Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
December-2020 Volume 46 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2020 Volume 46 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
Review Open Access

Role of m6A RNA methylation in cardiovascular disease (Review)

  • Authors:
    • Yuhan Qin
    • Linqing Li
    • Erfei Luo
    • Jiantong Hou
    • Gaoliang Yan
    • Dong Wang
    • Yong Qiao
    • Chengchun Tang
  • View Affiliations / Copyright

    Affiliations: Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
    Copyright: © Qin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1958-1972
    |
    Published online on: October 6, 2020
       https://doi.org/10.3892/ijmm.2020.4746
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

N6‑methyladenosine (m6A) is the most prevalent and abundant type of internal post‑transcriptional RNA modification in eukaryotic cells. Multiple types of RNA, including mRNAs, rRNAs, tRNAs, long non‑coding RNAs and microRNAs, are involved in m6A methylation. The biological function of m6A modification is dynamically and reversibly mediated by methyltransferases (writers), demethylases (erasers) and m6A binding proteins (readers). The methyltransferase complex is responsible for the catalyzation of m6A modification and is typically made up of methyltransferase‑like (METTL)3, METTL14 and Wilms tumor 1‑associated protein. Erasers remove methylation by fat mass and obesity‑associated protein and ALKB homolog 5. Readers play a role through the recognition of m6A‑modified targeted RNA. The YT521‑B homology domain family, heterogeneous nuclear ribonucleoprotein and insulin‑like growth factor 2 mRNA‑binding protein serve as m6A readers. The m6A methylation on transcripts plays a pivotal role in the regulation of downstream molecular events and biological functions, such as RNA splicing, transport, stability and translatability at the post‑transcriptional level. The dysregulation of m6A modification is associated with cancer, drug resistance, virus replication and the pluripotency of embryonic stem cells. Recently, a number of studies have identified aberrant m6A methylation in cardiovascular diseases (CVDs), including cardiac hypertrophy, heart failure, arterial aneurysm, vascular calcification and pulmonary hypertension. The aim of the present review article was to summarize the recent research progress on the role of m6A modification in CVD and give a brief perspective on its prospective applications in CVD.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Stellos K: The rise of epitranscriptomic era: Implications for cardiovascular disease. Cardiovasc Res. 113:e2–e3. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Huang H, Weng H and Chen J: m6A modification in coding and non-coding RNAs: Roles and therapeutic implications in cancer. Cancer Cell. 37:270–288. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Desrosiers R, Friderici K and Rottman F: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975. 1974. View Article : Google Scholar : PubMed/NCBI

4 

Wei CM, Gershowitz A and Moss B: Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell. 4:379–386. 1975. View Article : Google Scholar : PubMed/NCBI

5 

Lee M, Kim B and Kim VN: Emerging roles of RNA modification: m(6)A and U-tail. Cell. 158:980–987. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Bhat SS, Bielewicz D, Jarmolowski A and Szweykowska- Kulinska Z: N6-methyladenosine (m6A): Revisiting the old with focus on new, an arabidopsis thaliana centered review. Genes (Basel). 9:5962018. View Article : Google Scholar

7 

Zhao W, Qi X, Liu L, Ma S, Liu J and Wu J: Epigenetic regulation of m6A modifications in human cancer. Mol Ther. 19:405–412. 2020.

8 

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Molinie B, Wang J, Lim KS, Hillebrand R, Lu ZX, Van Wittenberghe N, Howard BD, Daneshvar K, Mullen AC, Dedon P, et al: m(6)A-LAIC-seq reveals the census and complexity of the m(6)A epitranscriptome. Nat Methods. 13:692–698. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, Isagawa T, Morioka MS, Kakeya H, Manabe I and Okamura H: RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 155:793–806. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505:117–120. 2014. View Article : Google Scholar

12 

Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′ UTR m(6) A promotes cap-independent translation. Cell. 163:999–1010. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Alarcón CR, Lee H, Goodarzi H, Halberg N and Tavazoie SF: N6-methyladenosine marks primary microRNAs for processing. Nature. 519:482–485. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Chen XY, Zhang J and Zhu JS: The role of m6A RNA methylation in human cancer. Mol Cancer. 18:1032019. View Article : Google Scholar

15 

Edupuganti RR, Geiger S, Lindeboom RGH, Shi H, Hsu PJ, Lu Z, Wang SY, Baltissen MPA, Jansen PWTC, Rossa M, et al: N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat Struct Mol Biol. 24:870–878. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Visvanathan A and Somasundaram K: mRNA traffic control reviewed: N6-Methyladenosine (m6A) takes the driver's seat. Bioessays. Dec 4–2017.Epub ahead of print. View Article : Google Scholar

17 

Meyer KD and Jaffrey SR: The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. 15:313–326. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Fu Y, Dominissini D, Rechavi G and He C: Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet. 15:293–306. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Tong J, Flavell RA and Li HB: RNA m6A modification and its function in diseases. Front Med. 12:481–489. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Chen K, Lu Z, Wang X, Fu Y, Luo GZ, Liu N, Han D, Dominissini D, Dai Q, Pan T and He C: High-resolution N(6)- methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencing. Angew Chem Int Ed Engl. 54:1587–1590. 2015. View Article : Google Scholar

21 

Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR and Qian SB: Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. 526:591–594. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millán-Zambrano G, Robson SC, Aspris D, Migliori V, Bannister AJ, Han N, et al: Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature. 552:126–131. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Wang X and He C: Dynamic RNA modifications in posttranscriptional regulation. Mol Cell. 56:5–12. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C and He C: YTHDF3 facilitates translation and decay of N-methyladenosine-modified RNA. Cell Res. 27:315–328. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bögler O, et al: m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 31:591–606.e6. 2017. View Article : Google Scholar

26 

Zhu S, Wang JZ, Chen D, He YT, Meng N, Chen M, Lu RX, Chen XH, Zhang XL and Yan GR: An oncopeptide regulates m6A recognition by the m6A reader IGF2BP1 and tumorigenesis. Nat Commun. 11:16852020. View Article : Google Scholar

27 

Wu Y, Yang X, Chen Z, Tian L, Jiang G, Chen F, Li J, An P, Lu L, Luo N, et al: m6A-induced lncRNA RP11 triggers the dissemi-nation of colorectal cancer cells via upregulation of Zeb1. Mol Cancer. 18:872019. View Article : Google Scholar

28 

Hess ME, Hess S, Meyer KD, Verhagen LA, Koch L, Brönneke HS, Dietrich MO, Jordan SD, Saletore Y, Elemento O, et al: The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci. 16:1042–1048. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Du K, Zhang L, Lee T and Sun T: m(6)A RNA methylation controls neural development and is involved in human diseases. Mol Neurobiol. 56:1596–1606. 2019. View Article : Google Scholar

30 

Wu Y, Xie L, Wang M, Xiong Q, Guo Y, Liang Y, Li J, Sheng R, Deng P, Wang Y, et al: Mettl3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat Commun. 9:47722018. View Article : Google Scholar

31 

Kane SE and Beemon K: Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: Implications for RNA processing. Mol Cell Biol. 5:2298–2306. 1985. View Article : Google Scholar : PubMed/NCBI

32 

Roignant JY and Soller M: m6A in mRNA: An ancient mechanism for fine-tuning gene expression. Trends Genet. 33:380–390. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Zhao Y, Shi Y, Shen H and Xie W: m6A-binding proteins: The emerging crucial performers in epigenetics. J Hematol Oncol. 13:352020. View Article : Google Scholar

34 

Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Yao QJ, Sang L, Lin M, Yin X, Dong W, Gong Y and Zhou BO: Mettl3-Mettl14 methyltransferase complex regulates the quiescence of adult hematopoietic stem cells. Cell Res. 28:952–954. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, et al: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 49:18–29. 2013. View Article : Google Scholar :

37 

Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltrans-ferase. Cell Res. 24:177–189. 2014. View Article : Google Scholar :

38 

Slobodin B, Han R, Calderone V, Vrielink JAFO, Loayza-Puch F, Elkon R and Agami R: Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell. 169:326–337.e12. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Choi J, Ieong KW, Demirci H, Chen J, Petrov A, Prabhakar A, O'Leary SE, Dominissini D, Rechavi G, Soltis SM, et al: N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat Struct Mol Biol. 23:110–115. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Bujnicki JM, Feder M, Radlinska M and Blumenthal RM: Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase. J Mol Evol. 55:431–444. 2002. View Article : Google Scholar : PubMed/NCBI

42 

Śledź P and Jinek M: Structural insights into the molecular mechanism of the m(6)A writer complex. Elife. 5:e184342016. View Article : Google Scholar : PubMed/NCBI

43 

Wang P, Doxtader KA and Nam Y: Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 63:306–317. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Schöller E, Weichmann F, Treiber T, Ringle S, Treiber N, Flatley A, Feederle R, Bruckmann A and Meister G: Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex. RNA. 24:499–512. 2018. View Article : Google Scholar

45 

Yue Y, Liu J and He C: RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 29:1343–1355. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 10:93–95. 2014. View Article : Google Scholar :

47 

Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, et al: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 8:284–296. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M and Jaffrey SR: m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 537:369–373. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, Cheng T, Gao M, Shu X, Ma H, et al: VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 4:102018. View Article : Google Scholar

50 

Knuckles P, Lence T, Haussmann IU, Jacob D, Kreim N, Carl SH, Masiello I, Hares T, Villaseñor R, Hess D, et al: Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev. 32:415–429. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Tang C, Klukovich R, Peng H, Wang Z, Yu T, Zhang Y, Zheng H, Klungland A and Yan W: ALKBH5-dependent m6A demethylation controls splicing and stability of long 3′-UTR mRNAs in male germ cells. Proc Natl Acad Sci USA. 115:E325–E333. 2018. View Article : Google Scholar

52 

Boissel S, Reish O, Proulx K, Kawagoe-Takaki H, Sedgwick B, Yeo GS, Meyre D, Golzio C, Molinari F, Kadhom N, et al: Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet. 85:106–111. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Su R, Dong L, Li C, Nachtergaele S, Wunderlich M, Qing Y, Deng X, Wang Y, Weng X, Hu C, et al: R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell. 172:90–105.e23. 2018. View Article : Google Scholar

54 

A Alemu E, He C and Klungland A: ALKBHs-facilitated RNA modifications and de-modifications. DNA Repair (Amst). 44:87–91. 2016. View Article : Google Scholar

55 

Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S and Tavazoie SF: HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 162:1299–1308. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20:285–295. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Zhang Z, Theler D, Kaminska KH, Hiller M, de la Grange P, Pudimat R, Rafalska I, Heinrich B, Bujnicki JM, Allain FH and Stamm S: The YTH domain is a novel RNA binding domain. J Biol Chem. 285:14701–14710. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Stoilov P, Rafalska I and Stamm S: YTH: A new domain in nuclear proteins. Trends Biochem Sci. 27:495–497. 2002. View Article : Google Scholar : PubMed/NCBI

59 

Liao S, Sun H and Xu C: YTH domain: A family of N6-methyladenosine (m6A) readers. Genomics Proteomics Bioinformatics. 16:99–107. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J and Wu L: YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 7:126262016. View Article : Google Scholar : PubMed/NCBI

61 

Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 61:507–519. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, et al: YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. 6:e313112017. View Article : Google Scholar

63 

Kretschmer J, Rao H, Hackert P, Sloan KE, Höbartner C and Bohnsack MT: The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′-3′ exoribonuclease XRN1. RNA. 24:1339–1350. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J, et al: Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27:1115–1127. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Zarnack K, König J, Tajnik M, Martincorena I, Eustermann S, Stévant I, Reyes A, Anders S, Luscombe NM and Ule J: Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell. 152:453–466. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L and Pan T: N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45:6051–6063. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Bell JL, Wächter K, Mühleck B, Pazaitis N, Köhn M, Lederer M and Hüttelmaier S: Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): Post-transcriptional drivers of cancer progression? Cell Mol Life Sci. 70:2657–2675. 2013. View Article : Google Scholar :

68 

Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. 149:1635–1646. 2012. View Article : Google Scholar : PubMed/NCBI

69 

You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, et al: Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci. 18:603–610. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE and Jaffrey SR: Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 12:767–772. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, et al: A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29:2037–2053. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Liu N, Parisien M, Dai Q, Zheng G, He C and Pan T: Probing N6-methyladenosine RNA modification status at single nucleo-tide resolution in mRNA and long noncoding RNA. RNA. 19:1848–1856. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Garcia-Campos MA, Edelheit S, Toth U, Safra M, Shachar R, Viukov S, Winkler R, Nir R, Lasman L, Brandis A, et al: Deciphering the 'm6A Code' via antibody-independent quantitative profiling. Cell. 178:731–747.e16. 2019. View Article : Google Scholar

74 

Liu Q and Gregory RI: RNAmod: An integrated system for the annotation of mRNA modifications. Nucleic Acids Res. 47:W548–W555. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Zhang SY, Zhang SW, Fan XN, Zhang T, Meng J and Huang Y: FunDMDeep-m6A: Identification and prioritization of functional differential m6A methylation genes. Bioinformatics. 35:i90–i98. 2019. View Article : Google Scholar : PubMed/NCBI

76 

Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA, Zhang Z, Ren J, Xie W, He C and Luo GZ: Single-base mapping of mA by an antibody-independent method. Sci Adv. 5:eaax02502019. View Article : Google Scholar

77 

Lin J, Zhu Q, Huang J, Cai R and Kuang Y: Hypoxia promotes vascular smooth muscle cell (VSMC) differentiation of adipose-derived stem cell (ADSC) by regulating Mettl3 and paracrine factors. Stem Cells Int. 2020:28305652020. View Article : Google Scholar : PubMed/NCBI

78 

Cohn JN, Ferrari R and Sharpe N: Cardiac remodeling-concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 35:569–582. 2000. View Article : Google Scholar : PubMed/NCBI

79 

Kehat I and Molkentin JD: Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation. 122:2727–2735. 2010. View Article : Google Scholar : PubMed/NCBI

80 

Maier T, Guell M and Serrano L: Correlation of mRNA and protein in complex biological samples. FEBS Lett. 583:3966–3973. 2009. View Article : Google Scholar : PubMed/NCBI

81 

Dorn LE, Lasman L, Chen J, Xu X, Hund TJ, Medvedovic M, Hanna JH, van Berlo JH and Accornero F: The N6-Methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation. 139:533–545. 2019. View Article : Google Scholar

82 

Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K, et al: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 12:1–222. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, Chen J, Zhang M, Liu Y, Ni M, et al: ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phos-phatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy. 11:1308–1325. 2015. View Article : Google Scholar

84 

Pastore N, Brady OA, Diab HI, Martina JA, Sun L, Huynh T, Lim JA, Zare H, Raben N, Ballabio A and Puertollano R: TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy. 12:1240–1258. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Zhao E and Czaja MJ: Transcription factor EB: A central regulator of both the autophagosome and lysosome. Hepatology. 55:1632–1634. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Song H, Feng X, Zhang H, Luo Y, Huang J, Lin M, Jin J, Ding X, Wu S, Huang H, et al: METTL3 and ALKBH5 oppositely regu-late m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy. 15:1419–1437. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Misquitta CM, Iyer VR, Werstiuk ES and Grover AK: The role of 3′-untranslated region (3′-UTR) mediated mRNA stability in cardiovascular pathophysiology. Mol Cell Biochem. 224:53–67. 2001. View Article : Google Scholar : PubMed/NCBI

88 

Gratacós FM and Brewer G: The role of AUF1 in regulated mRNA decay. Wiley Interdiscip Rev RNA. 1:457–473. 2010. View Article : Google Scholar

89 

Su YR, Chiusa M, Brittain E, Hemnes AR, Absi TS, Lim CC and Di Salvo TG: Right ventricular protein expression profile in end-stage heart failure. Pulm Circ. 5:481–497. 2015. View Article : Google Scholar : PubMed/NCBI

90 

Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, Jha D, Zhang S, Kohlbrenner E, Chepurko E, et al: FTO-Dependent N6-Methyladenosine regulates cardiac function during remodeling and repair. Circulation. 139:518–532. 2019. View Article : Google Scholar :

91 

Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z and Zhao JC: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 16:191–198. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Berulava T, Buchholz E, Elerdashvili V, Pena T, Islam MR, Lbik D, Mohamed BA, Renner A, von Lewinski D, Sacherer M, et al: Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail. 22:54–66. 2020. View Article : Google Scholar

93 

Kmietczyk V, Riechert E, Kalinski L, Boileau E, Malovrh E, Malone B, Gorska A, Hofmann C, Varma E, Jürgensen L, et al: m6A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci Alliance. 2:e2018002332019. View Article : Google Scholar

94 

Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, Hiratzka LF, Murphy WR, Olin JW, Puschett JB, et al: ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): A collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 113:e463–e654. 2006.PubMed/NCBI

95 

Reeps C, Pelisek J, Seidl S, Schuster T, Zimmermann A, Kuehnl A and Eckstein HH: Inflammatory infiltrates and neovessels are relevant sources of MMPs in abdominal aortic aneurysm wall. Pathobiology. 76:243–252. 2009. View Article : Google Scholar : PubMed/NCBI

96 

He Y, Xing J, Wang S, Xin S, Han Y and Zhang J: Increased m6A methylation level is associated with the progression of human abdominal aortic aneurysm. Ann Transl Med. 7:7972019. View Article : Google Scholar

97 

Zhong L, He X, Song H, Sun Y, Chen G, Si X, Sun J, Chen X, Liao W, Liao Y and Bin J: METTL3 induces AAA development and progression by modulating N6-methyladenosine-dependent primary miR34a processing. Mol Ther Nucleic Acids. 21:394–411. 2020. View Article : Google Scholar : PubMed/NCBI

98 

Thomas B, Matsushita K, Abate KH, Al-Aly Z, Ärnlöv J, Asayama K, Atkins R, Badawi A, Ballew SH, Banerjee A, et al: Global Cardiovascular and Renal Outcomes of Reduced GFR. J Am Soc Nephrol. 28:2167–2179. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Fang Y, Ginsberg C, Sugatani T, Monier-Faugere MC, Malluche H and Hruska KA: Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int. 85:142–150. 2014. View Article : Google Scholar

100 

Cao XS, Chen J, Zou JZ, Zhong YH, Teng J, Ji J, Chen ZW, Liu ZH, Shen B, Nie YX, et al: Association of indoxyl sulfate with heart failure among patients on hemodialysis. Clin J Am Soc Nephrol. 10:111–119. 2015. View Article : Google Scholar :

101 

Chen J, Ning Y, Zhang H, Song N, Gu Y, Shi Y, Cai J, Ding X and Zhang X: METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate. Life Sci. 239:1170342019. View Article : Google Scholar : PubMed/NCBI

102 

McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, et al: ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 53:1573–1619. 2009. View Article : Google Scholar : PubMed/NCBI

103 

Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, et al: 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 37:67–119. 2016. View Article : Google Scholar

104 

Weitzenblum E, Sautegeau A, Ehrhart M, Mammosser M and Pelletier A: Long-term oxygen therapy can reverse the progression of pulmonary hypertension in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 131:493–498. 1985. View Article : Google Scholar : PubMed/NCBI

105 

Shi Y, Fan S, Wu M, Zuo Z, Li X, Jiang L, Shen Q, Xu P, Zeng L, Zhou Y, et al: YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat commun. 10:48922019. View Article : Google Scholar : PubMed/NCBI

106 

Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X and Semenza GL: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA. 113:E2047–E2056. 2016. View Article : Google Scholar

107 

Fry NJ, Law BA, Ilkayeva OR, Holley CL and Mansfield KD: N6-methyladenosine is required for the hypoxic stabilization of specific mRNAs. RNA. 23:1444–1455. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang J, Van Wittenberghe N, Xing Y, Giallourakis CC and Mullen AC: Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 20:2262–2276. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Wang J, Zhu MC, Kalionis B, Wu JZ, Wang LL, Ge HY, Chen CC, Tang XD, Song YL, He H and Xia SJ: Characteristics of circular RNA expression in lung tissues from mice with hypoxiainduced pulmonary hypertension. Int J Mol Med. 42:1353–1366. 2018.PubMed/NCBI

110 

Su H, Wang G, Wu L, Ma X, Ying K and Zhang R: Transcriptome-wide map of m6A circRNAs identified in a rat model of hypoxiamediated pulmonary hypertension. BMC Genomics. 21:392020. View Article : Google Scholar

111 

Chan JJ and Tay Y: Noncoding RNA: RNA regulatory networks in cancer. Int J Mol Sci. 19:2018. View Article : Google Scholar

112 

Baarsma HA and Königshoff M: 'WNT-er is coming': WNT signalling in chronic lung diseases. Thorax. 72:746–759. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Savai R, Al-Tamari HM, Sedding D, Kojonazarov B, Muecke C, Teske R, Capecchi MR, Weissmann N, Grimminger F, Seeger W, et al: Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nat Med. 20:1289–1300. 2014. View Article : Google Scholar : PubMed/NCBI

114 

Haraksingh RR and Snyder MP: Impacts of variation in the human genome on gene regulation. J Mol Biol. 425:3970–3977. 2013. View Article : Google Scholar : PubMed/NCBI

115 

Mao F, Xiao L, Li X, Liang J, Teng H, Cai W and Sun ZS: RBP-Var: A database of functional variants involved in regulation mediated by RNA-binding proteins. Nucleic Acids Res. 44:D154–D163. 2016. View Article : Google Scholar :

116 

Wu X and Hurst LD: Determinants of the usage of splice-associated cis-Motifs predict the distribution of human pathogenic SNPs. Mol Biol Evol. 33:518–529. 2016. View Article : Google Scholar :

117 

Ramaswami G, Deng P, Zhang R, Anna Carbone M, Mackay TFC and Billy Li J: Genetic mapping uncovers cis-regulatory land-scape of RNA editing. Nat Commun. 6:81942015. View Article : Google Scholar

118 

Zheng Y, Nie P, Peng D, He Z, Liu M, Xie Y, Miao Y, Zuo Z and Ren J: m6AVar: A database of functional variants involved in m6A modification. Nucleic Acids Res. 46:D139–D145. 2018. View Article : Google Scholar :

119 

Yang N, Ying P, Tian J, Wang X, Mei S, Zou D, Peng X, Gong Y, Yang Y, Zhu Y, et al: Genetic variants in m6A modification genes are associated with esophageal squamous-cell carcinoma in the Chinese population. Carcinogenesis. 41:761–768. 2020. View Article : Google Scholar : PubMed/NCBI

120 

Mo XB, Lei SF, Zhang YH and Zhang H: Detection of m6A-asso-ciated SNPs as potential functional variants for coronary artery disease. Epigenomics. 10:1279–1287. 2018. View Article : Google Scholar : PubMed/NCBI

121 

Mo X, Lei S, Zhang Y and Zhang H: Genome-wide enrichment of m6A-associated single-nucleotide polymorphisms in the lipid loci. Pharmacogenomics J. 19:347–357. 2019. View Article : Google Scholar

122 

Kupper N, Willemsen G, Riese H, Posthuma D, Boomsma DI and de Geus EJC: Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension. 45:80–85. 2005. View Article : Google Scholar

123 

Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G, Dimou N, Cabrera CP, Karaman I, et al: Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 50:1412–1425. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Mo XB, Lei SF, Zhang YH and Zhang H: Examination of the associations between m6A-associated single-nucleotide polymorphisms and blood pressure. Hypertens Res. 42:1582–1589. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Lee JY, Lee BS, Shin DJ, Woo Park K, Shin YA, Joong Kim K, Heo L, Young Lee J, Kyoung Kim Y, Jin Kim Y, et al: A genome-wide association study of a coronary artery disease risk variant. J Hum Genet. 58:120–126. 2013. View Article : Google Scholar : PubMed/NCBI

126 

Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, Yeo GS, McDonough MA, Cunliffe S, McNeill LA, et al: The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 318:1469–1472. 2007. View Article : Google Scholar : PubMed/NCBI

127 

Guyenet PG: The sympathetic control of blood pressure. Nat Rev Neurosci. 7:335–346. 2006. View Article : Google Scholar : PubMed/NCBI

128 

Pausova Z, Syme C, Abrahamowicz M, Xiao Y, Leonard GT, Perron M, Richer L, Veillette S, Smith GD, Seda O, et al: A common variant of the FTO gene is associated with not only increased adiposity but also elevated blood pressure in French Canadians. Circ Cardiovasc Genet. 2:260–269. 2009. View Article : Google Scholar : PubMed/NCBI

129 

Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, et al: A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 316:889–894. 2007. View Article : Google Scholar : PubMed/NCBI

130 

Marcadenti A, Fuchs FD, Matte U, Sperb F, Moreira LB and Fuchs SC: Effects of FTO RS9939906 and MC4R RS17782313 on obesity, type 2 diabetes mellitus and blood pressure in patients with hypertension. Cardiovasc Diabetol. 12:1032013. View Article : Google Scholar : PubMed/NCBI

131 

O'Donnell CJ and Nabel EG: Genomics of cardiovascular disease. N Engl J Med. 365:2098–2109. 2011. View Article : Google Scholar : PubMed/NCBI

132 

Prospective Studies Collaboration; Lewington S, Whitlock G, Clarke R, Sherliker P, Emberson J, Halsey J, Qizilbash N, Peto R and Collins R: Blood cholesterol and vascular mortality by age, sex, and blood pressure: A meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet. 370:1829–1839. 2007. View Article : Google Scholar : PubMed/NCBI

133 

Yadav PK, Rajvanshi PK and Rajasekharan R: The role of yeast m6A methyltransferase in peroxisomal fatty acid oxidation. Curr Genet. 64:417–422. 2018. View Article : Google Scholar

134 

Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, Yuan W, Kan Q and Sun Z: The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol. 12:1212019. View Article : Google Scholar : PubMed/NCBI

135 

Zhang W, Chen G and Deng CQ: Effects and mechanisms of total Panax notoginseng saponins on proliferation of vascular smooth muscle cells with plasma pharmacology method. J Pharm Pharmracol. 64:139–145. 2012. View Article : Google Scholar

136 

Zhu B, Gong Y, Shen L, Li J, Han J, Song B, Hu L, Wang Q and Wang Z: Total Panax notoginseng saponin inhibits vascular smooth muscle cell proliferation and migration and intimal hyperplasia by regulating WTAP/p16 signals via m6A modulation. Biomed Pharmacother. 124:1099352020. View Article : Google Scholar

137 

Nakarai H, Yamashita A, Nagayasu S, Iwashita M, Kumamoto S, Ohyama H, Hata M, Soga Y, Kushiyama A, Asano T, et al: Adipocyte-macrophage interaction may mediate LPS-induced low-grade inflammation: Potential link with metabolic complications. Innate Immun. 18:164–170. 2012. View Article : Google Scholar

138 

Rao DS, Sekhara NC, Satyanarayana MN and Srinivasan M: Effect of curcumin on serum and liver cholesterol levels in the rat. J Nutri. 100:1307–1315. 1970. View Article : Google Scholar

139 

Lu N, Li X, Yu J, Li Y, Wang C, Zhang L, Wang T and Zhong X: Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m6 A RNA methylation in piglets. Lipids. 53:53–63. 2018. View Article : Google Scholar : PubMed/NCBI

140 

Huang Y, Yan J, Li Q, Li J, Gong S, Zhou H, Gan J, Jiang H, Jia GF, Luo C and Yang CG: Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 43:373–384. 2015. View Article : Google Scholar :

141 

Li J, Chen Z, Chen F, Xie G, Ling Y, Peng Y, Lin Y, Luo N, Chiang CM and Wang H: Targeted mRNA demethylation using an engineered dCas13b-ALKBH5 fusion protein. Nucleic Acids Res. 48:5684–5694. 2020. View Article : Google Scholar : PubMed/NCBI

142 

Lawson DA, Kessenbrock K, Davis RT, Pervolarakis N and Werb Z: Tumour heterogeneity and metastasis at single-cell resolution. Nat Cell Biol. 20:1349–1360. 2018. View Article : Google Scholar : PubMed/NCBI

143 

Paramasivam A, Vijayashree Priyadharsini J and Raghunandhakumar S: N6-adenosine methylation (m6A): A promising new molecular target in hypertension and cardiovascular diseases. Hypertens Res. 43:153–154. 2020. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Qin Y, Li L, Luo E, Hou J, Yan G, Wang D, Qiao Y and Tang C: Role of m6A RNA methylation in cardiovascular disease (Review). Int J Mol Med 46: 1958-1972, 2020.
APA
Qin, Y., Li, L., Luo, E., Hou, J., Yan, G., Wang, D. ... Tang, C. (2020). Role of m6A RNA methylation in cardiovascular disease (Review). International Journal of Molecular Medicine, 46, 1958-1972. https://doi.org/10.3892/ijmm.2020.4746
MLA
Qin, Y., Li, L., Luo, E., Hou, J., Yan, G., Wang, D., Qiao, Y., Tang, C."Role of m6A RNA methylation in cardiovascular disease (Review)". International Journal of Molecular Medicine 46.6 (2020): 1958-1972.
Chicago
Qin, Y., Li, L., Luo, E., Hou, J., Yan, G., Wang, D., Qiao, Y., Tang, C."Role of m6A RNA methylation in cardiovascular disease (Review)". International Journal of Molecular Medicine 46, no. 6 (2020): 1958-1972. https://doi.org/10.3892/ijmm.2020.4746
Copy and paste a formatted citation
x
Spandidos Publications style
Qin Y, Li L, Luo E, Hou J, Yan G, Wang D, Qiao Y and Tang C: Role of m6A RNA methylation in cardiovascular disease (Review). Int J Mol Med 46: 1958-1972, 2020.
APA
Qin, Y., Li, L., Luo, E., Hou, J., Yan, G., Wang, D. ... Tang, C. (2020). Role of m6A RNA methylation in cardiovascular disease (Review). International Journal of Molecular Medicine, 46, 1958-1972. https://doi.org/10.3892/ijmm.2020.4746
MLA
Qin, Y., Li, L., Luo, E., Hou, J., Yan, G., Wang, D., Qiao, Y., Tang, C."Role of m6A RNA methylation in cardiovascular disease (Review)". International Journal of Molecular Medicine 46.6 (2020): 1958-1972.
Chicago
Qin, Y., Li, L., Luo, E., Hou, J., Yan, G., Wang, D., Qiao, Y., Tang, C."Role of m6A RNA methylation in cardiovascular disease (Review)". International Journal of Molecular Medicine 46, no. 6 (2020): 1958-1972. https://doi.org/10.3892/ijmm.2020.4746
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team