|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Micke P and Ostman A: Tumour-stroma
interaction: Cancer-associated fibroblasts as novel targets in
anti-cancer therapy? Lung Cancer. 45(Suppl 2): S163–S175. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kang H, Escudero-Esparza A, Douglas-Jones
A, Mansel RE and Jiang WG: Transcript analyses of stromal cell
derived factors (SDFs): SDF-2, SDF-4 and SDF-5 reveal a different
pattern of expression and prognostic association in human breast
cancer. Int J Oncol. 35:205–211. 2009.PubMed/NCBI
|
|
4
|
Wang M, Lin T, Wang Y, Gao S, Yang Z, Hong
X and Chen G: CXCL12 suppresses cisplatin-induced apoptosis through
activation of JAK2/STAT3 signaling in human non-small-cell lung
cancer cells. Onco Targets Ther. 10:3215–3224. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Miller MC and Mayo KH: Chemokines from a
structural perspective. Int J Mol Sci. 18:20882017. View Article : Google Scholar :
|
|
6
|
Mélik-Parsadaniantz S and Rostène W:
Chemokines and neuro-modulation. J Neuroimmunol. 198:62–68. 2008.
View Article : Google Scholar
|
|
7
|
Samarendra H, Jones K, Petrinic T, Silva
MA, Reddy S, Soonawalla Z and Gordon-Weeks A: A meta-analysis of
CXCL12 expression for cancer prognosis. Br J Cancer. 117:124–135.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ling X, Spaeth E, Chen Y, Shi Y, Zhang W,
Schober W, Hail N Jr, Konopleva M and Andreeff M: The CXCR4
antagonist AMD3465 regulates oncogenic signaling and invasiveness
in vitro and prevents breast cancer growth and metastasis in vivo.
PLoS One. 8:e584262013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kollmar O, Rupertus K, Scheuer C, Junker
B, Tilton B, Schilling MK and Menger MD: Stromal cell-derived
factor-1 promotes cell migration and tumor growth of colorectal
metastasis. Neoplasia. 9:862–870. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kryczek I, Wei S, Keller E, Liu R and Zou
W: Stroma-derived factor (SDF-1/CXCL12) and human tumor
pathogenesis. Am J Physiol Cell Physiol. 292:C987–C995. 2007.
View Article : Google Scholar
|
|
11
|
Wu M, Chen Q, Li D, Li X, Li X, Huang C,
Tang Y, Zhou Y, Wang D, Tang K, et al: LRRC4 inhibits human
glioblastoma cells proliferation, invasion, and proMMP-2 activation
by reducing SDF-1 alpha/CXCR4-mediated ERK1/2 and Akt signaling
pathways. J Cell Biochem. 103:245–255. 2008. View Article : Google Scholar
|
|
12
|
Dehghani M, Kianpour S, Zangeneh A and
Mostafavi-Pour Z: CXCL12 modulates prostate cancer cell adhesion by
altering the levels or activities of β1-containing integrins. Int J
Cell Biol. 2014:9817502014. View Article : Google Scholar
|
|
13
|
Shen X, Wang S, Wang H, Liang M, Xiao L
and Wang Z: The role of SDF-1/CXCR4 axis in ovarian cancer
metastasis. J Huazhong Univ Sci Technolog Med Sci. 29:363–367.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhou W, Guo S, Liu M, Burow ME and Wang G:
Targeting CXCL12/CXCR4 axis in tumor immunotherapy. Curr Med Chem.
26:3026–3041. 2019. View Article : Google Scholar
|
|
15
|
Chen Y, Ramjiawan RR, Reiberger T, Ng MR,
Hato T, Huang Y, Ochiai H, Kitahara S, Unan EC, Reddy TP, et al:
CXCR4 inhibition in tumor microenvironment facilitates
anti-programmed death receptor-1 immunotherapy in sorafenib-treated
hepatocellular carcinoma in mice. Hepatology. 61:1591–1602. 2015.
View Article : Google Scholar :
|
|
16
|
Wald O: CXCR4 based therapeutics for
non-small cell lung cancer (NSCLC). J Clin Med. 7:3032018.
View Article : Google Scholar :
|
|
17
|
Otsuka S and Bebb G: The CXCR4/SDF-1
chemokine receptor axis: A new target therapeutic for non-small
cell lung cancer. J Thorac Oncol. 3:1379–1383. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wang B, Wang W, Niu W, Liu E, Liu X, Wang
J, Peng C, Liu S, Xu L, Wang L and Niu J: SDF-1/CXCR4 axis promotes
directional migration of colorectal cancer cells through
upregulation of integrin alphavbeta6. Carcinogenesis. 35:282–291.
2014. View Article : Google Scholar
|
|
19
|
Walentowicz-Sadlecka M, Sadlecki P, Bodnar
M, Marszalek A, Walentowicz P, Sokup A, Wilińska-Jankowska A and
Grabiec M: Stromal derived factor-1 (SDF-1) and its receptors CXCR4
and CXCR7 in endometrial cancer patients. PLoS One. 9:e846292014.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mao W, Yi X, Qin J, Tian M and Jin G:
CXCL12/CXCR4 axis improves migration of neuroblasts along corpus
callosum by stimulating MMP-2 secretion after traumatic brain
injury in rats. Neurochem Res. 41:1315–1322. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ahirwar DK, Nasser MW, Ouseph MM, Elbaz M,
Cuitiño MC, Kladney RD, Varikuti S, Kaul K, Satoskar AR, Ramaswamy
B, et al: Fibroblast-derived CXCL12 promotes breast cancer
metastasis by facilitating tumor cell intravasation. Oncogene.
37:4428–4442. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lang J, Zhao X, Qi Y, Zhang Y, Han X, Ding
Y, Guan J, Ji T, Zhao Y and Nie G: Reshaping prostate tumor
microenvironment To suppress metastasis via cancer-associated
fibroblast inactivation with peptide-assembly-based nanosystem. ACS
Nano. 13:12357–12371. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Mahadevan D and Von Hoff DD: Tumor-stroma
interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther.
6:1186–1197. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling
X, Frolova O, Levis M, Rubin JB, Negrin RR, Estey EH, et al:
Targeting the leukemia microenvironment by CXCR4 inhibition
overcomes resistance to kinase inhibitors and chemotherapy in AML.
Blood. 113:6215–6224. 2009. View Article : Google Scholar :
|
|
25
|
Kong L, Guo S, Liu C, Zhao Y, Feng C, Liu
Y, Wang T and Li C: Overexpression of SDF-1 activates the NF-kappaB
pathway to induce epithelial to mesenchymal transition and cancer
stem cell-like phenotypes of breast cancer cells. Int J Oncol.
48:1085–1094. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kim SY, Lee CH, Midura BV, Yeung C,
Mendoza A, Hong SH, Ren L, Wong D, Korz W, Merzouk A, et al:
Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the
development of murine pulmonary metastases. Clin Exp Metastasis.
25:201–211. 2008. View Article : Google Scholar
|
|
27
|
Meng W, Xue S and Chen Y: The role of
CXCL12 in tumor microenvironment. Gene. 641:105–110. 2018.
View Article : Google Scholar
|
|
28
|
Conley-LaComb MK, Semaan L, Singareddy R,
Li Y, Heath EI, Kim S, Cher ML and Chinni SR: Pharmacological
targeting of CXCL12/CXCR4 signaling in prostate cancer bone
metastasis. Mol Cancer. 15:682016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ray P, Lewin SA, Mihalko LA, Schmidt BT,
Luker KE and Luker GD: Noninvasive imaging reveals inhibition of
ovarian cancer by targeting CXCL12-CXCR4. Neoplasia. 13:1152–1161.
2011. View Article : Google Scholar
|
|
30
|
Li H, Chen Y, Xu N, Yu M, Tu X, Chen Z,
Lin M, Xie B, Fu J and Han L: AMD3100 inhibits brain-specific
metastasis in lung cancer via suppressing the SDF-1/CXCR4 axis and
protecting blood-brain barrier. Am J Transl Res. 9:5259–5274.
2017.
|
|
31
|
Tong X, Ma Y, Deng H, Wang X, Liu S, Yan
Z, Peng S and Fan H: The SDF-1 rs1801157 polymorphism is associated
with cancer risk: An update pooled analysis and FPRP test of 17,876
participants. Sci Rep. 6:274662016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ponting CP: Novel repeats in ryanodine and
IP3 receptors and protein O-mannosyltransferases. Trends Biochem
Sci. 25:48–50. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hamada T, Tashiro K, Tada H, Inazawa J,
Shirozu M, Shibahara K, Nakamura T, Martina N, Nakano T and Honjo
T: Isolation and characterization of a novel secretory protein,
stromal cell-derived factor-2 (SDF-2) using the signal sequence
trap method. Gene. 176:211–214. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Vendrell E, Ribas M, Valls J, Solé X, Grau
M, Moreno V, Capellà G and Peinado MA: Genomic and transcriptomic
prognostic factors in R0 Dukes B and C colorectal cancer patients.
Int J Oncol. 30:1099–1107. 2007.PubMed/NCBI
|
|
35
|
Fukuda S, Sumii M, Masuda Y, Takahashi M,
Koike N, Teishima J, Yasumoto H, Itamoto T, Asahara T, Dohi K and
Kamiya K: Murine and human SDF2L1 is an endoplasmic reticulum
stress-inducible gene and encodes a new member of the Pmt/rt
protein family. Biochem Biophys Res Commun. 280:407–414. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lorenzon-Ojea AR, Caldeira W, Ribeiro AF,
Fisher SJ, Guzzo CR and Bevilacqua E: Stromal cell derived factor-2
(Sdf2): A novel protein expressed in mouse. Int J Biochem Cell
Biol. 53:262–270. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lorenzon-Ojea AR, Yung HW, Burton GJ and
Bevilacqua E: The potential contribution of stromal cell-derived
factor 2 (SDF2) in endoplasmic reticulum stress response in severe
preeclampsia and labor-onset. Biochim Biophys Acta Mol Basis Dis.
1866:1653862020. View Article : Google Scholar
|
|
38
|
Walter P and Ron D: The unfolded protein
response: From stress pathway to homeostatic regulation. Science.
334:1081–1086. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Schott A, Ravaud S, Keller S,
Radzimanowski J, Viotti C, Hillmer S, Sinning I and Strahl S:
Arabidopsis stromal-derived Factor2 (SDF2) is a crucial target of
the unfolded protein response in the endoplasmic reticulum. J Biol
Chem. 285:18113–18121. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Willis S, Villalobos VM, Gevaert O,
Abramovitz M, Williams C, Sikic BI and Leyland-Jones B: Single gene
prognostic biomarkers in ovarian cancer: A meta-analysis. PLoS One.
11:e01491832016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Giulianelli S, Herschkowitz JI, Patel V,
Lamb CA, Gutkind JS, Molinolo A, Perou CM and Lanari C: MPA-induced
gene expression and stromal and parenchymal gene expression
profiles in luminal murine mammary carcinomas with different
hormonal requirements. Breast Cancer Res Treat. 129:49–67. 2011.
View Article : Google Scholar
|
|
42
|
Takahashi K, Tanaka M, Yashiro M,
Matsumoto M, Ohtsuka A, Nakayama KI, Izumi Y, Nagayama K, Miura K,
Iwao H and Shiota M: Protection of stromal cell-derived factor 2 by
heat shock protein 72 prevents oxaliplatin-induced cell death in
oxaliplatin-resistant human gastric cancer cells. Cancer Lett.
378:8–15. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Honoré B: The rapidly expanding CREC
protein family: Members, localization, function, and role in
disease. Bioessays. 31:262–277. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Luo J, Li Z, Zhu H, Wang C, Zheng W, He Y,
Song J, Wang W, Zhou X, Lu X, et al: A novel role of Cab45-G in
mediating cell migration in cancer cells. Int J Biol Sci.
12:677–687. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Honoré B and Vorum H: The CREC family, a
novel family of multiple EF-hand, low-affinity Ca(2+)-binding
proteins localised to the secretory pathway of mammalian cells.
FEBS Lett. 466:11–18. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Scherer PE, Lederkremer GZ, Williams S,
Fogliano M, Baldini G and Lodish HF: Cab45, a novel (Ca2+)-binding
protein localized to the Golgi lumen. J Cell Biol. 133:257–268.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chen L, Xu S, Xu Y, Lu W, Liu L, Yue D,
Teng J and Chen J: Cab45S promotes cell proliferation through
SERCA2b inhibition and Ca2+ signaling. Oncogene. 35:35–46. 2016.
View Article : Google Scholar
|
|
48
|
Lam PP, Hyvärinen K, Kauppi M,
Cosen-Binker L, Laitinen S, Keränen S, Gaisano HY and Olkkonen VM:
A cytosolic splice variant of Cab45 interacts with Munc18b and
impacts on amylase secretion by pancreatic acini. Mol Biol Cell.
18:2473–2480. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Grønborg M, Kristiansen TZ, Iwahori A,
Chang R, Reddy R, Sato N, Molina H, Jensen ON, Hruban RH, Goggins
MG, et al: Biomarker discovery from pancreatic cancer secretome
using a differential proteomic approach. Mol Cell Proteomics.
5:157–171. 2006. View Article : Google Scholar
|
|
50
|
Ji H, Greening DW, Kapp EA, Moritz RL and
Simpson RJ: Secretome-based proteomics reveals sulindac-modulated
proteins released from colon cancer cells. Proteomics Clin Appl.
3:433–451. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Blank B and von Blume J: Cab45-Unraveling
key features of a novel secretory cargo sorter at the trans-Golgi
network. Eur J Cell Biol. 96:383–390. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Mittal V: Epithelial mesenchymal
transition in tumor metastasis. Annu Rev Pathol. 13:395–412. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gialeli C, Theocharis AD and Karamanos NK:
Roles of matrix metalloproteinases in cancer progression and their
pharmacological targeting. FEBS J. 278:16–27. 2011. View Article : Google Scholar
|
|
54
|
Bisel B, Wang Y, Wei JH, Xiang Y, Tang D,
Miron-Mendoza M, Yoshimura S, Nakamura N and Seemann J: ERK
regulates Golgi and centrosome orientation towards the leading edge
through GRASP65. J Cell Biol. 182:837–843. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Prigozhina NL and Waterman-Storer CM:
Protein kinase D-mediated anterograde membrane trafficking is
required for fibroblast motility. Curr Biol. 14:88–98. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kienzle C and von Blume J: Secretory cargo
sorting at the trans-Golgi network. Trends Cell Biol. 24:584–593.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Weiss H, Amberger A, Widschwendter M,
Margreiter R, Ofner D and Dietl P: Inhibition of store-operated
calcium entry contributes to the anti-proliferative effect of
non-steroidal anti-inflammatory drugs in human colon cancer cells.
Int J Cancer. 92:877–882. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yilmaz M and Christofori G: EMT, the
cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev.
28:15–33. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kessenbrock K, Plaks V and Werb Z: Matrix
metalloproteinases: Regulators of the tumor microenvironment. Cell.
141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Merchant N, Nagaraju GP, Rajitha B,
Lammata S, Jella KK, Buchwald ZS, Lakka SS and Ali AN: Matrix
metalloproteinases: Their functional role in lung cancer.
Carcinogenesis. 38:766–780. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shirozu M, Tada H, Tashiro K, Nakamura T,
Lopez ND, Nazarea M, Hamada T, Sato T, Nakano T and Honjo T:
Characterization of novel secreted and membrane proteins isolated
by the signal sequence trap method. Genomics. 37:273–280. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Shi Y, He B, You L and Jablons DM: Roles
of secreted frizzled-related proteins in cancer. Acta Pharmacol
Sin. 28:1499–1504. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Liu Y, Zhou Q, Zhou D, Huang C, Meng X and
Li J: Secreted frizzled-related protein 2-mediated cancer events:
Friend or foe? Pharmacol Rep. 69:403–408. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Arce L, Yokoyama NN and Waterman ML:
Diversity of LEF/TCF action in development and disease. Oncogene.
25:7492–7504. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang X, Rong X, Chen Y and Su L:
Methylation-mediated loss of SFRP2 enhances invasiveness of
non-small cell lung cancer cells. Hum Exp Toxicol. 37:155–162.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Li P, Zhao S and Hu Y: SFRP2 modulates
nonsmall cell lung cancer A549 cell apoptosis and metastasis by
regulating mitochondrial fission via Wnt pathways. Mol Med Rep.
20:1925–1932. 2019.PubMed/NCBI
|
|
67
|
Zeng X, Zhang Y, Xu H, Zhang T, Xue Y and
An R: Secreted frizzled related protein 2modulates
epithelial-mesenchymal transition and stemness via Wnt/β-catenin
signaling in chorio-carcinoma. Cell Physiol Biochem. 50:1815–1831.
2018. View Article : Google Scholar
|
|
68
|
Cheng YY, Yu J, Wong YP, Man EP, To KF,
Jin VX, Li J, Tao Q, Sung JJ, Chan FK and Leung WK: Frequent
epigenetic inactivation of secreted frizzled-related protein
2(SFRP2) by promoter methylation in human gastric cancer. Br J
Cancer. 97:895–901. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Perry AS, O'Hurley G, Raheem OA, Brennan
K, Wong S, O'Grady A, Kennedy AM, Marignol L, Murphy TM, Sullivan
L, et al: Gene expression and epigenetic discovery screen reveal
methylation of SFRP2 in prostate cancer. Int J Cancer.
132:1771–1780. 2013. View Article : Google Scholar
|
|
70
|
Bhangu JS, Beer A, Mittlböck M, Tamandl D,
Pulverer W, Schönthaler S, Taghizadeh H, Stremitzer S, Kaczirek K,
Gruenberger T, et al: Circulating free methylated tumor DNA markers
for sensitive assessment of tumor burden and early response
monitoring in patients receiving systemic chemotherapy for
colorectal cancer liver metastasis. Ann Surg. 268:894–902. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Luo X, Wei B, Chen A, Zhao H, Huang K and
Chen J: Methylation-mediated loss of SFRP2 enhances melanoma cell
invasion via Wnt signaling. Am J Transl Res. 8:1502–1509.
2016.PubMed/NCBI
|
|
72
|
Liu S, Chen X, Chen R, Wang J, Zhu G,
Jiang J, Wang H, Duan S and Huang J: Diagnostic role of Wnt pathway
gene promoter methylation in non small cell lung cancer.
Oncotarget. 8:36354–36367. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Shih YL, Hsieh CB, Yan MD, Tsao CM, Hsieh
TY, Liu CH and Lin YW: Frequent concomitant epigenetic silencing of
SOX1 and secreted frizzled-related proteins (SFRPs) in human
hepatocel-lular carcinoma. J Gastroenterol Hepatol. 28:551–559.
2013. View Article : Google Scholar
|
|
74
|
Yang Q, Huang T, Ye G, Wang B and Zhang X:
Methylation of SFRP2 gene as a promising noninvasive biomarker
using feces in colorectal cancer diagnosis: A systematic
meta-analysis. Sci Rep. 6:333392016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lee JL, Lin CT, Chueh LL and Chang CJ:
Autocrine/paracrine secreted Frizzled-related protein 2induces
cellular resistance to apoptosis: A possible mechanism of mammary
tumorigenesis. J Biol Chem. 279:14602–14609. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Courtwright A, Siamakpour-Reihani S,
Arbiser JL, Banet N, Hilliard E, Fried L, Livasy C, Ketelsen D,
Nepal DB, Perou CM, et al: Secreted frizzle-related protein 2
stimulates angiogenesis via a calcineurin/NFAT signaling pathway.
Cancer Res. 69:4621–4628. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lee JL, Chang CJ, Chueh LL and Lin CT:
Secreted frizzled related protein 2(sFRP2) decreases susceptibility
to UV-induced apoptosis in primary culture of canine mammary gland
tumors by NF-kappaB activation or JNK suppression. Breast Cancer
Res Treat. 100:49–58. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lee JL, Chang CJ, Wu SY, Sargan DR and Lin
CT: Secreted frizzled-related protein 2(SFRP2) is highly expressed
in canine mammary gland tumors but not in normal mammary glands.
Breast Cancer Res Treat. 84:139–149. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Viros A, Girotti MR and Marais R: So you
can teach old fibro-blasts new tricks. Cancer Discov. 6:581–583.
2016. View Article : Google Scholar
|
|
80
|
Fontenot E, Rossi E, Mumper R, Snyder S,
Siamakpour-Reihani S, Ma P, Hilliard E, Bone B, Ketelsen D, Santos
C, et al: A novel monoclonal antibody to secreted frizzled-related
protein 2 inhibits tumor growth. Mol Cancer Ther. 12:685–695. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Xiao X, Xiao Y, Wen R, Zhang Y, Li X, Wang
H, Huang J, Liu J, Long T and Tang J: Promoting roles of the
secreted frizzled-related protein 2as a Wnt agonist in lung cancer
cells. Oncol Rep. 34:2259–2266. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang Y, Li Q and Chen H: DNA methylation
and histone modifications of Wnt genes by genistein during colon
cancer development. Carcinogenesis. 34:1756–1763. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wang WA, Groenendyk J and Michalak M:
Endoplasmic reticulum stress associated responses in cancer.
Biochim Biophys Acta. 1843:2143–2149. 2014. View Article : Google Scholar : PubMed/NCBI
|