|
1
|
Carlucci A, Adornetto A, Scorziello A,
Viggiano D, Foca M, Cuomo O, Annunziato L, Gottesman M and
Feliciello A: Proteolysis of AKAP121 regulates mitochondrial
activity during cellular hypoxia and brain ischaemia. EMBO J.
27:1073–1084. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Haidarali S, Patil CR, Ojha S, Mohanraj R,
Arya DS and Goyal SN: Targeting apoptotic pathways in myocardial
infarction: Attenuated by phytochemicals. Cardiovasc Hematol Agents
Med Chem. 12:72–85. 2014. View Article : Google Scholar
|
|
3
|
Kuznetsov AV, Javadov S, Margreiter R,
Grimm M, Hagenbuchner J and Ausserlechner MJ: The role of
mitochon-dria in the mechanisms of cardiac ischemia-reperfusion
injury. Antioxidants (Basel). 8:4542019. View Article : Google Scholar
|
|
4
|
Yang M, Linn BS, Zhang Y and Ren J:
Mitophagy and mitochondrial integrity in cardiac
ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis.
1865:2293–2302. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chouchani ET, Pell VR, James AM, Work LM,
Saeb-Parsy K, Frezza C, Krieg T and Murphy MP: A unifying mechanism
for mitochondrial superoxide production during
ischemia-reperfu-sion injury. Cell Metab. 23:254–263. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lesnefsky EJ, Chen Q, Tandler B and Hoppel
CL: Mitochondrial dysfunction and myocardial ischemia-reperfusion:
Implications for novel therapies. Annu Rev Pharmacol Toxicol.
57:535–565. 2017. View Article : Google Scholar
|
|
7
|
Eltzschig HK and Eckle T: Ischemia and
reperfusion-from mechanism to translation. Nat Med. 17:1391–1401.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wang W, Fernandez-Sanz C and Sheu SS:
Regulation of mitochondrial bioenergetics by the non-canonical
roles of mitochondrial dynamics proteins in the heart. Biochim
Biophys Acta Mol Basis Dis. 1864:1991–2001. 2018. View Article : Google Scholar
|
|
9
|
Spinelli JB and Haigis MC: The
multifaceted contributions of mitochondria to cellular metabolism.
Nat Cell Biol. 20:745–754. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Niemann B, Schwarzer M and Rohrbach S:
Heart and mitochondria: Pathophysiology and implications for
cardiac surgeons. Thorac Cardiovasc Surg. 66:11–19. 2018.
View Article : Google Scholar
|
|
11
|
Bender DA: Oxidative phosphorylation.
Encyclopedia of food sciences and nutrition. Caballero B: 2nd
edition. Academic Press; Oxford; pp. 4295–4301. 2003, View Article : Google Scholar
|
|
12
|
Murphy MP: How mitochondria produce
reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar
|
|
13
|
Guzy RD, Sharma B, Bell E, Chandel NS and
Schumacker PT: Loss of the SdhB, but Not the SdhA, subunit of
complex II triggers reactive oxygen species-dependent
hypoxia-inducible factor activation and tumorigenesis. Mol Cell
Biol. 28:718–731. 2008. View Article : Google Scholar :
|
|
14
|
Chouchani ET, Pell VR, Gaude E,
Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord
ENJ, Smith AC, et al: Ischaemic accumulation of succinate controls
reperfusion injury through mitochondrial ROS. Nature. 515:431–435.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Pell VR, Chouchani ET, Frezza C, Murphy MP
and Krieg T: Succinate metabolism: A new therapeutic target for
myocardial reperfusion injury. Cardiovasc Res. 111:134–141. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bugger H and Pfeil K: Mitochondrial ROS in
myocardial ischemia reperfusion and remodeling. Biochim Biophys
Acta Mol Basis Dis. 1866:1657682020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Boengler K, Lochnit G and Schulz R:
Mitochondria 'THE' target of myocardial conditioning. Am J Physiol
Heart Circ Physiol. 315:H1215–H1231. 2018. View Article : Google Scholar
|
|
18
|
Lin MT and Beal MF: Mitochondrial
dysfunction and oxidative stress in neurodegenerative diseases.
Nature. 443:787–795. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Marzetti E, Csiszar A, Dutta D, Balagopal
G, Calvani R and Leeuwenburgh C: Role of mitochondrial dysfunction
and altered autophagy in cardiovascular aging and disease: From
mechanisms to therapeutics. Am J Physiol Heart Circ Physiol.
305:H459–H476. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Nordberg J and Arner ES: Reactive oxygen
species, antioxidants, and the mammalian thioredoxin system. Free
Radic Biol Med. 31:1287–1312. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Judge S and Leeuwenburgh C: Cardiac
mitochondrial bioenergetics, oxidative stress, and aging. Am J
Physiol Cell Physiol. 292:C1983–C1992. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhang W, Chen C, Wang J, Liu L, He Y and
Chen Q: Mitophagy in cardiomyocytes and in platelets: A major
mechanism of cardioprotection against ischemia/reperfusion injury.
Physiology (Bethesda). 33:86–98. 2018.
|
|
23
|
Tahrir FG, Langford D, Amini S, Mohseni
Ahooyi T and Khalili K: Mitochondrial quality control in cardiac
cells: Mechanisms and role in cardiac cell injury and disease. J
Cell Physiol. 234:8122–8133. 2019. View Article : Google Scholar :
|
|
24
|
Paradies G, Petrosillo G, Paradies V and
Ruggiero FM: Role of cardiolipin peroxidation and Ca2+ in
mitochondrial dysfunction and disease. Cell Calcium. 45:643–650.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kay L, Nicolay K, Wieringa B, Saks V and
Wallimann T: Direct evidence for the control of mitochondrial
respiration by mitochondrial creatine kinase in oxidative muscle
cells in situ. J Biol Chem. 275:6937–6944. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Dolder M, Wendt S and Wallimann T:
Mitochondrial creatine kinase in contact sites: Interaction with
porin and adenine nucleotide translocase, role in permeability
transition and sensitivity to oxidative damage. Biol Signals
Recept. 10:93–111. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Arslan F, de Kleijn DP and Pasterkamp G:
Innate immune signaling in cardiac ischemia. Nat Rev Cardiol.
8:292–300. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
James AM, Hoogewijs K, Logan A, Hall AR,
Ding S, Fearnley IM and Murphy MP: Non-enzymatic N-acetylation of
lysine residues by AcetylCoA often occurs via a proximal
S-acetylated thiol intermediate sensitive to glyoxalase II. Cell
Rep. 18:2105–2112. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wagner GR, Bhatt DP, O'Connell TM,
Thompson JW, Dubois LG, Backos DS, Yang H, Mitchell GA, Ilkayeva
OR, Stevens RD, et al: A class of reactive Acyl-CoA species reveals
the non-enzymatic origins of protein acylation. Cell Metab.
25:823–837.e8. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wagner GR and Hirschey MD: Nonenzymatic
protein acylation as a carbon stress regulated by sirtuin
deacylases. Mol Cell. 54:5–16. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yang SJ, Choi JM, Kim L, Park SE, Rhee EJ,
Lee WY, Oh KW, Park SW and Park CY: Nicotinamide improves glucose
metabolism and affects the hepatic NAD-sirtuin pathway in a rodent
model of obesity and type 2 diabetes. J Nutr Biochem. 25:66–72.
2014. View Article : Google Scholar
|
|
32
|
Carraro M and Bernardi P: Calcium and
reactive oxygen species in regulation of the mitochondrial
permeability transition and of programmed cell death in yeast. Cell
Calcium. 60:102–107. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Giorgio V, Guo L, Bassot C, Petronilli V
and Bernardi P: Calcium and regulation of the mitochondrial
permeability transition. Cell Calcium. 70:56–63. 2018. View Article : Google Scholar
|
|
34
|
Nakagawa T, Shimizu S, Watanabe T,
Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T and Tsujimoto Y:
Cyclophilin D-dependent mitochondrial permeability transition
regulates some necrotic but not apoptotic cell death. Nature.
434:652–658. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Martin JL, Gruszczyk AV, Beach TE, Murphy
MP and Saeb-Parsy K: Mitochondrial mechanisms and therapeutics in
ischaemia reperfusion injury. Pediatr Nephrol. 34:1167–1174. 2019.
View Article : Google Scholar :
|
|
36
|
Ong SB, Subrayan S, Lim SY, Yellon DM,
Davidson SM and Hausenloy DJ: Inhibiting mitochondrial fission
protects the heart against ischemia/reperfusion injury.
Circulation. 121:2012–2022. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Din S, Mason M, Volkers M, Johnson B,
Cottage CT, Wang Z, Joyo AY, Quijada P, Erhardt P, Magnuson NS, et
al: Pim-1 preserves mitochondrial morphology by inhibiting
dynamin-related protein 1 translocation. Proc Natl Acad Sci USA.
110:5969–5974. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Balaban RS: Cardiac energy metabolism
homeostasis: Role of cytosolic calcium. J Mol Cell Cardiol.
34:1259–1271. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Nan J, Zhu W, Rahman MS, Liu M, Li D, Su
S, Zhang N, Hu X, Yu H, Gupta MP and Wang J: Molecular regulation
of mitochondrial dynamics in cardiac disease. Biochim Biophys Acta
Mol Cell Res. 1864:1260–1273. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sharp WW, Fang YH, Han M, Zhang HJ, Hong
Z, Banathy A, Morrow E, Ryan JJ and Archer SL: Dynamin-related
protein 1 (Drp1)-mediated diastolic dysfunction in myocardial
ischemia-reperfusion injury: Therapeutic benefits of Drp1
inhibition to reduce mitochondrial fission. FASEB J. 28:316–326.
2014. View Article : Google Scholar :
|
|
41
|
Murphy MP and Hartley RC: Mitochondria as
a therapeutic target for common pathologies. Nat Rev Drug Discov.
17:865–886. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Thomas LW and Ashcroft M: Exploring the
molecular interface between hypoxia-inducible factor signalling and
mitochondria. Cell Mol Life Sci. 76:1759–1777. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Song M, Mihara K, Chen Y, Scorrano L and
Dorn GW II: Mitochondrial fission and fusion factors reciprocally
orchestrate mitophagic culling in mouse hearts and cultured
fibroblasts. Cell Metab. 21:273–286. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chen Y, Liu Y and Dorn GW II:
Mitochondrial fusion is essential for organelle function and
cardiac homeostasis. Circ Res. 109:1327–1331. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Song M, Gong G, Burelle Y, Gustafsson AB,
Kitsis RN, Matkovich SJ and Dorn GW II: Interdependence of
Parkin-Mediated mitophagy and mitochondrial fission in adult mouse
hearts. Circ Res. 117:346–351. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sabbah HN: Targeting the mitochondria in
heart failure: A trans-lational perspective. JACC Basic Transl Sci.
5:88–106. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ikeda Y, Shirakabe A, Brady C, Zablocki D,
Ohishi M and Sadoshima J: Molecular mechanisms mediating
mitochondrial dynamics and mitophagy and their functional roles in
the cardio-vascular system. J Mol Cell Cardiol. 78:116–122. 2015.
View Article : Google Scholar
|
|
48
|
Große L, Wurm CA, Bruser C, Neumann D,
Jans DC and Jakobs S: Bax assembles into large ring-like structures
remodeling the mitochondrial outer membrane in apoptosis. EMBO J.
35:402–413. 2016. View Article : Google Scholar
|
|
49
|
Kim H, Scimia MC, Wilkinson D, Trelles RD,
Wood MR, Bowtell D, Dillin A, Mercola M and Ronai ZeA: Fine-tuning
of Drp1/Fis1 availability by AKAP121/Siah2 regulates mitochondrial
adaptation to hypoxia. Mol Cell. 44:532–544. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Marin W: A-kinase anchoring protein 1
(AKAP1) and its role in some cardiovascular diseases. J Mol Cell
Cardiol. 138:99–109. 2020. View Article : Google Scholar
|
|
51
|
Disatnik MH, Ferreira JC, Campos JC, Gomes
KS, Dourado PM, Qi X and Mochly-Rosen D: Acute inhibition of
excessive mitochondrial fission after myocardial infarction
prevents long-term cardiac dysfunction. J Am Heart Assoc.
2:e0004612013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ikeda Y, Shirakabe A, Maejima Y, Zhai P,
Sciarretta S, Toli J, Nomura M, Mihara K, Egashira K, Ohishi M, et
al: Endogenous Drp1 mediates mitochondrial autophagy and protects
the heart against energy stress. Circ Res. 116:264–278. 2015.
View Article : Google Scholar
|
|
53
|
Otera H, Wang C, Cleland MM, Setoguchi K,
Yokota S, Youle RJ and Mihara K: Mff is an essential factor for
mitochondrial recruitment of Drp1 during mitochondrial fission in
mammalian cells. J Cell Biol. 191:1141–1158. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Jin Q, Li R, Hu N, Xin T, Zhu P, Hu S, Ma
S, Zhu H, Ren J and Zhou H: DUSP1 alleviates cardiac
ischemia/reperfusion injury by suppressing the Mff-required
mitochondrial fission and Bnip3-related mitophagy via the JNK
pathways. Redox Biol. 14:576–587. 2018. View Article : Google Scholar
|
|
55
|
Li J, Li Y, Jiao J, Wang J, Li Y, Qin D
and Li P: Mitofusin 1 is negatively regulated by microRNA 140 in
cardiomyocyte apoptosis. Mol Cell Biol. 34:1788–1799. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Jiang X, Jiang H, Shen Z and Wang X:
Activation of mitochon-drial protease OMA1 by Bax and Bak promotes
cytochrome c release during apoptosis. Proc Natl Acad Sci USA.
111:14782–14787. 2014. View Article : Google Scholar
|
|
57
|
Chistiakov DA, Shkurat TP, Melnichenko AA,
Grechko AV and Orekhov AN: The role of mitochondrial dysfunction in
cardio-vascular disease: A brief review. Ann Med. 50:121–127. 2018.
View Article : Google Scholar
|
|
58
|
Minoia M, Boncoraglio A, Vinet J, Morelli
FF, Brunsting JF, Poletti A, Krom S, Reits E, Kampinga HH and Carra
S: BAG3 induces the sequestration of proteasomal clients into
cytoplasmic puncta: Implications for a proteasome-to-autophagy
switch. Autophagy. 10:1603–1621. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hammerling BC and Gustafsson AB:
Mitochondrial quality control in the myocardium: Cooperation
between protein degradation and mitophagy. J Mol Cell Cardiol.
75:122–130. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kocaturk NM and Gozuacik D: Crosstalk
between mammalian autophagy and the Ubiquitin-Proteasome system.
Front Cell Dev Biol. 6:1282018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Escobar-Henriques M, Altin S and Brave FD:
Interplay between the ubiquitin proteasome system and mitochondria
for protein homeostasis. Curr Issues Mol Biol. 35:35–58. 2020.
View Article : Google Scholar
|
|
62
|
Nishida K and Otsu K: Sterile inflammation
and degradation systems in heart failure. Circ J. 81:622–628. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li J, Horak KM, Su H, Sanbe A, Robbins J
and Wang X: Enhancement of proteasomal function protects against
cardiac proteinopathy and ischemia/reperfusion injury in mice. J
Clin Invest. 121:3689–3700. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yu X and Kem DC: Proteasome inhibition
during myocardial infarction. Cardiovasc Res. 85:312–320. 2010.
View Article : Google Scholar
|
|
65
|
Zhou H and Toan S: Pathological roles of
mitochondrial oxidative stress and mitochondrial dynamics in
cardiac microvascular Ischemia/Reperfusion injury. Biomolecules.
10:852020. View Article : Google Scholar :
|
|
66
|
Morales PE, Arias-Duran C, Avalos-Guajardo
Y, Aedo G, Verdejo HE, Parra V and Lavandero S: Emerging role of
mitophagy in cardiovascular physiology and pathology. Mol Aspects
Med. 71:1008222020. View Article : Google Scholar
|
|
67
|
Chen Y and Dorn GW II:
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling
damaged mitochondria. Science. 340:471–475. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Siddall HK, Yellon DM, Ong SB, Mukherjee
UA, Burke N, Hall AR, Angelova PR, Ludtmann MH, Deas E, Davidson
SM, et al: Loss of PINK1 increases the heart's vulnerability to
ischemia-reperfusion injury. PLoS One. 8:e624002013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kubli DA, Zhang X, Lee Y, Hanna RA,
Quinsay MN, Nguyen CK, Jimenez R, Petrosyan S, Murphy AN and
Gustafsson AB: Parkin protein deficiency exacerbates cardiac injury
and reduces survival following myocardial infarction. J Biol Chem.
288:915–926. 2013. View Article : Google Scholar :
|
|
70
|
Zhou H, Zhang Y, Hu S, Shi C, Zhu P, Ma Q,
Jin Q, Cao F, Tian F and Chen Y: Melatonin protects cardiac
microvasculature against ischemia/reperfusion injury via
suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis.
J Pineal Res. 63:e124132017. View Article : Google Scholar
|
|
71
|
Zhang T, Xue L, Li L, Tang C, Wan Z, Wang
R, Tan J, Tan Y, Han H, Tian R, et al: BNIP3 protein suppresses
PINK1 kinase proteolytic cleavage to promote mitophagy. J Biol
Chem. 291:21616–21629. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wu W, Lin C, Wu K, Jiang L, Wang X, Li W,
Zhuang H, Zhang X, Chen H, Li S, et al: FUNDC1 regulates
mitochondrial dynamics at the ER-mitochondrial contact site under
hypoxic conditions. EMBO J. 35:1368–1384. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tahrir FG, Knezevic T, Gupta MK, Gordon J,
Cheung JY, Feldman AM and Khalili K: Evidence for the role of BAG3
in mitochondrial quality control in cardiomyocytes. J Cell Physiol.
232:797–805. 2017. View Article : Google Scholar :
|
|
74
|
Schänzer A, Rupp S, Graf S, Zengeler D,
Jux C, Akinturk H, Gulatz L, Mazhari N, Acker T, Van Coster R, et
al: Dysregulated autophagy in restrictive cardiomyopathy due to
Pro209Leu mutation in BAG3. Mol Genet Metab. 123:388–399. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ong SB, Kalkhoran SB, Hernandez-Resendiz
S, Samangouei P, Ong SG and Hausenloy DJ: Mitochondrial-shaping
proteins in cardiac health and disease-the long and the short of
it! Cardiovasc Drugs Ther. 31:87–107. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kuznetsov AV and Margreiter R:
Heterogeneity of mitochondria and mitochondrial function within
cells as another level of mitochondrial complexity. Int J Mol Sci.
10:1911–1929. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Geng Y, Hu Y, Wang H, Shi S, Shi J and Qiu
Z: Deficiency of interfibrillar mitochondria in post-acute
myocardial infarction heart failure. Pak J Pharm Sci. 30:1089–1094.
2017.PubMed/NCBI
|
|
78
|
Virani SS, Alonso A, Benjamin EJ,
Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR,
Cheng S, Delling FN, et al: Heart disease and stroke
statistics-2020 update: A report from the American heart
association. Circulation. 141:e139–e596. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhu SC, Chen C, Wu YN, Ahmed M, Kitmitto
A, Greenstein AS, Kim SJ, Shao YF and Zhang YH: Cardiac complex II
activity is enhanced by fat and mediates greater mitochondrial
oxygen consumption following hypoxic re-oxygenation. Pflugers Arch.
472:367–374. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kohlhauer M, Pell VR, Burger N, Spiroski
AM, Gruszczyk A, Mulvey JF, Mottahedin A, Costa ASH, Frezza C,
Ghaleh B, et al: Protection against cardiac ischemia-reperfusion
injury by hypothermia and by inhibition of succinate accumulation
and oxidation is additive. Basic Res Cardiol. 114:182019.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Turton JA, Fagg R, Sones WR, Williams TC
and Andrews CM: Characterization of the myelotoxicity of
chloramphenicol succinate in the B6C3F1 mouse. Int J Exp Pathol.
87:101–112. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ambekar CS, Lee JS, Cheung BM, Chan LC,
Liang R and Kumana CR: Chloramphenicol succinate, a competitive
substrate and inhibitor of succinate dehydrogenase: Possible reason
for its toxicity. Toxicol In Vitro. 18:441–447. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Sala-Mercado JA, Wider J, Undyala VV,
Jahania S, Yoo W, Mentzer RM Jr, Gottlieb RA and Przyklenk K:
Profound cardio-protection with chloramphenicol succinate in the
swine model of myocardial ischemia-reperfusion injury. Circulation.
122(11 Suppl): S179–S184. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chouchani ET, Methner C, Nadtochiy SM,
Logan A, Pell VR, Ding S, James AM, Cocheme HM, Reinhold J, Lilley
KS, et al: Cardioprotection by S-nitrosation of a cysteine switch
on mitochondrial complex I. Nat Med. 19:753–759. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Xu A, Szczepanek K, Hu Y, Lesnefsky EJ and
Chen Q: Cardioprotection by modulation of mitochondrial respiration
during ischemia-reperfusion: Role of apoptosis-inducing factor.
Biochem Biophys Res Commun. 435:627–633. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Brand MD, Goncalves RL, Orr AL, Vargas L,
Gerencser AA, Borch Jensen M, Wang YT, Melov S, Turk CN, Matzen JT,
et al: Suppressors of superoxide-H2O2
production at site I(Q) of mitochondrial complex I protect against
stem cell hyperplasia and ischemia-reperfusion injury. Cell Metab.
24:582–592. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zozina VI, Covantev S, Goroshko OA,
Krasnykh LM and Kukes VG: Coenzyme Q10 in cardiovascular and
metabolic diseases: Current state of the problem. Curr Cardiol Rev.
14:164–174. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhang ZW, Xu XC, Liu T and Yuan S:
Mitochondrion-permeable antioxidants to treat ROS-Burst-mediated
acute diseases. Oxid Med Cell Longev. 2016:68595232016.
|
|
89
|
Di Lorenzo A, Iannuzzo G, Parlato A, Cuomo
G, Testa C, Coppola M, D'Ambrosio G, Oliviero DA, Sarullo S, Vitale
G, et al: Clinical evidence for Q10 coenzyme supple-mentation in
heart failure: From energetics to functional improvement. J Clin
Med. 9:12662020. View Article : Google Scholar
|
|
90
|
Mortensen AL, Rosenfeldt F and Filipiak
KJ: Effect of coen-zyme Q10 in Europeans with chronic heart
failure: A sub-group analysis of the Q-SYMBIO randomized
double-blind trial. Cardiol J. 26:147–156. 2019.
|
|
91
|
Reily C, Mitchell T, Chacko BK, Benavides
G, Murphy MP and Darley-Usmar V: Mitochondrially targeted compounds
and their impact on cellular bioenergetics. Redox Biol. 1:86–93.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Smith RA and Murphy MP: Animal and human
studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y
Acad Sci. 1201:96–103. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lee FY, Shao PL, Wallace CG, Chua S, Sung
PH, Ko SF, Chai HT, Chung SY, Chen KH, Lu HI, et al: Combined
therapy with SS31 and mitochondria mitigates myocardial
ischemia-reperfusion injury in rats. Int J Mol Sci. 19:27822018.
View Article : Google Scholar :
|
|
94
|
Kloner RA, Hale SL, Dai W, Gorman RC,
Shuto T, Koomalsingh KJ, Gorman JH III, Sloan RC, Frasier CR,
Watson CA, et al: Reduction of ischemia/reperfusion injury with
bendavia, a mitochondria-targeting cytoprotective peptide. J Am
Heart Assoc. 1:e0016442012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Botker HE, Cabrera-Fuentes HA, Ruiz-Meana
M, Heusch G and Ovize M: Translational issues for mitoprotective
agents as adjunct to reperfusion therapy in patients with
ST-segment elevation myocardial infarction. J Cell Mol Med.
24:2717–2729. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Mailloux RJ: Application of
mitochondria-targeted pharmaceuticals for the treatment of heart
disease. Curr Pharm Des. 22:4763–4779. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
van Empel VP, Bertrand AT, van Oort RJ,
van der Nagel R, Engelen M, van Rijen HV, Doevendans PA, Crijns HJ,
Ackerman SL, Sluiter W and De Windt LJ: EUK-8, a superoxide
dismutase and catalase mimetic, reduces cardiac oxidative stress
and ameliorates pressure overload-induced heart failure in the
harlequin mouse mutant. J Am Coll Cardiol. 48:824–832. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Baguisi A, Casale RA, Kates SA, Lader AS,
Stewart K and Beeuwkes R III: CMX-2043 efficacy in a rat model of
cardiac ischemia-reperfusion injury. J Cardiovasc Pharmacol Ther.
21:563–569. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Tsubota K: The first human clinical study
for NMN has started in Japan. NPJ Aging Mech Dis. 2:160212016.
View Article : Google Scholar
|
|
100
|
Hong W, Mo F, Zhang Z, Huang M and Wei X:
Nicotinamide mononucleotide: A promising molecule for therapy of
diverse diseases by targeting NAD+ metabolism. Front Cell Dev Biol.
8:2462020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Irie J, Inagaki E, Fujita M, Nakaya H,
Mitsuishi M, Yamaguchi S, Yamashita K, Shigaki S, Ono T, Yukioka H,
et al: Effect of oral administration of nicotinamide mononucleotide
on clinical parameters and nicotinamide metabolite levels in
healthy Japanese men. Endocr J. 67:153–160. 2020. View Article : Google Scholar
|
|
102
|
Bendickova K, Tidu F and Fric J:
Calcineurin-NFAT signalling in myeloid leucocytes: New prospects
and pitfalls in immuno-suppressive therapy. EMBO Mol Med.
9:990–999. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Ottani F, Latini R, Staszewsky L, La
Vecchia L, Locuratolo N, Sicuro M, Masson S, Barlera S, Milani V,
Lombardi M, et al: Cyclosporine a in reperfused myocardial
infarction: The multicenter, controlled, open-label CYCLE trial. J
Am Coll Cardiol. 67:365–374. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ikeda G, Matoba T, Nakano Y, Nagaoka K,
Ishikita A, Nakano K, Funamoto D, Sunagawa K and Egashira K:
Nanoparticle-mediated targeting of cyclosporine a enhances
cardioprotection against ischemia-reperfusion injury through
inhibition of mitochondrial permeability transition pore opening.
Sci Rep. 6:204672016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Jahandiez V, Cour M, Bochaton T, Abrial M,
Loufouat J, Gharib A, Varennes A, Ovize M and Argaud L: Fast
therapeutic hypothermia prevents post-cardiac arrest syndrome
through cyclophilin D-mediated mitochondrial permeability
transition inhibition. Basic Res Cardiol. 112:352017. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Parodi-Rullán RM, Soto-Prado J, Vega-Lugo
J, Chapa-Dubocq X, Díaz-Cordero SI and Javadov S: Divergent effects
of cyclophilin-D inhibition on the female rat heart: Acute versus
chronic post-myocardial infarction. Cell Physiol Biochem.
50:288–303. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Khuchua Z, Glukhov AI, Strauss AW and
Javadov S: Elucidating the beneficial role of PPAR agonists in
cardiac diseases. Int J Mol Sci. 19:34642018. View Article : Google Scholar :
|
|
108
|
Lalloyer F and Staels B: Fibrates,
glitazones, and peroxisome proliferator-activated receptors.
Arterioscler Thromb Vasc Biol. 30:894–899. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Viscomi C, Bottani E, Civiletto G, Cerutti
R, Moggio M, Fagiolari G, Schon EA, Lamperti C and Zeviani M: In
vivo correction of COX deficiency by activation of the AMPK/PGC-1α
axis. Cell Metab. 14:80–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Madrid-Miller A, Moreno-Ruiz LA,
Borrayo-Sánchez G, Almeida-Gutiér rez E, Martínez-Gómez DF and
Jáuregui-Aguilar R: Ipact of bezafibrate treatment in patients with
hyperfibrinogenemia and ST-elevation acute myocardial infarction: A
randomized clinical trial. Cir Cir. 78:229–237. 2010.PubMed/NCBI
|
|
111
|
Kernan WN, Inzucchi SE, Viscoli CM, Brass
LM, Bravata DM, Shulman GI, McVeety JC and Horwitz RI: Pioglitazone
improves insulin sensitivity among nondiabetic patients with a
recent transient ischemic attack or ischemic stroke. Stroke.
34:1431–1436. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Liu J and Wang LN: Peroxisome
proliferator-activated receptor gamma agonists for preventing
recurrent stroke and other vascular events in people with stroke or
transient ischaemic attack. Cochrane Database Syst Rev.
12:CD0106932017.PubMed/NCBI
|
|
113
|
Palee S, Weerateerangkul P, Surinkeaw S,
Chattipakorn S and Chattipakorn N: Effect of rosiglitazone on
cardiac electrophysi-ology, infarct size and mitochondrial function
in ischaemia and reperfusion of swine and rat heart. Exp Physiol.
96:778–789. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Nissen SE and Wolski K: Effect of
rosiglitazone on the risk of myocardial infarction and death from
cardiovascular causes. N Engl J Med. 356:2457–2471. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Sunaga H, Koitabashi N, Iso T, Matsui H,
Obokata M, Kawakami R, Murakami M, Yokoyama T and Kurabayashi M:
Activation of cardiac AMPK-FGF21 feed-forward loop in acute
myocardial infarction: Role of adrenergic overdrive and lipolysis
byproducts. Sci Rep. 9:118412019. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhang DS, Liang GY, Liu DX, Yu J and Wang
F: Role of phosphorylated AMP-activated protein kinase (AMPK) in
myocardial insulin resistance after myocardial ischemia-reperfusion
during cardiopulmonary bypass surgery in dogs. Med Sci Monit.
25:4149–4158. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zhou J, Massey S, Story D and Li L:
Metformin: An old drug with new applications. Int J Mol Sci.
19:28632018. View Article : Google Scholar :
|
|
118
|
Chin JT, Troke JJ, Kimura N, Itoh S, Wang
X, Palmer OP, Robbins RC and Fischbein MP: A novel cardioprotective
agent in cardiac transplantation: Metformin activation of
AMP-activated protein kinase decreases acute ischemia-reperfusion
injury and chronic rejection. Yale J Biol Med. 84:423–432.
2011.PubMed/NCBI
|
|
119
|
Palee S, Higgins L, Leech T, Chattipakorn
SC and Chattipakorn N: Acute metformin treatment provides
cardioprotection via improved mitochondrial function in cardiac
ischemia / reperfusion injury. Biomed Pharmacother. 130:1106042020.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Holman RR, Paul SK, Bethel MA, Matthews DR
and Neil HA: 10-Year follow-up of intensive glucose control in type
2 diabetes. N Engl J Med. 359:1577–1589. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Mellbin LG, Malmberg K, Norhammar A, Wedel
H and Rydé L; DIGAMI 2 Investigators: The impact of glucose
lowering treatment on long-term prognosis in patients with type 2
diabetes and myocardial infarction: A report from the DIGAMI 2
trial. Eur Heart J. 29:166–176. 2008. View Article : Google Scholar
|
|
122
|
Hartman MHT, Prins JKB, Schurer RAJ,
Lipsic E, Lexis CPH, van der Horst-Schrivers ANA, van Veldhuisen
DJ, van der Horst ICC and van der Harst P: Two-year follow-up of 4
months metformin treatment vs. placebo in ST-elevation myocardial
infarction: Data from the GIPS-III RCT. Clin Res Cardiol.
106:939–946. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Whitaker RM, Corum D, Beeson CC and
Schnellmann RG: Mitochondrial biogenesis as a pharmacological
target: A new approach to acute and chronic diseases. Annu Rev
Pharmacol Toxicol. 56:229–249. 2016. View Article : Google Scholar
|
|
124
|
Kim H, Lee JY, Park KJ, Kim WH and Roh GS:
A mitochondrial division inhibitor, Mdivi-1, inhibits mitochondrial
fragmentation and attenuates kainic acid-induced hippocampal cell
death. BMC Neurosci. 17:332016. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Veeranki S and Tyagi SC: Mdivi-1 induced
acute changes in the angiogenic profile after ischemia-reperfusion
injury in female mice. Physiol Rep. 5:e132982017. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Gao G, Chen W, Yan M, Liu J, Luo H, Wang C
and Yang P: Rapamycin regulates the balance between cardiomyocyte
apoptosis and autophagy in chronic heart failure by inhibiting mTOR
signaling. Int J Mol Med. 45:195–209. 2020.
|
|
127
|
Wang JX, Jiao JQ, Li Q, Long B, Wang K,
Liu JP, Li YR and Li PF: miR-499 regulates mitochondrial dynamics
by targeting calcineurin and dynamin-related protein-1. Nat Med.
17:71–78. 2011. View Article : Google Scholar
|
|
128
|
Babot M, Birch A, Labarbuta P and Galkin
A: Characterisation of the active/de-active transition of
mitochondrial complex I. Biochim Biophys Acta. 1837:1083–1092.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Gorenkova N, Robinson E, Grieve DJ and
Galkin A: Conformational change of mitochondrial complex I
increases ROS sensitivity during ischemia. Antioxid Redox Signal.
19:1459–1468. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Chouchani ET, James AM, Methner C, Pell
VR, Prime TA, Erickson BK, Forkink M, Lau GY, Bright TP, Menger KE,
et al: Identification and quantification of protein S-nitrosation
by nitrite in the mouse heart during ischemia. J Biol Chem.
292:14486–14495. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Pan J and Carroll KS: Light-mediated
sulfenic acid generation from photocaged cysteine sulfoxide. Org
Lett. 17:6014–6017. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Ukuwela AA, Bush AI, Wedd AG and Xiao Z:
Reduction potentials of protein disulfides and catalysis of
glutathionylation and deglutathionylation by glutaredoxin enzymes.
Biochem J. 474:3799–3815. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Kolluru GK, Shen X and Kevil CG: Reactive
sulfur species: A new redox player in cardiovascular
pathophysiology. Arterioscler Thromb Vasc Biol. 40:874–884. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Davalli P, Mitic T, Caporali A, Lauriola A
and D'Arca D: ROS, cell senescence, and novel molecular mechanisms
in aging and age-related diseases. Oxid Med Cell Longev.
2016:35651272016. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Shahzad S, Hasan A, Faizy AF, Mateen S,
Fatima N and Moin S: Elevated DNA damage, oxidative stress, and
impaired response defense system inflicted in patients with
myocardial infarction. Clin Appl Thromb Hemost. 24:780–789. 2018.
View Article : Google Scholar
|
|
136
|
Dey S, DeMazumder D, Sidor A, Foster DB
and O'Rourke B: Mitochondrial ROS drive sudden cardiac death and
chronic proteome remodeling in heart failure. Circ Res.
123:356–371. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Gottlieb RA and Thomas A: Mitophagy and
mitochondrial quality control mechanisms in the heart. Curr
Pathobiol Rep. 5:161–169. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Guan R, Zou W, Dai X, Yu X, Liu H, Chen Q
and Teng W: Mitophagy, a potential therapeutic target for stroke. J
Biomed Sci. 25:872018. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Andres AM, Tucker KC, Thomas A, Taylor DJ,
Sengstock D, Jahania SM, Dabir R, Pourpirali S, Brown JA, Westbrook
DG, et al: Mitophagy and mitochondrial biogenesis in atrial tissue
of patients undergoing heart surgery with cardio-pulmonary bypass.
JCI Insight. 2:e893032017. View Article : Google Scholar
|
|
140
|
Moyzis AG, Sadoshima J and Gustafsson AB:
Mending a broken heart: The role of mitophagy in cardioprotection.
Am J Physiol Heart Circ Physiol. 308:H183–H192. 2015. View Article : Google Scholar :
|
|
141
|
Ding S, Wu D, Lu Q, Qian L, Ding Y, Liu G,
Jia X, Zhang Y, Xiao W and Gong W: Angiopoietin-like 4 deficiency
upregulates macrophage function through the dysregulation of
cell-intrinsic fatty acid metabolism. Am J Cancer Res. 10:595–609.
2020.PubMed/NCBI
|
|
142
|
Cai J, Wang D, Zhao FQ, Liang S and Liu J:
AMPK-mTOR pathway is involved in glucose-modulated amino acid
sensing and utilization in the mammary glands of lactating goats. J
Anim Sci Biotechnol. 11:322020. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Mackenzie RM, Salt IP, Miller WH, Logan A,
Ibrahim HA, Degasperi A, Dymott JA, Hamilton CA, Murphy MP, Delles
C and Dominiczak AF: Mitochondrial reactive oxygen species enhance
AMP-activated protein kinase activation in the endothelium of
patients with coronary artery disease and diabetes. Clin Sci
(Lond). 124:403–411. 2013. View Article : Google Scholar
|
|
144
|
Zhao Y, Shang F, Shi W, Zhang J, Liu X, Li
B, Hu X and Wang L: Angiotensin II receptor type 1 antagonists
modulate vascular smooth muscle cell proliferation and migration
via AMPK/mTOR. Cardiology. 143:1–10. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Gerczuk PZ and Kloner RA: An update on
cardioprotection: A review of the latest adjunctive therapies to
limit myocardial infarction size in clinical trials. J Am Coll
Cardiol. 59:969–978. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Obtułowicz K: Bradykinin-mediated
angioedema. Pol Arch Med Wewn. 126:76–85. 2016.
|
|
147
|
Taddei S and Bortolotto L: Unraveling the
pivotal role of bradykinin in ACE inhibitor activity. Am J
Cardiovasc Drugs. 16:309–321. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Lepelley M, Bernardeau C, Defendi F,
Crochet J, Mallaret M and Bouillet L: Update on bradykinin-mediated
angioedema in 2020. Therapie. 75:195–205. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Koh JQS, Fernando H, Peter K and Stub D:
Opioids and ST elevation myocardial infarction: A systematic
review. Heart Lung Circ. 28:697–706. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Tavenier AH, Hermanides RS, Ottervanger
JP, Ter Horst PGJ, Kedhi E and van 't Hof AWJ: Risks of opioids in
ST-elevation myocardial infarction: A review. Drug Saf.
41:1303–1308. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Jones SP, Tang XL, Guo Y, Steenbergen C,
Lefer DJ, Kukreja RC, Kong M, Li Q, Bhushan S, Zhu X, et al: The
NHLBI-sponsored consortium for preclinicAl assESsment of
cARdioprotective therapies (CAESAR): A new paradigm for rigorous,
accurate, and reproducible evaluation of putative infarct-sparing
interventions in mice, rabbits, and pigs. Circ Res. 116:572–586.
2015. View Article : Google Scholar :
|