|
1
|
Ammon HP and Wahl MA: Pharmacology of
Curcuma longa. Planta Med. 57:1–7. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ruby AJ, Kuttan G, Babu KD, Rajasekharan
KN and Kuttan R: Antitumor and oxidant activity of natural
curcuminoids. Cancer Lett. 94:79–83. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Apisariyakul A, Vanittanakom N and
Buddhasukh D: Antifungal activity of turmeric oil extracted from
Curcuma longa (Zingiberaceae). J Ethnopharmacol. 49:163–169. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Asher GN, Corbett AH and Hawke RL: Common
herbal dietary supplement-drug interactions. Am Fam Physician.
96:101–107. 2017.PubMed/NCBI
|
|
5
|
Ammon HP, Safayhi H, Mack T and Sabieraj
J: Mechanism of antiinflammatory actions of curcumine and boswellic
acids. J Ethnopharmacol. 38:113–119. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Akram M, Shahab-Uddin, Afzal A, Khan U,
Abdul H, Mohiuddin E and Asif M: Curcuma longa and curcumin: A
review article. Rom J Biol Plant Biol. 55:65–70. 2010.
|
|
7
|
Chainani-Wu N: Safety and
anti-inflammatory activity of curcumin: A component of tumeric
(Curcuma longa). J Altern Complement Med. 1:161–168. 2003.
View Article : Google Scholar
|
|
8
|
Singh S and Kher A: Biological effects of
curcumin and its role in cancer chemoprevention and therapy.
Anticancer Agents Med Chem. 6:259–270. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Rahmani AH, Al Zohairy MA, Aly SM and Khan
MA: Curcumin: A potential candidate in prevention of cancer via
modulation of molecular pathways. Biomed Res Int. 2014:7616082014.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Maheshwari RK, Singh AK, Gaddipati J and
Srimal RC: Multiple biological activities of curcumin: A short
review. Life Sci. 78:2081–2087. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhang M, Bian F, Wen C and Hao N:
Inhibitory effect of curcumin on proliferation of human pterygium
fibroblasts. J Huazhong Univ Sci Technolog Med Sci. 27:339–342.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Huynh TP, Mann SN and Mandal NA: Botanical
compounds: Effects on major eye diseases. Evid Based Complement
Alternat Med. 2013:5491742013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sancilio S, Di Staso S, Sebastiani S,
Centurione L, Di Girolamo N, Ciancaglini M and Di Pietro R: Curcuma
longa is able to induce apoptotic cell death of pterygium-derived
human keratinocytes. Biomed Res Int. 2017:29565972017. View Article : Google Scholar
|
|
14
|
Sudhalkar A: Fixation and its role in the
causation, laterality and location of pterygium: A study in
amblyopes and non-amblyopes. Eye (Lond). 26:438–443. 2012.
View Article : Google Scholar
|
|
15
|
Livezeanu C, Crăiţoiu MM, Mănescu R,
Mocanu C and Crăiţoiu S: Angiogenesis in the pathogenesis of
pterygium. Rom J Morphol Embryol. 52:837–844. 2011.PubMed/NCBI
|
|
16
|
Dos Reis GM, de P R Júnior A, E Silva KS,
Rodrigues DA, Gomes MC, Martins JV, da Costa IR, Freitas GA and
Moura KK: Pterygium in patients from Goiânia, Goiás, Brazil. Genet
Mol Res. 14:6182–6188. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lu CW, Hao JL, Yao L, Li HJ and Zhou DD:
Efficacy of curcumin in inducing apoptosis and inhibiting the
expression of VEGF in human pterygium fibroblasts. Int J Mol Med.
39:1149–1154. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mauro J and Foster CS: Pterygia:
Pathogenesis and the role of subconjunctival bevacizumab in
treatment. Semin Ophthalmol. 24:130–134. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ribatti D, Nico B, Perra MT, Maxia C,
Piras F, Murtas D, Crivellato E and Sirigu P: Correlation between
NGF/TrkA and microvascular density in human pterygium. Int J Exp
Pathol. 90:615–620. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Clearfield E, Muthappan V, Wang X and Kuo
IC: Conjunctival autograft for pterygium. Cochrane Database Syst
Rev. 2:CD0113492016.PubMed/NCBI
|
|
21
|
Hacıoğlu D and Erdöl H: Developments and
current approaches in the treatment of pterygium. Int Ophthalmol.
37:1073–1081. 2017. View Article : Google Scholar
|
|
22
|
Hirst LW: The treatment of pterygium. Surv
Ophthalmol. 48:145–180. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Nuzzi R and Tridico F: How to minimize
pterygium recurrence rates: Clinical perspectives. Clin Ophthalmol.
12:2347–2362. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Fries FN, Suffo S, Daas L, Seitz B,
Fiorentzis M and Viestenz A: Tenonplasty for closing defects during
sclerocorneal surgery-A brief review of its anatomy and clinical
applications. Clin Anat. 31:72–76. 2018. View Article : Google Scholar
|
|
25
|
Jirásková N and Rozsíval P: Treatment for
recurrent pterygium. Cesk Slov Oftalmol. 64:68–70. 2008.In
Czech.
|
|
26
|
Chu WK, Choi HL, Bhat AK and Jhanji V:
Pterygium: New insights. Eye (Lond). 34:1047–1050. 2020. View Article : Google Scholar
|
|
27
|
Yanyali AC, Talu H, Alp BN, Karabas L, Ay
GM and Caglar Y: Intraoperative mitomycin C in the treatment of
pterygium. Cornea. 19:471–473. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Guo Q, Li X, Cui MN, Liang Y, Li XP, Zhao
J, Wei LN, Zhang XL and Quan XH: Low-dose Mitomycin C decreases the
postoperative recurrence rate of pterygium by perturbing NLRP3
inflammatory signalling pathway and suppressing the expression of
inflammatory factors. J Ophthalmol. 2019:94727822019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hickey-Dwyer M and Wishart PK: Serious
corneal complication of 5-fluorouracil. Br J Ophthalmol.
77:250–251. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Nosratzehi T, Arbabi-Kalati F, Hamishehkar
H and Bagheri S: Comparison of the effects of curcumin mucoadhesive
paste and local corticosteroid on the treatment of erosive oral
lichen planus lesions. J Natl Med Assoc. 110:92–97. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Shishodia S, Singh T and Chaturvedi MM:
Modulation of transcription factors by curcumin. Adv Exp Med Biol.
595:127–148. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Huang MT, Lysz T, Ferraro T, Abidi TF,
Laskin JD and Conney AH: Inhibitory effects of curcumin on in vitro
lipoxygenase and cyclooxygenase activities in mouse epidermis.
Cancer Res. 51:813–819. 1991.PubMed/NCBI
|
|
33
|
Zhang F, Altorki NK, Mestre JR,
Subbaramaiah K and Dannenberg AJ: Curcumin inhibits
cyclooxygenase-2 transcription in bile acid- and phorbol
ester-treated human gastrointestinal epithelial cells.
Carcinogenesis. 20:445–451. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bundy R, Walker AF, Middleton RW and Booth
J: Turmeric extract may improve irritable bowel syndrome
symptomology in otherwise healthy adults: A pilot study. J Altern
Complement Med. 10:1015–1018. 2004. View Article : Google Scholar
|
|
35
|
Surh YJ, Chun KS, Cha HH, Han SS, Keum YS,
Park KK and Lee SS: Molecular mechanisms underlying chemopreventive
activities of anti-inflammatory phytochemicals: Down-regulation of
COX-2 and iNOS through suppression of NF-kappa B activation. Mutat
Res. 480-481:243–268. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Cheng Y, Ping J and Liu C: Effect of
curcumin on activity of matrix metalloproteinase 2, 9 and nuclear
expression of RelA in rat hepatic stellate cells by activating
peroxisome proliferator-activated receptor gamma signal. Zhongguo
Zhong Xi Yi Jie He Za Zhi. 27:439–443. 2007.In Chinese. PubMed/NCBI
|
|
37
|
McCawley LJ and Matrisian LM: Matrix
metalloproteinases: They're not just for matrix anymore! Curr Opin
Cell Biol. 13:534–540. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lal B, Kapoor AK, Asthana OP, Agrawal PK,
Prasad R, Kumar P and Srimal RC: Efficacy of curcumin in the
management of chronic anterior uveitis. Phytother Res. 13:318–322.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Allegri P, Mastromarino A and Neri P:
Management of chronic anterior uveitis relapses: Efficacy of oral
phospholipidic curcumin treatment. Long-term follow-up. Clin
Ophthalmol. 4:1201–1206. 2010.PubMed/NCBI
|
|
40
|
Vallée A and Lecarpentier Y: Curcumin and
endometriosis. Int J Mol Sci. 21:24402020. View Article : Google Scholar :
|
|
41
|
Liu JY, Lin SJ and Lin JK: Inhibitory
effects of curcumin on protein kinase C activity induced by
12-O-tetradecanoyl-phorbol-13-acetate in NIH 3T3 cells.
Carcinogenesis. 14:857–861. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kuo ML, Huang TS and Lin JK: Curcumin, an
antioxidant and anti-tumor promoter, induces apoptosis in human
leukemia cells. Biochim Biophys Acta. 1317:95–100. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Woo JH, Kim YH, Choi YJ, Kim DG, Lee KS,
Bae JH, Min DS, Chang JS, Jeong YJ, Lee YH, et al: Molecular
mechanisms of curcumin-induced cytotoxicity: Induction of apoptosis
through generation of reactive oxygen species, down-regulation of
Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt.
Carcinogenesis. 24:1199–1208. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Bhaumik S, Anjum R, Rangaraj N,
Pardhasaradhi BV and Khar A: Curcumin mediated apoptosis in AK-5
tumor cells involves the production of reactive oxygen
intermediates. FEBS Lett. 456:311–314. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fang J, Lu J and Holmgren A: Thioredoxin
reductase is irreversibly modified by curcumin: A novel molecular
mechanism for its anticancer activity. J Biol Chem.
280:25284–25290. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Aggarwal S, Ichikawa H, Takada Y, Sandur
SK, Shishodia S and Aggarwal BB: Curcumin (diferuloylmethane)
down-regulates expression of cell proliferation and antiapoptotic
and metastatic gene products through suppression of IkappaBalpha
kinase and Akt activation. Mol Pharmacol. 69:195–206. 2006.
View Article : Google Scholar
|
|
47
|
Lękawa-Ilczuk A, Antosz H,
Rymgayłło-Jankowska B and Zarnowski T: Expression of double strand
DNA breaks repair genes in pterygium. Ophthalmic Genet. 32:39–47.
2001. View Article : Google Scholar
|
|
48
|
Kau HC, Tsai CC, Lee CF, Kao SC, Hsu WM,
Liu JH and Wei YH: Increased oxidative DNA damage,
8-hydroxydeoxy-guanosine, in human pterygium. Eye (Lond).
20:826–831. 2006. View Article : Google Scholar
|
|
49
|
Henning RJ: Therapeutic angiogenesis:
Angiogenic growth factors for ischemic heart disease. Future
Cardiol. 12:585–599. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Folkman J and Klagsbrun M: Angiogenetic
factors. Science. 235:442–447. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Liu W, Sha X, Wen Y, Zhao W, Luo W and Hua
Z: Effect of Avastin on the migration and invasion of pterygium
fibroblasts. Eye Sci. 29:214–218. 2014.
|
|
52
|
Zhang J, Cao YJ, Li FY, Li J, Yao LB and
Duan EK: Effects of fibronectin, VEGF and angiostatin on the
expression of MMPs through different signaling pathways in the
JEG-3 cells. Am J Reprod Immunol. 50:273–285. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Liacini A, Sylvester J, Li WQ and
Zafarullah M: Inhibition of interleukin-1-stimulated MAP kinases,
activating protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B)
transcription factors down-regulates matrix metalloproteinase gene
expression in articulate chondrocytes. Matrix Biol. 21:251–262.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kim SJ, Choi JS and Chung SK: The effect
of curcumin on corneal neovascularization in rabbit eyes. Curr Eye
Res. 35:274–280. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sarayba MA, Li L, Tungsiripat T, Liu NH,
Sweet PM, Patel AJ, Osann KE, Chittiboyina A, Benson SC,
Pershadsingh HA and Chuck RS: Inhibition of corneal
neovascularization by a peroxisome proliferator-activated
receptor-gamma ligand. Exp Eye Res. 80:435–442. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sun ZJ, Chen G, Zhang W, Hu X, Liu Y, Zhou
Q, Zhu LX and Zhao YF: Curcumin dually inhibits both mammalian
target of rapamycin and nuclear factor-κB pathways through a
crossed phosphatidylinositol 3-kinase/Akt/IκB kinase complex
signaling axis in adenoid cystic carcinoma. Mol Pharmacol.
79:106–118. 2011. View Article : Google Scholar
|
|
57
|
Araki-Sasaki K, Katsuta O, Mano H, Nagano
T and Nakamura M: The effects of oral and topical corticosteroid in
rabbit corneas. BMC Ophthalmol. 16:1602016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Azimzade Y, Hong J and Mashaghi A:
Immunophysical analysis of corneal neovascularization: Mechanistic
insights and implications for pharmacotherapy. Sci Rep.
7:122202017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zemanová M and Matušková V: Benefits and
negatives of corticosteroid therapy in corneal pathologies. Cesk
Slov Oftalmol. 73:69–77. 2017.
|
|
60
|
Dahmana N, Mugnier T, Gabriel D, Kaltsatos
V, Bertaim T, Behar-Cohen F, Gurny R and Kalia YN: Topical
admin-istration of spironolactone-loaded nanomicelles prevents
glucocorticoid-induced delayed corneal wound healing in rabbits.
Mol Pharm. 15:1192–1202. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Stepp MA, Zieske JD, Trinkaus-Randall V,
Kyne BM, Pal-Ghosh S, Tadvalkar G and Pajoohesh-Ganji A: Wounding
the cornea to learn how it heals. Exp Eye Res. 121:178–193. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Petroutsos G, Guimaraes R, Giraud JP and
Pouliquen Y: Corticosteroids and corneal epithelial wound healing.
Br J Ophthalmol. 66:705–708. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kadmiel M, Janoshazi A, Xu X and Cidlowski
JA: Glucocorticoid action in human corneal epithelial cells
establishes roles for corticosteroids in wound healing and barrier
function of the eye. Exp Eye Res. 152:10–33. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kotha RR and Luthria DL: Curcumin:
Biological, pharmaceutical, nutraceutical, and analytical aspects.
Molecules. 24:29302019. View Article : Google Scholar :
|
|
65
|
Mehra KS, Mikuni I, Gupta U and Gode KD:
Curcuma longa (Linn) drops in corneal wound healing. Tokai J Exp
Clin Med. 9:27–31. 1984.PubMed/NCBI
|
|
66
|
Wu Y, Qin D, Yang H and Fu H: Evidence for
the participation of acid-sensing ion channels (ASICs) in the
antinociceptive effect of curcumin in a formalin-induced orofacial
inflammatory model. Cell Mol Neurobiol. 37:635–642. 2017.
View Article : Google Scholar
|
|
67
|
Enyeart JA, Liu H and Enyeart JJ: Curcumin
inhibits bTREK-1 K+ channels and stimulates cortisol
secretion from adrenocortical cells. Biochem Biophys Res Commun.
370:623–628. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Guo C, Li M, Qi X, Lin G, Cui F, Li F and
Wu X: Intranasal delivery of nanomicelle curcumin promotes corneal
epithelial wound healing in streptozotocin-induced diabetic mice.
Sci Rep. 6:297532016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Panchatcharam M, Miriyala S, Gayathri VS
and Suguna L: Curcumin improves wound healing by modulating
collagen and decreasing reactive oxygen species. Mol Cell Biochem.
290:87–96. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Dai X, Liu J, Zheng H, Wichmann J, Hopfner
U, Sudhop S, Prein C, Shen Y, Günther H and Schilling A:
Nano-formulated curcumin accelerates acute wound healing through
Dkk-1-mediated fibro-blast mobilization and MCP-1-mediated
anti-inflammation. NPG Asia Mat. 9:e3682017. View Article : Google Scholar
|
|
71
|
Beltrani VS, Barsanti FA and Bielory L:
Effects of glucocor-ticosteroids on the skin and eye. Immunol
Allergy Clin North Am. 25:557–580. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Mehra KS, Mikuni I and Kumar A: Effects of
vit: A and cortisone on healing of corneal superficial wounds.
Tokai J Exp Clin Med. 7:315–318. 1982.PubMed/NCBI
|
|
73
|
Yamada M and Mashima Y: Changes in
proliferation and differentiation of basal cells during wound
healing of rabbit corneal epithelial abrasions. Nippon Ganka Gakkai
Zasshi. 99:10–16. 1995.In Japanese. PubMed/NCBI
|
|
74
|
Sridhar MS: Anatomy of cornea and ocular
surface. Indian J Ophthalmol. 66:190–194. 2018.PubMed/NCBI
|
|
75
|
Ehlers N, Heegaard S, Hjortdal J, Ivarsen
A, Nielsen K and Prause JU: Morphological evaluation of normal
human corneal epithelium. Acta Ophthalmol. 88:858–861. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Del Monte DW and Kim T: Anatomy and
physiology of the cornea. J Cataract Refract Surg. 37:588–598.
2011. View Article : Google Scholar
|
|
77
|
Hassell JR and Birk DE: The molecular
basis of corneal transparency. Exp Eye Res. 91:326–335. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wilson SL, El Haj AJ and Yang Y: Control
of scar tissue formation in the cornea: Strategies in clinical and
corneal tissue engineering. J Funct Biomater. 3:642–687. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Liu XF, Hao JL, Xie T, Mukhtar NJ, Zhang
W, Malik TH, Lu CW and Zhou DD: Curcumin, a potential therapeutic
candidate for anterior segment eye diseases: A review. Front
Pharmacol. 8:662017.PubMed/NCBI
|
|
80
|
Yu FS, Yin J, Xu K and Huang J: Growth
factors and corneal epithelial wound healing. Brain Res Bull.
81:229–235. 2010. View Article : Google Scholar :
|
|
81
|
Georgakopoulos CD, Makri OE, Pagoulatos D
and Karamanos NK: Expression and localization of
glycosamino-glycans/proteoglycan in pterygium: An
immunohistochemical study. Med Hypothesis Discov Innov Ophthalmol.
8:39–43. 2019.PubMed/NCBI
|
|
82
|
Hayashi R, Ishikawa Y, Sasamoto Y, Katori
R, Nomura N, Ichikawa T, Araki S, Soma T, Kawasaki S, Sekiguchi K,
et al: Co-ordinated ocular development from human iPS cells and
recovery of corneal function. Nature. 531:376–380. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hackam DJ and Ford HR: Cellular,
biochemical, and clinical aspects of wound healing. Surg Infect
(Larchmt). 3(Suppl 1): S23–S35. 2002. View Article : Google Scholar
|
|
84
|
Deljou A, Weingarten TN, Mahr MA, Sprung J
and Martin DP: Postoperative corneal injuries: Incidence and risk
factors. Anesth Analg. 129:737–742. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Nita M and Grzybowski A: The role of the
reactive oxygen species and oxidative stress in the pathomechanism
of the age-related ocular diseases and other pathologies of the
anterior and posterior eye segments in adults. Oxid Med Cell
Longev. 2016:31647342016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Reinstein DZ, Archer TJ and Randleman JB:
Mathematical model to compare the relative tensile strength of the
cornea after PRK, LASIK, and small incision lenticule extraction. J
Refract Surg. 29:454–460. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Nedelec B, Shankowsky H, Scott PG, Ghahary
A and Tredget EE: Myofibroblasts and apoptosis in human
hypertrophic scars: The effect of interferon-alpha2b. Surgery.
130:798–808. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Meyer JC, Stulting RD, Thompson KP and
Durrie DS: Late onset of corneal scar after excimer laser
photorefractive keratectomy. Am J Ophthalmol. 121:529–539. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Sarchahi AA, Parizi AM, Eghtedar M and
Keshavarz S: Effect of different treatment regimen with
dexamethasone and acetyl-cysteine on corneal wound healing in
rabbits. Iran J Med Sci. 36:188–195. 2001.
|
|
90
|
Amon M and Busin M: Loteprednol etabonate
ophthalmic suspension 0.5%: Efficacy and safety for postoperative
anti-inflammatory use. Int Ophthalmol. 32:507–517. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Csorba A, Soproni A, Maneschg O, Nagy ZZ
and Szamosi A: Application of corticosteroid eye drops for allergic
eye diseases in children. Orv Hetil. 160:329–337. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ramamoorthy S and Cidlowski JA:
Corticosteroids: Mechanisms of action in health and disease. Rheum
Dis Clin North Am. 42:15–31. vii2016. View Article : Google Scholar
|
|
93
|
Cronstein BN, Kimmel SC, Levin RI,
Martiniuk F and Weissmann G: A mechanism for the antiinflammatory
effects of corticosteroids: The glucocorticoid receptor regulates
leukocyte adhesion to endothelial cells and expression of
endothelial-leukocyte adhesion molecule 1 and intercellular
adhesion molecule 1. Proc Natl Acad Sci USA. 89:9991–9995. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Jagetia GC and Rajanikant GK: Role of
curcumin, a naturally occurring phenolic compound of turmeric in
accelerating the repair of excision wound, in mice whole-body
exposed to various doses of gamma-radiation. J Surg Res.
120:127–138. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Ahmad A and Ahsan H: Biomarkers of
inflammation and oxidative stress in ophthalmic disorders. J
Immunoassay Immunochem. 41:257–271. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Amir Aslani B and Ghobadi S: Studies on
oxidants and anti-oxidants with a brief glance at their relevance
to the immune system. Life Sci. 146:163–173. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Kant V, Gopal A, Pathak NN, Kumar P,
Tandan SK and Kumar D: Antioxidant and anti-inflammatory potential
of curcumin accelerated the cutaneous wound healing in
streptozotocin-induced diabetic rats. Int Immunopharmacol.
20:322–330. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yen YH, Pu CM, Liu CW, Chen YC, Chen YC,
Liang CJ, Hsieh JH, Huang HF and Chen YL: Curcumin accelerates
cutaneous wound healing via multiple biological actions: The
involvement of TNF-α, MMP-9, α-SMA, and collagen. Int Wound J.
15:605–617. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Ravindranath V and Chandrasekhara N:
Metabolism of curcumin- studies with [3H] curcumin. Toxicology.
22:337–344. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ramsewak RS, DeWitt DL and Nair MG:
Cytotoxicity, anti-oxidant and anti-inflammatory activities of
curcumins I-III from Curcuma longa. Phytomedicine. 7:303–308. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF,
Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, et al: Phase I
clinical trial of curcumin, a chemopreventive agent, in patients
with high-risk or pre-malignant lesions. Anticancer Res.
21:2895–2900. 2001.PubMed/NCBI
|
|
102
|
Anand P, Kunnumakkara AB, Newman RA and
Aggarwal BB: Bioavailability of curcumin: Problems and promises.
Mol Pharm. 4:807–818. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Feng T, Wei Y, Lee RJ and Zhao L:
Liposomal curcumin and its application in cancer. Int J
Nanomedicine. 12:6027–6044. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Lee DY, Hou YC, Yang JS, Lin HY, Chang TY,
Lee KH, Kuo SC and Hsieh MT: Synthesis, anticancer activity, and
preliminary pharmacokinetic evaluation of 4,4-disubstituted
curcuminoid 2,2-bis(Hydroxymethyl)Propionate derivatives.
Molecules. 25:4792020. View Article : Google Scholar :
|
|
105
|
Lin X, Shi Y, Yu S, Li S, Li W, Li M, Chen
S, Wang Y and Cong M: Preparation of poloxamer188-b-PCL and study
on in vitro radioprotection activity of curcumin-loaded
nanoparticles. Front Chem. 8:2122020. View Article : Google Scholar :
|
|
106
|
Joseph M, Trinh HM, Cholkar K, Pal D and
Mitra AK: Recent perspectives on the delivery of biologics to back
of the eye. Expert Opin Drug Deliv. 14:631–645. 2017. View Article : Google Scholar :
|