Pharmacol. 484:103–109. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Tammela T, Enholm B, Alitalo K and Paavonen K: The biology of vascular endothelial growth factors. Cardiovasc Res. 65:550–563. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Kikuchi R, Stevens M, Harada K, Oltean S and Murohara T: Anti-angiogenic isoform of vascular endothelial growth factor-A in cardiovascular and renal disease. Adv Clin Chem. 88:1–33. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Ferrara N, Gerber HP and LeCouter J: The biology of VEGF and its receptors. Nat Med. 9:669–676. 2003. View Article : Google Scholar : PubMed/NCBI

50 

Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C and Shima DT: Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16:2684–2698. 2002. View Article : Google Scholar : PubMed/NCBI

51 

Yang Y, Shi C, Hou X, Zhao Y, Chen B, Tan B, Deng Z, Li Q, Liu J, Xiao Z, et al: Modified VEGF targets the ischemic myocardium and promotes functional recovery after myocardial infarction. J Control Release. 213:27–35. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Shi C, Zhao Y, Yang Y, Chen C, Hou X, Shao J, Yao H, Li Q, Xia Y and Dai J: Collagen-binding VEGF targeting the cardiac extracellular matrix promotes recovery in porcine chronic myocardial infarction. Biomater Sci. 6:356–363. 2018. View Article : Google Scholar

53 

Oduk Y, Zhu W, Kannappan R, Zhao M, Borovjagin AV, Oparil S and Zhang JJ: VEGF nanoparticles repair the heart after myocardial infarction. Am J Physiol Heart Circ Physiol. 314:H278–H284. 2018. View Article : Google Scholar :

54 

Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, et al: The VIVA trial: Vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation. 107:1359–1365. 2003. View Article : Google Scholar : PubMed/NCBI

55 

Sato K, Wu T, Laham RJ, Johnson RB, Douglas P, Li J, Sellke FW, Bunting S, Simons M and Post MJ: Efficacy of intracoronary or intravenous VEGF165 in a pig model of chronic myocardial ischemia. J Am Coll Cardiol. 37:616–623. 2001. View Article : Google Scholar : PubMed/NCBI

56 

Bhatt AJ, Amin SB, Chess PR, Watkins RH and Maniscalco WM: Expression of vascular endothelial growth factor and Flk-1 in developing and glucocorticoid-treated mouse lung. Pediatr Res. 47:606–613. 2000. View Article : Google Scholar : PubMed/NCBI

57 

Eddahibi S, Humbert M, Sediame S, Chouaid C, Partovian C, Maître B, Teiger E, Rideau D, Simonneau G, Sitbon O and Adnot S: Imbalance between platelet vascular endothelial growth factor and platelet-derived growth factor in pulmonary hypertension. Effect of prostacyclin therapy. Am J Respir Crit Care Med. 162:1493–1499. 2000. View Article : Google Scholar : PubMed/NCBI

58 

Tuder RM, Flook BE and Voelkel NF: Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest. 95:1798–1807. 1995. View Article : Google Scholar : PubMed/NCBI

59 

Al-Husseini A, Kraskauskas D, Mezzaroma E, Nordio A, Farkas D, Drake JI, Abbate A, Felty Q and Voelkel NF: Vascular endothelial growth factor receptor 3 signaling contributes to angioobliterative pulmonary hypertension. Pulm Circ. 5:101–116. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, Mc Mahon G, Waltenberger J, Voelkel NF and Tuder RM: Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J. 15:427–438. 2001. View Article : Google Scholar : PubMed/NCBI

61 

Nicolls MR, Mizuno S, Taraseviciene-Stewart L, Farkas L, Drake JI, Al Husseini A, Gomez-Arroyo JG, Voelkel NF and Bogaard HJ: New models of pulmonary hypertension based on VEGF receptor blockade-induced endothelial cell apoptosis. Pulm Circ. 2:434–442. 2012. View Article : Google Scholar

62 

Dean A, Gregorc T, Docherty CK, Harvey KY, Nilsen M, Morrell NW and MacLean MR: Role of the Aryl hydrocarbon receptor in sugen 5416-induced experimental pulmonary hypertension. Am J Respir Cell Mol Biol. 58:320–330. 2018. View Article : Google Scholar :

63 

Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD, Peat D, Gillatt D and Harper SJ: VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 62:4123–4131. 2002.PubMed/NCBI

64 

Suzuki S, Yoshihisa A, Yokokawa T, Misaka T, Sakamoto N, Sugimoto K, Yamaki T, Kunii H, Nakazato K, Saitoh SI and Takeishi Y: Association between levels of anti-angiogenic isoform of vascular endothelial growth factor A and pulmonary hypertension. Int J Cardiol. 222:416–420. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Olsson AK, Dimberg A, Kreuger J and Claesson-Welsh L: VEGF receptor signaling-in control of vascular function. Nat Rev Mol Cell Biol. 7:359–371. 2006. View Article : Google Scholar : PubMed/NCBI

66 

Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ and Holash J: Vascular-specific growth factors and blood vessel formation. Nature. 407:242–248. 2000. View Article : Google Scholar : PubMed/NCBI

67 

Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, Voelkel NF and Abman SH: Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol. 279:L600–L607. 2000. View Article : Google Scholar : PubMed/NCBI

68 

Le Cras TD, Markham NE, Tuder RM, Voelkel NF and Abman SH: Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am J Physiol Lung Cell Mol Physiol. 283:L555–L562. 2002. View Article : Google Scholar : PubMed/NCBI

69 

Kunig AM, Balasubramaniam V, Markham NE, Morgan D, Montgomery G, Grover TR and Abman SH: Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol. 289:L529–L535. 2005. View Article : Google Scholar : PubMed/NCBI

70 

Thébaud B, Ladha F, Michelakis ED, Sawicka M, Thurston G, Eaton F, Hashimoto K, Harry G, Haromy A, Korbutt G and Archer SL: Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: Evidence that angiogenesis participates in alveolarization. Circulation. 112:2477–2486. 2005. View Article : Google Scholar : PubMed/NCBI

71 

Mahlman M, Huusko JM, Karjalainen MK, Kaukola T, Marttila R, Ojaniemi M, Haataja R, Lavoie PM, Rämet M and Hallman M; Gen-BPD Study Group: Genes encoding vascular endothelial growth factor A (VEGF-A) and VEGF receptor 2 (VEGFR-2) and risk for bronchopulmonary dysplasia. Neonatology. 108:53–59. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Kivelä R, Hemanthakumar KA, Vaparanta K, Robciuc M, Izumiya Y, Kidoya H, Takakura N, Peng X, Sawyer DB, Elenius K, et al: Endothelial cells regulate physiological cardiomyocyte growth via VEGFR2-mediated paracrine signaling. Circulation. 139:2570–2584. 2019. View Article : Google Scholar : PubMed/NCBI

73 

Hedhli N, Huang Q, Kalinowski A, Palmeri M, Hu X, Russell RR and Russell KS: Endothelium-derived neuregulin protects the heart against ischemic injury. Circulation. 123:2254–2262. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Nagashima T, Li Q, Clementi C, Lydon JP, DeMayo FJ and Matzuk MM: BMPR2 is required for postimplantation uterine function and pregnancy maintenance. J Clin Invest. 123:2539–2550. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Morrell NW, Bloch DB, ten Dijke P, Goumans MJ, Hata A, Smith J, Yu PB and Bloch KD: Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol. 13:106–120. 2016. View Article : Google Scholar :

76 

Eblaghie MC, Reedy M, Oliver T, Mishina Y and Hogan BL: Evidence that autocrine signaling through Bmpr1a regulates the proliferation, survival and morphogenetic behavior of distal lung epithelial cells. Dev Biol. 291:67–82. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Trembath RC, Thomson JR, Machado RD, Morgan NV, Atkinson C, Winship I, Simonneau G, Galie N, Loyd JE, Humbert M, et al: Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N Engl J Med. 345:325–334. 2001. View Article : Google Scholar : PubMed/NCBI

78 

Upton PD, Long L, Trembath RC and Morrell NW: Functional characterization of bone morphogenetic protein binding sites and Smad1/5 activation in human vascular cells. Mol Pharmacol. 73:539–552. 2008. View Article : Google Scholar

79 

Atkinson C, Stewart S, Upton PD, Machado R, Thomson JR, Trembath RC and Morrell NW: Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation. 105:1672–1678. 2002. View Article : Google Scholar : PubMed/NCBI

80 

Southwood M, Jeffery TK, Yang X, Upton PD, Hall SM, Atkinson C, Haworth SG, Stewart S, Reynolds PN, Long L, et al: Regulation of bone morphogenetic protein signalling in human pulmonary vascular development. J Pathol. 214:85–95. 2008. View Article : Google Scholar

81 

Brazil DP, Church RH, Surae S, Godson C and Martin F: BMP signalling: Agony and antagony in the family. Trends Cell Biol. 25:249–264. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Lories RJ and Luyten FP: Bone morphogenetic protein signaling in joint homeostasis and disease. Cytokine Growth Factor Rev. 16:287–298. 2005. View Article : Google Scholar : PubMed/NCBI

83 

Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ, et al: Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet. 67:737–744. 2000. View Article : Google Scholar : PubMed/NCBI

84 

Frank DB, Abtahi A, Yamaguchi DJ, Manning S, Shyr Y, Pozzi A, Baldwin HS, Johnson JE and de Caestecker MP: Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension. Circ Res. 97:496–504. 2005. View Article : Google Scholar : PubMed/NCBI

85 

Sylvester JT, Shimoda LA, Aaronson PI and Ward JP: Hypoxic pulmonary vasoconstriction. Physiol Rev. 92:367–520. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Wang J, Fu X, Yang K, Jiang Q, Chen Y, Jia J, Duan X, Wang EW, He J, Ran P, et al: Hypoxia inducible factor-1-dependent up-regulation of BMP4 mediates hypoxia-induced increase of TRPC expression in PASMCs. Cardiovasc Res. 107:108–118. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Han C, Hong KH, Kim YH, Kim MJ, Song C, Kim MJ, Kim SJ, Raizada MK and Oh SP: SMAD1 deficiency in either endothelial or smooth muscle cells can predispose mice to pulmonary hypertension. Hypertension. 61:1044–1052. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Li X, Lu W, Fu X, Zhang Y, Yang K, Zhong N, Ran P and Wang J: BMP4 increases canonical transient receptor potential protein expression by activating p38 MAPK and ERK1/2 signaling pathways in pulmonary arterial smooth muscle cells. Am J Respir Cell Mol Biol. 49:212–220. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Yang X, Long L, Reynolds PN and Morrell NW: Expression of mutant BMPR-II in pulmonary endothelial cells promotes apoptosis and a release of factors that stimulate proliferation of pulmonary arterial smooth muscle cells. Pulm Circ. 1:103–110. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Tokola H, Rysä J, Pikkarainen S, Hautala N, Leskinen H, Kerkelä R, Ilves M, Aro J, Vuolteenaho O, Ritvos O and Ruskoaho H: Bone morphogenetic protein-2-a potential auto-crine/paracrine factor in mediating the stretch activated B-type and atrial natriuretic peptide expression in cardiac myocytes. Mol Cell Endocrinol. 399:9–21. 2015. View Article : Google Scholar

91 

Pachori AS, Custer L, Hansen D, Clapp S, Kemppa E and Klingensmith J: Bone morphogenetic protein 4 mediates myocardial ischemic injury through JNK-dependent signaling pathway. J Mol Cell Cardiol. 48:1255–1265. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Wang YL, Zhang G, Wang HJ, Tan YZ and Wang XY: Preinduction with bone morphogenetic protein-2 enhances cardiomyogenic differentiation of c-kit+ mesenchymal stem cells and repair of infarcted myocardium. Int J Cardiol. 265:173–180. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Sanders LN, Schoenhard JA, Saleh MA, Mukherjee A, Ryzhov S, McMaster WG Jr, Nolan K, Gumina RJ, Thompson TB, Magnuson MA, et al: BMP antagonist gremlin 2 limits inflammation after myocardial infarction. Circ Res. 119:434–449. 2016. View Article : Google Scholar : PubMed/NCBI

94 

Chen H, Montagnani M, Funahashi T, Shimomura I and Quon MJ: Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem. 278:45021–45026. 2003. View Article : Google Scholar : PubMed/NCBI

95 

Chow WS, Cheung BM, Tso AW, Xu A, Wat NM, Fong CH, Ong LH, Tam S, Tan KC, Janus ED, et al: Hypoadiponectinemia as a predictor for the development of hypertension: A 5-year prospective study. Hypertension. 49:1455–1461. 2007. View Article : Google Scholar : PubMed/NCBI

96 

Amin RH, Mathews ST, Alli A and Leff T: Endogenously produced adiponectin protects cardiomyocytes from hypertrophy by a PPARgamma-dependent autocrine mechanism. Am J Physiol Heart Circ Physiol. 299:H690–H698. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Natarajan R, Salloum FN, Fisher BJ, Kukreja RC and Fowler AA III: Hypoxia inducible factor-1 upregulates adipo-nectin in diabetic mouse hearts and attenuates post-ischemic injury. J Cardiovasc Pharmacol. 51:178–187. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ye W, Guo H, Xu J, Cai S, He Y, Shui X, Huang S, Luo H and Lei W: Heart‑lung crosstalk in pulmonary arterial hypertension following myocardial infarction (Review). Int J Mol Med 46: 913-924, 2020.
APA
Ye, W., Guo, H., Xu, J., Cai, S., He, Y., Shui, X. ... Lei, W. (2020). Heart‑lung crosstalk in pulmonary arterial hypertension following myocardial infarction (Review). International Journal of Molecular Medicine, 46, 913-924. https://doi.org/10.3892/ijmm.2020.4650
MLA
Ye, W., Guo, H., Xu, J., Cai, S., He, Y., Shui, X., Huang, S., Luo, H., Lei, W."Heart‑lung crosstalk in pulmonary arterial hypertension following myocardial infarction (Review)". International Journal of Molecular Medicine 46.3 (2020): 913-924.
Chicago
Ye, W., Guo, H., Xu, J., Cai, S., He, Y., Shui, X., Huang, S., Luo, H., Lei, W."Heart‑lung crosstalk in pulmonary arterial hypertension following myocardial infarction (Review)". International Journal of Molecular Medicine 46, no. 3 (2020): 913-924. https://doi.org/10.3892/ijmm.2020.4650
Copy and paste a formatted citation
x
Spandidos Publications style
Ye W, Guo H, Xu J, Cai S, He Y, Shui X, Huang S, Luo H and Lei W: Heart‑lung crosstalk in pulmonary arterial hypertension following myocardial infarction (Review). Int J Mol Med 46: 913-924, 2020.
APA
Ye, W., Guo, H., Xu, J., Cai, S., He, Y., Shui, X. ... Lei, W. (2020). Heart‑lung crosstalk in pulmonary arterial hypertension following myocardial infarction (Review). International Journal of Molecular Medicine, 46, 913-924. https://doi.org/10.3892/ijmm.2020.4650
MLA
Ye, W., Guo, H., Xu, J., Cai, S., He, Y., Shui, X., Huang, S., Luo, H., Lei, W."Heart‑lung crosstalk in pulmonary arterial hypertension following myocardial infarction (Review)". International Journal of Molecular Medicine 46.3 (2020): 913-924.
Chicago
Ye, W., Guo, H., Xu, J., Cai, S., He, Y., Shui, X., Huang, S., Luo, H., Lei, W."Heart‑lung crosstalk in pulmonary arterial hypertension following myocardial infarction (Review)". International Journal of Molecular Medicine 46, no. 3 (2020): 913-924. https://doi.org/10.3892/ijmm.2020.4650
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team