|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Webb PM and Jordan SJ: Epidemiology of
epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol.
41:3–14. 2017. View Article : Google Scholar
|
|
3
|
Davis A, Tinker AV and Friedlander M:
'Platinum resistant' ovarian cancer: What is it, who to treat and
how to measure benefit? Gynecol Oncol. 133:624–631. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
International Collaborative Ovarian and
Neoplasm Group: Paclitaxel plus carboplatin versus standard
chemotherapy with either single-agent carboplatin or
cyclophosphamide, doxorubicin, and cisplatin in women with ovarian
cancer: The ICON3 randomised trial. Lancet. 360:505–515. 2002.
View Article : Google Scholar
|
|
5
|
Boussios S, Karihtala P, Moschetta M,
Abson C, Karathanasi A, Zakynthinakis-Kyriakou N, Ryan JE, Sheriff
M, Rassy E and Pavlidis N: Veliparib in ovarian cancer: A new
synthetically lethal therapeutic approach. Invest New Drugs.
38:181–193. 2020. View Article : Google Scholar
|
|
6
|
Markman M: Optimizing primary chemotherapy
in ovarian cancer. Hematol Oncol Clin North Am. 17:957–968. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bast RC Jr, Hennessy B and Mills GB: The
biology of ovarian cancer: New opportunities for translation. Nat
Rev Cancer. 9:415–428. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lindemann K, Gao B, Mapagu C, Fereday S,
Emmanuel C, Alsop K, Traficante N; Australian Ovarian Cancer Study
Group; Harnett PR, Bowtell DDL and DeFazio A: Response rates to
second-line platinum-based therapy in ovarian cancer patients
challenge the clinical definition of platinum resistance. Gynecol
Oncol. 150:239–246. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Matulonis UA, Sood AK, Fallowfield L,
Howitt BE, Sehouli J and Karlan BY: Ovarian cancer. Nat Rev Dis
Primers. 2:160612016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bowtell DD, Bohm S, Ahmed AA, Aspuria PJ,
Bast RC Jr, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA, et
al: Rethinking ovarian cancer II: Reducing mortality from
high-grade serous ovarian cancer. Nat Rev Cancer. 15:668–679. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Xie H, Wang W, Xia B, Jin W and Lou G:
Therapeutic applications of PARP inhibitors in ovarian cancer.
Biomed Pharmacother. 127:1102042020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Boussios S, Karihtala P, Moschetta M,
Karathanasi A, Sadauskaite A, Rassy E and Pavlidis N: Combined
strategies with poly (ADP-Ribose) polymerase (PARP) inhibitors for
the treatment of ovarian cancer: A literature review. Diagnostics
(Basel). 9:872019. View Article : Google Scholar
|
|
13
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Matsuura K, Huang NJ, Cocce K, Zhang L and
Kornbluth S: Downregulation of the proapoptotic protein MOAP-1 by
the UBR5 ubiquitin ligase and its role in ovarian cancer resistance
to cisplatin. Oncogene. 36:1698–1706. 2017. View Article : Google Scholar :
|
|
15
|
Fernald K and Kurokawa M: Evading
apoptosis in cancer. Trends Cell Biol. 23:620–633. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hassan M, Watari H, AbuAlmaaty A, Ohba Y
and Sakuragi N: Apoptosis and molecular targeting therapy in
cancer. Biomed Res Int. 2014:1508452014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Valentin R, Grabow S and Davids MS: The
rise of apoptosis: Targeting apoptosis in hematologic malignancies.
Blood. 132:1248–1264. 2018. View Article : Google Scholar
|
|
18
|
Kerr JF, Wyllie AH and Currie AR:
Apoptosis: A basic biological phenomenon with wide-ranging
implications in tissue kinetics. Br J Cancer. 26:239–257. 1972.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chung C: Restoring the switch for cancer
cell death: Targeting the apoptosis signaling pathway. Am J Health
Syst Pharm. 75:945–952. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Green DR and Llambi F: Cell death
signaling. Cold Spring Harb Perspect Biol. 7:a0060802015.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Martinvalet D: Mitochondrial entry of
cytotoxic proteases: A new insight into the granzyme B cell death
pathway. Oxid Med Cell Longev. 2019:91652142019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Solano-Gálvez SG, Abadi-Chiriti J,
Gutiérrez-Velez L, Rodríguez-Puente E, Konstat-Korzenny E,
Álvarez-Hernández DA, Franyuti-Kelly G, Gutiérrez-Kobeh L and
Vázquez-López R: Apoptosis: Activation and inhibition in health and
disease. Med Sci (Basel). 6. pp. 542018
|
|
23
|
Shamas-Din A, Kale J, Leber B and Andrews
DW: Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb
Perspect Biol. 5:a87142013. View Article : Google Scholar
|
|
24
|
Caria S, Hinds MG and Kvansakul M:
Structural insight into an evolutionarily ancient programmed cell
death regulator- the crystal structure of marine sponge BHP2 bound
to LB-Bak-2. Cell Death Dis. 8:e25432017. View Article : Google Scholar
|
|
25
|
Kvansakul M and Hinds MG: The Bcl-2
family: Structures, interactions and targets for drug discovery.
Apoptosis. 20:136–150. 2015. View Article : Google Scholar
|
|
26
|
Banjara S, Suraweera CD, Hinds MG and
Kvansakul M: The Bcl-2 family: Ancient origins, conserved
structures, and diver-gent mechanisms. Biomolecules. 10:1282020.
View Article : Google Scholar
|
|
27
|
Kvansakul M and Hinds MG: The structural
biology of BH3-only proteins. Methods Enzymol. 544:49–74. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Huang DC and Strasser A: BH3-Only
proteins-essential initiators of apoptotic cell death. Cell.
103:839–842. 2000. View Article : Google Scholar
|
|
29
|
Elkholi R, Renault TT, Serasinghe MN and
Chipuk JE: Putting the pieces together: How is the mitochondrial
pathway of apoptosis regulated in cancer and chemotherapy? Cancer
Metab. 2:162014. View Article : Google Scholar
|
|
30
|
Adams CM, Clark-Garvey S, Porcu P and
Eischen CM: Targeting the Bcl-2 family in B cell lymphoma. Front
Oncol. 8:6362019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Estaquier J, Vallette F, Vayssiere JL and
Mignotte B: The mitochondrial pathways of apoptosis. Adv Exp Med
Biol. 942:157–183. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Martinou JC and Youle RJ: Mitochondria in
apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev
Cell. 21:92–101. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Letai A, Bassik MC, Walensky LD,
Sorcinelli MD, Weiler S and Korsmeyer SJ: Distinct BH3 domains
either sensitize or activate mitochondrial apoptosis, serving as
prototype cancer therapeutics. Cancer Cell. 2:183–192. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Mérino D, Giam M, Hughes PD, Siggs OM,
Heger K, O'Reilly LA, Adams JM, Strasser A, Lee EF, Fairlie WD and
Bouillet P: The role of BH3-only protein bim extends beyond
inhibiting Bcl-2-like prosurvival proteins. J Cell Biol.
186:355–362. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sarosiek KA, Chi X, Bachman JA, Sims JJ,
Montero J, Patel L, Flanagan A, Andrews DW, Sorger P and Letai A:
BID prefer-entially activates BAK while BIM preferentially
activates BAX, affecting chemotherapy response. Mol Cell.
51:751–765. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Scorrano L, Oakes SA, Opferman JT, Cheng
EH, Sorcinelli MD, Pozzan T and Korsmeyer SJ: BAX and BAK
regulation of endoplasmic reticulum Ca2+: A control point for
apoptosis. Science. 300:135–139. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Große L, Wurm CA, Brüser C, Neumann D,
Jans DC and Jakobs S: Bax assembles into large ring-like structures
remodeling the mitochondrial outer membrane in apoptosis. EMBO J.
35:402–413. 2016. View Article : Google Scholar
|
|
38
|
Salvador-Gallego R, Mund M, Cosentino K,
Schneider J, Unsay J, Schraermeyer U, Engelhardt J, Ries J and
García-Sáez AJ: Bax assembly into rings and arcs in apoptotic
mitochondria is linked to membrane pores. EMBO J. 35:389–401. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Smaili SS, Hsu YT, Youle RJ and Russell
JT: Mitochondria in Ca2+ signaling and apoptosis. J Bioenerg
Biomembr. 32:35–46. 2000. View Article : Google Scholar
|
|
40
|
van Zyl B, Tang D and Bowden NA:
Biomarkers of platinum resistance in ovarian cancer: What can we
use to improve treatment. Endocr Relat Cancer. 25:R303–R318. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Larson CA, Blair BG, Safaei R and Howell
SB: The role of the mammalian copper transporter 1 in the cellular
accumulation of platinum-based drugs. Mol Pharmacol. 75:324–330.
2009. View Article : Google Scholar :
|
|
42
|
Pan H, Kim E, Rankin GO, Rojanasakul Y, Tu
Y and Chen YC: Theaflavin-3,3'-digallate enhances the inhibitory
effect of cisplatin by regulating the copper transporter 1 and
glutathione in human ovarian cancer cells. Int J Mol Sci.
19:1172018. View Article : Google Scholar
|
|
43
|
Vousden KH and Lane DP: p53 in health and
disease. Nat Rev Mol Cell Biol. 8:275–283. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Miyashita T and Reed JC: Tumor suppressor
p53 is a direct transcriptional activator of the human bax gene.
Cell. 80:293–299. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Conacci-Sorrell M, McFerrin L and Eisenman
RN: An overview of MYC and its interactome. Cold Spring Harb
Perspect Med. 4:a143572014. View Article : Google Scholar
|
|
46
|
Cao X, Bennett RL and May WS: c-Myc and
caspase-2 are involved in activating Bax during cytotoxic
drug-induced apoptosis. J Biol Chem. 283:14490–14496. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hahne JC, Honig A, Meyer SR, Gambaryan S,
Walter U, Wischhusen J, Häussler SF, Segerer SE, Fujita N, Dietl J
and Engel JB: Downregulation of AKT reverses platinum resistance of
human ovarian cancers in vitro. Oncol Rep. 28:2023–2028. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cheaib B, Auguste A and Leary A: The
PI3K/Akt/mTOR pathway in ovarian cancer: Therapeutic opportunities
and challenges. Chin J Cancer. 34:4–16. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cardenas C, Montagna MK, Pitruzzello M,
Lima E, Mor G and Alvero AB: Adipocyte microenvironment promotes
Bclxl expression and confers chemoresistance in ovarian cancer
cells. Apoptosis. 22:558–569. 2017. View Article : Google Scholar
|
|
50
|
Adams JM and Cory S: The Bcl-2 apoptotic
switch in cancer development and therapy. Oncogene. 26:1324–1337.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Leibowitz B and Yu J: Mitochondrial
signaling in cell death via the Bcl-2 family. Cancer Biol Ther.
9:417–422. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Beale PJ, Rogers P, Boxall F, Sharp SY and
Kelland LR: BCL-2 family protein expression and platinum drug
resistance in ovarian carcinoma. Br J Cancer. 82:436–440. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Marx D and Meden H: Differential
expression of apoptosis-associated genes Bax and Bcl-2 in ovarian
cancer. Methods Mol Med. 39:687–691. 2001.PubMed/NCBI
|
|
54
|
Fauvet R, Dufournet C, Poncelet C, Uzan C,
Hugol D and Daraï E: Expression of pro-apoptotic (p53, p21, bax,
bak and fas) and anti-apoptotic (Bcl-2 and Bcl-x) proteins in
serous versus mucinous borderline ovarian tumours. J Surg Oncol.
92:337–343. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Palmer JE, Sant Cassia LJ, Irwin CJ,
Morris AG and Rollason TP: P53 and bcl-2 assessment in serous
ovarian carcinoma. Int J Gynecol Cancer. 18:241–248. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chaudhry P, Srinivasan R and Patel FD:
Expression of the major fas family and Bcl-2 family of proteins in
epithelial ovarian cancer (EOC) and their correlation to
chemotherapeutic response and outcome. Oncol Res. 18:549–559. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Binju M, Amaya-Padilla MA, Wan G,
Gunosewoyo H, Suryo Rahmanto Y and Yu Y: Therapeutic inducers of
apoptosis in ovarian cancer. Cancers (Basel). 11:17862019.
View Article : Google Scholar
|
|
58
|
Liang M and Zhao J: Protein expressions of
AIB1, p53 and Bcl-2 in epithelial ovarian cancer and their
correlations with the clinical pathological features and prognosis.
Eur Rev Med Pharmacol Sci. 22:5134–5139. 2018.PubMed/NCBI
|
|
59
|
Yang Y, Li S, Sun Y, Zhang D, Zhao Z and
Liu L: Reversing platinum resistance in ovarian cancer
multicellular spheroids by targeting Bcl-2. Onco Targets Ther.
12:897–906. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Inuzuka H, Shaik S, Onoyama I, Gao D,
Tseng A, Maser RS, Zhai B, Wan L, Gutierrez A, Lau AW, et al:
SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for
ubiquitylation and destruction. Nature. 471:104–109. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wu X, Luo Q, Zhao P, Chang W, Wang Y, Shu
T, Ding F, Li B and Liu Z: MGMT-activated DUB3 stabilizes MCL1 and
drives chemoresistance in ovarian cancer. Proc Natl Acad Sci USA.
116:2961–2966. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang S, Zhang M, Jing Y, Yin X, Ma P,
Zhang Z, Wang X, Di W and Zhuang G: Deubiquitinase USP13 dictates
MCL1 stability and sensitivity to BH3 mimetic inhibitors. Nat
Commun. 9:2152018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Habata S, Iwasaki M, Sugio A, Suzuki M,
Tamate M, Satohisa S, Tanaka R and Saito T: BAG3-mediated Mcl-1
stabilization contributes to drug resistance via interaction with
USP9X in ovarian cancer. Int J Oncol. 49:402–410. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bonnefond ML, Lambert B, Giffard F,
Abeilard E, Brotin E, Louis MH, Gueye MS, Gauduchon P, Poulain L
and N'Diaye M: Calcium signals inhibition sensitizes ovarian
carcinoma cells to anti-Bcl-xL strategies through Mcl-1
down-regulation. Apoptosis. 20:535–550. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Liu JR, Fletcher B, Page C, Hu C, Nunez G
and Baker V: Bcl-xL is expressed in ovarian carcinoma and modulates
chemo-therapy-induced apoptosis. Gynecol Oncol. 70:398–403. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Nawrocki ST, Kelly KR, Smith PG, Espitia
CM, Possemato A, Beausoleil SA, Milhollen M, Blakemore S, Thomas M,
Berger A and Carew JS: Disrupting protein NEDDylation with MLN4924
is a novel strategy to target cisplatin resistance in ovarian
cancer. Clin Cancer Res. 19:3577–3590. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yuan Z, Cao K, Lin C, Li L, Liu HY, Zhao
XY, Liu L, Deng HX, Li J, Nie CL and Wei YQ: The p53 upregulated
modulator of apoptosis (PUMA) chemosensitizes intrinsically
resistant ovarian cancer cells to cisplatin by lowering the
threshold set by Bcl-x(L) and Mcl-1. Mol Med. 17:1262–1274. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Dai Y, Zhao XJ, Li F, Yuan Y, Yan DM, Cao
H, Huang XY, Hu Z, Ma D and Gao QL: Truncated Bid regulates
cisplatin response via activation of mitochondrial apoptosis
pathway in ovarian cancer. Hum Gene Ther. 31:325–338. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yamaguchi H, Bhalla K and Wang HG: Bax
plays a pivotal role in thapsigargin-induced apoptosis of human
colon cancer HCT116 cells by controlling Smac/Diablo and Omi/HtrA2
release from mitochondria. Cancer Res. 63:1483–1489.
2003.PubMed/NCBI
|
|
70
|
Kale J, Kutuk O, Brito GC, Andrews TS,
Leber B, Letai A and Andrews DW: Phosphorylation switches Bax from
promoting to inhibiting apoptosis thereby increasing drug
resistance. EMBO Rep. 19:e452352018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yang X, Wang J, Zhou Y, Wang Y, Wang S and
Zhang W: Hsp70 promotes chemoresistance by blocking Bax
mitochondrial translocation in ovarian cancer cells. Cancer Lett.
321:137–143. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Huang X, Lin T, Gu J, Zhang L, Roth JA,
Stephens LC, Yu Y, Liu J and Fang B: Combined TRAIL and Bax gene
therapy prolonged survival in mice with ovarian cancer xenograft.
Gene Ther. 9:1379–1386. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tai YT, Lee S, Niloff E, Weisman C,
Strobel T and Cannistra SA: BAX protein expression and clinical
outcome in epithelial ovarian cancer. J Clin Oncol. 16:2583–2590.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lauterwasser J, Todt F, Zerbes RM, Nguyen
TN, Craigen W, Lazarou M, van der Laan M and Edlich F: The porin
VDAC2 is the mitochondrial platform for Bax retrotranslocation. Sci
Rep. 6:329942016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Edlich F: BCL-2 proteins and apoptosis:
Recent insights and unknowns. Biochem Biophys Res Commun.
500:26–34. 2018. View Article : Google Scholar
|
|
76
|
Lazarou M, Stojanovski D, Frazier AE,
Kotevski A, Dewson G, Craigen WJ, Kluck RM, Vaux DL and Ryan MT:
Inhibition of Bak activation by VDAC2 is dependent on the Bak
transmembrane anchor. J Biol Chem. 285:36876–36883. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Shoshan-Barmatz V, Keinan N and Zaid H:
Uncovering the role of VDAC in the regulation of cell life and
death. J Bioenerg Biomembr. 40:183–191. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Shimizu S, Narita M and Tsujimoto Y: Bcl-2
family proteins regulate the release of apoptogenic cytochrome c by
the mitochondrial channel VDAC. Nature. 399:483–487. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Boulikas T and Vougiouka M: Cisplatin and
platinum drugs at the molecular level (Review). Oncol Rep.
10:1663–1682. 2003.PubMed/NCBI
|
|
80
|
Li J, Lee B and Lee AS: Endoplasmic
reticulum stress-induced apoptosis: Multiple pathways and
activation of p53-up-regulated modulator of apoptosis (PUMA) and
NOXA by p53. J Biol Chem. 281:7260–7270. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Campbell KJ and Tait S: Targeting BCL-2
regulated apoptosis in cancer. Open Biol. 8:1800022018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Edlich F, Banerjee S, Suzuki M, Cleland
MM, Arnoult D, Wang C, Neutzner A, Tjandra N and Youle RJ: Bcl-x(L)
retrotranslocates Bax from the mitochondria into the cytosol. Cell.
145:104–116. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Delbridge AR and Strasser A: The BCL-2
protein family, BH3-mimetics and cancer therapy. Cell Death Differ.
22:1071–1080. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Billard C: BH3 mimetics: Status of the
field and new developments. Mol Cancer Ther. 12:1691–1700. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Oltersdorf T, Elmore SW, Shoemaker AR,
Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges
J, Hajduk PJ, et al: An inhibitor of Bcl-2 family proteins induces
regression of solid tumours. Nature. 435:677–681. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Xu Y, Gao W, Zhang Y, Wu S, Liu Y, Deng X,
Xie L, Yang J, Yu H, Su J and Sun L: ABT737 reverses cisplatin
resistance by targeting glucose metabolism of human ovarian cancer
cells. Int J Oncol. 53:1055–1068. 2018.PubMed/NCBI
|
|
87
|
Dai Y, Jin S, Li X and Wang D: The
involvement of Bcl-2 family proteins in AKT-regulated cell survival
in cisplatin resistant epithelial ovarian cancer. Oncotarget.
8:1354–1368. 2017. View Article : Google Scholar :
|
|
88
|
Yu Y, Xu L, Qi L, Wang C, Xu N, Liu S, Li
S, Tian H, Liu W, Xu Y and Li Z: ABT737 induces mitochondrial
pathway apoptosis and mitophagy by regulating DRP1-dependent
mitochondrial fission in human ovarian cancer cells. Biomed
Pharmacother. 96:22–29. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Xie Q, Su J, Jiao B, Shen L, Ma L, Qu X,
Yu C, Jiang X, Xu Y and Sun L: ABT737 reverses cisplatin resistance
by regulating ER-mitochondria Ca2+ signal transduction in human
ovarian cancer cells. Int J Oncol. 49:2507–2519. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lheureux S, N'Diaye M, Blanc-Fournier C,
Dugué AE, Clarisse B, Dutoit S, Giffard F, Abeilard E, Briand M,
Labiche A, et al: Identification of predictive factors of response
to the BH3-mimetic molecule ABT-737: An ex vivo experiment in human
serous ovarian carcinoma. Int J Cancer. 136:E340–E350. 2015.
View Article : Google Scholar
|
|
91
|
Stamelos VA, Robinson E, Redman CW and
Richardson A: Navitoclax augments the activity of carboplatin and
paclitaxel combinations in ovarian cancer cells. Gynecol Oncol.
128:377–382. 2013. View Article : Google Scholar
|
|
92
|
Tse C, Shoemaker AR, Adickes J, Anderson
MG, Chen J, Jin S, Johnson EF, Marsh KC, Mitten MJ, Nimmer P, et
al: ABT-263: A potent and orally bioavailable Bcl-2 family
inhibitor. Cancer Res. 68:3421–3428. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wong M, Tan N, Zha J, Peale FV, Yue P,
Fairbrother WJ and Belmont LD: Navitoclax (ABT-263) reduces
Bcl-x(L)-mediated chemoresistance in ovarian cancer models. Mol
Cancer Ther. 11:1026–1035. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yokoyama T, Kohn EC, Brill E and Lee JM:
Apoptosis is augmented in high-grade serous ovarian cancer by the
combined inhibition of Bcl-2/Bcl-xL and PARP. Int J Oncol.
50:1064–1074. 2017. View Article : Google Scholar :
|
|
95
|
Iavarone C, Zervantonakis IK, Selfors LM,
Palakurthi S, Liu JF, Drapkin R, Matulonis UA, Hallberg D,
Velculescu VE, Leverson JD, et al: Combined MEK and BCL-2/XL
inhibition is effective in high-grade serous ovarian cancer
patient-derived xenograft models and bim levels are predictive of
responsiveness. Mol Cancer Ther. 18:642–655. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wilson WH, O'Connor OA, Czuczman MS,
LaCasce AS, Gerecitano JF, Leonard JP, Tulpule A, Dunleavy K, Xiong
H, Chiu YL, et al: Navitoclax, a targeted high-affinity inhibitor
of BCL-2, in lymphoid malignancies: A phase 1 dose-escalation study
of safety, pharmacokinetics, pharmacodynamics, and antitumour
activity. Lancet Oncol. 11:1149–1159. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Meng Y, Tang W, Dai Y, Wu X, Liu M, Ji Q,
Ji M, Pienta K, Lawrence T and Xu L: Natural BH3 mimetic
(-)-gossypol chemosensitizes human prostate cancer via Bcl-xL
inhibition accompanied by increase of Puma and Noxa. Mol Cancer
Ther. 7:2192–2202. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Hu W, Wang F, Tang J, Liu X, Yuan Z, Nie C
and Wei Y: Proapoptotic protein Smac mediates apoptosis in
cisplatin-resistant ovarian cancer cells when treated with the
anti-tumor agent AT101. J Biol Chem. 287:68–80. 2012. View Article : Google Scholar :
|
|
99
|
Karaca B, Atmaca H, Bozkurt E, Kisim A,
Uzunoglu S, Karabulut B, Sezgin C, Sanli UA and Uslu R: Combination
of AT-101/cisplatin overcomes chemoresistance by inducing apoptosis
and modulating epigenetics in human ovarian cancer cells. Mol Biol
Rep. 40:3925–3933. 2013. View Article : Google Scholar
|
|
100
|
Touzeau C, Dousset C, Le Gouill S, Sampath
D, Leverson JD, Souers AJ, Maïga S, Béné MC, Moreau P,
Pellat-Deceunynck C and Amiot M: The Bcl-2 specific BH3 mimetic
ABT-199: A promising targeted therapy for t(11;14) multiple
myeloma. Leukemia. 28:210–212. 2014. View Article : Google Scholar :
|
|
101
|
Song T, Zhang M, Liu P, Xue Z, Fan Y and
Zhang Z: Identification of JNK1 as a predicting biomarker for
ABT-199 and paclitaxel combination treatment. Biochem Pharmacol.
155:102–109. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Abed MN, Abdullah MI and Richardson A:
Antagonism of Bcl-XL is necessary for synergy between carboplatin
and BH3 mimetics in ovarian cancer cells. J Ovarian Res. 9:252016.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yamaguchi R, Lartigue L and Perkins G:
Targeting Mcl-1 and other Bcl-2 family member proteins in cancer
therapy. Pharmacol Ther. 195:13–20. 2019. View Article : Google Scholar
|
|
104
|
Kotschy A, Szlavik Z, Murray J, Davidson
J, Maragno AL, Toumelin-Braizat GL, Chanrion M, Kelly GL, Gong JN,
Moujalled DM, et al: The MCL1 inhibitor S63845 is tolerable and
effective in diverse cancer models. Nature. 538:477–482. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wang H, Zhang Z, Wei X and Dai R:
Small-molecule inhibitor of Bcl-2 (TW-37) suppresses growth and
enhances cisplatin-induced apoptosis in ovarian cancer cells. J
Ovarian Res. 8:32015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Deng J: How to unleash mitochondrial
apoptotic blockades to kill cancers? Acta Pharm Sin B. 7:18–26.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Certo M, Del Gaizo Moore V, Nishino M, Wei
G, Korsmeyer S, Armstrong SA and Letai A: Mitochondria primed by
death signals determine cellular addiction to antiapoptotic BCL-2
family members. Cancer Cell. 9:351–365. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Montero J, Sarosiek KA, DeAngelo JD,
Maertens O, Ryan J, Ercan D, Piao H, Horowitz NS, Berkowitz RS,
Matulonis U, et al: Drug-induced death signaling strategy rapidly
predicts cancer response to chemotherapy. Cell. 160:977–989. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Kim H, Tu HC, Ren D, Takeuchi O, Jeffers
JR, Zambetti GP, Hsieh JJD and Cheng EHY: Stepwise activation of
BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial
apoptosis. Mol Cell. 36:487–499. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Deng J, Carlson N, Takeyama K, Dal Cin P,
Shipp M and Letai A: BH3 profiling identifies three distinct
classes of apoptotic blocks to predict response to ABT-737 and
conventional chemotherapeutic agents. Cancer Cell. 12:171–185.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Ryan J and Letai A: BH3 profiling in whole
cells by fluorimeter or FACS. Methods. 61:156–164. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Elefantova K, Lakatos B, Kubickova J,
Sulova Z and Breier A: Detection of the mitochondrial membrane
potential by the cationic dye JC-1 in L1210 cells with massive
overexpression of the plasma membrane ABCB1 drug transporter. Int J
Mol Sci. 19:19852018. View Article : Google Scholar :
|
|
113
|
Ryan J, Montero J, Rocco J and Letai A:
iBH3: Simple, fixable BH3 profiling to determine apoptotic priming
in primary tissue by flow cytometry. Biol Chem. 397:671–678. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Del Gaizo Moore V and Letai A:
rofiling-measuring integrated function of the mitochondrial
apoptotic pathway to predict cell fate decisions. Cancer Lett.
332:202–205. 2013. View Article : Google Scholar
|
|
115
|
Montero J and Letai A: Dynamic BH3
profiling-poking cancer cells with a stick. Mol Cell Oncol.
3:e10401442016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ni CT, Sarosiek KA, Vo TT, Ryan JA,
Tammareddi A, Del Gaizo Moore V, Deng J, Anderson KC, Richardson P,
Tai YT, et al: Pretreatment mitochondrial priming correlates with
clinical response to cytotoxic chemotherapy. Science.
334:1129–1133. 2011. View Article : Google Scholar
|
|
117
|
Paudel I, Hernandez SM, Portalatin GM,
Chambers TP and Chambers JW: Sab concentrations indicate
chemotherapeutic susceptibility in ovarian cancer cell lines.
Biochem J. 475:3471–3492. 2018. View Article : Google Scholar : PubMed/NCBI
|