Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2021 Volume 47 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2021 Volume 47 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

lncRNA NEAT1 ameliorates LPS‑induced inflammation in MG63 cells by activating autophagy and suppressing the NLRP3 inflammasome

  • Authors:
    • Wenyu Dai
    • Manyi Wang
    • Peiqi Wang
    • Ji Wen
    • Jiangyue Wang
    • Sa Cha
    • Xueling Xiao
    • Yiruo He
    • Rui Shu
    • Ding Bai
  • View Affiliations / Copyright

    Affiliations: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
    Copyright: © Dai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 607-620
    |
    Published online on: December 22, 2020
       https://doi.org/10.3892/ijmm.2020.4827
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The mechanisms of inflammation in bone and joint tissue are complex and involve long non‑coding RNAs (lncRNAs), which play an important role in this process. The aim of the present study was to screen out differentially expressed genes in human osteoblasts stimulated by inflammation, and to further explore the mechanisms underlying inflammatory responses and the functional activity of human osteoblasts through bioinformatics methods and in vitro experiments. For this purpose, MG63 cells were stimulated with various concentrations of lipopolysaccharide (LPS) for different periods of time to construct an optimal inflammatory model and RNA sequencing was then performed on these cells. The levels of nuclear enriched abundant transcript 1 (NEAT1), various inflammatory factors, Nod‑like receptor protein 3 (NLRP3) protein and osteogenesis‑related proteins, as well as the levels of cell apoptosis‑ and cell cycle‑related markers were measured in MG63 cells stimulated with LPS, transfected with NEAT1 overexpression plasmid and treated with bexarotene by western blot analysis, RT‑qPCR, immunofluorescence, FISH, TEM and flow cytometry. There were 427 differentially expressed genes in the LPS‑stimulated MG63 cells, in which NEAT1 was significantly downregulated. LPS upregulated the expression of inflammatory cytokines and NLRP3, inhibited the expression of autophagy‑related and osteogenesis‑related proteins, promoted apoptosis and altered the cell cycle, which was partially inhibited by NEAT1 overexpression and promoted by bexarotene. LPS stimulated inflammation in the MG63 cells and inhibited the retinoid X receptor (RXR)‑α to downregulate the expression of NEAT1 and decrease levels of autophagy, which promoted the activation of NLRP3 and the release of inflammatory factors, and impaired the functional activity of osteoblasts, thus promoting the development of inflammation.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Redlich K and Smolen JS: Inflammatory bone loss: Pathogenesis and therapeutic intervention. Nat Rev Drug Discov. 11:234–250. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Teitelbaum SL and Ross FP: Genetic regulation of osteoclast development and function. Nat Rev Genet. 4:638–649. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Zaidi M: Skeletal remodeling in health and disease. Nat Med. 13:791–801. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Matsuo K and Irie N: Osteoclast-osteoblast communication. Arch Biochem Biophys. 473:201–209. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Karner CM and Long F: Wnt signaling and cellular metabolism in osteoblasts. Cell Mol Life Sci. 74:1649–1657. 2017. View Article : Google Scholar :

6 

Komori T: Regulation of proliferation, differentiation and Functions of osteoblasts by Runx2. Histochem Cell Biol. 20:16942019.

7 

Abdallah BM, Jafari A, Zaher W, Qiu W and Kassem M: Skeletal (stromal) stem cells: An update on intracellular signaling path-ways controlling osteoblast differentiation. Bone. 70:28–36. 2015. View Article : Google Scholar

8 

Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Yano K, Morinaga T and Higashio K: RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun. 253:395–400. 1998. View Article : Google Scholar

9 

Asagiri M and Takayanagi H: The molecular understanding of osteoclast differentiation. Bone. 40:251–264. 2007. View Article : Google Scholar

10 

Kobayashi Y, Udagawa N and Takahashi N: Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr. 19:61–72. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Liu C, Walter TS, Huang P, Zhang S, Zhu X, Wu Y, Wedderburn LR, Tang P, Owens RJ, Stuart DI, et al: Structural and functional insights of RANKL-RANK interaction and signaling. J Immunol. 184:6910–6919. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Mundy GR: Osteoporosis and inflammation. Nutr Rev. 65:S147–151. 2007. View Article : Google Scholar

13 

Kadono H, Kido J, Kataoka M, Yamauchi N and Nagata T: Inhibition of osteoblastic cell differentiation by lipopolysaccha-ride extract from Porphyromonas gingivalis. Infect Immun. 67:2841–2846. 1999. View Article : Google Scholar : PubMed/NCBI

14 

Bandow K, Maeda A, Kakimoto K, Kusuyama J, Shamoto M, Ohnishi T and Matsuguchi T: Molecular mechanisms of the inhibitory effect of lipopolysaccharide (LPS) on osteoblast differ-entiation. Biochem Biophys Res Commun. 402:755–761. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Daigang L, Jining Q, Jinlai L, Pengfei W, Chuan S, Liangku H, Ding T, Zhe S, Wei W, Zhong L and Kun Z: LPS-stimulated inflammation inhibits BMP-9-induced osteoblastic differentiation through crosstalk between BMP/MAPK and Smad signaling. Exp Cell Res. 341:54–60. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Huang RL, Yuan Y, Zou GM, Liu G, Tu J and Li Q: LPS-stimulated inflammatory environment inhibits BMP-2-induced osteoblastic differentiation through crosstalk between TLR4/MyD88/NF-κB and BMP/Smad signaling. Stem Cells Dev. 23:277–289. 2014. View Article : Google Scholar

17 

Yu X, Quan J, Long W, Chen H, Wang R, Guo J, Lin X and Mai S: LL-37 inhibits LPS-induced inflammation and stimulates the osteogenic differentiation of BMSCs via P2X7 receptor and MAPK signaling pathway. Exp Cell Res. 372:178–187. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Yao Z, Yang Z, Chen F, Jiang Y, Fu C, Wang Y, Lu R and Wu H: Autophagy is essential for the endothelial differentiation of breast cancer stemlike cells. Int J Mol Med. 45:255–264. 2020.

19 

Zhang X, Yang Y, Li X, Zhang H, Gang Y and Bai L: Alterations of autophagy in knee cartilage by treatment with treadmill exercise in a rat osteoarthritis model. Int J Mol Med. 43:336–344. 2019.

20 

Yang M, Feng C, Zhang Y, Liu C, Li B, Zhu Q, Huang B and Zhou Y: Autophagy protects nucleus pulposus cells from cyclic mechanical tensioninduced apoptosis. Int J Mol Med. 44:750–758. 2019.PubMed/NCBI

21 

Liu J, Wang S, Zhang P, Said-Al-Naief N, Michalek SM and Feng X: Molecular mechanism of the bifunctional role of lipopolysaccharide in osteoclastogenesis. J Biol Chem. 284:12512–12523. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Orcel P, Feuga M, Bielakoff J and De Vernejoul MC: Local bone injections of LPS and M-CSF increase bone resorption by different pathways in vivo in rats. Am J Physiol. 264:E391–E397. 1993.PubMed/NCBI

23 

Chiang CY, Kyritsis G, Graves DT and Amar S: Interleukin-1 and tumor necrosis factor activities partially account for calvarial bone resorption induced by local injection of lipopolysaccharide. Infect Immun. 67:4231–4236. 1999. View Article : Google Scholar : PubMed/NCBI

24 

Chen L, Yang Y, Bao J, Wang Z, Xia M, Dai A, Tan J, Zhou L, Wu Y and Sun W: Autophagy negative-regulating Wnt signaling enhanced inflammatory osteoclastogenesis from Pre-OCs in vitro. Biomed Pharmacother. 126:1100932020. View Article : Google Scholar : PubMed/NCBI

25 

Wang KC and Chang HY: Molecular mechanisms of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Quinn JJ and Chang HY: Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 17:47–62. 2016. View Article : Google Scholar

27 

Chen YG, Satpathy AT and Chang HY: Gene regulation in the immune system by long noncoding RNAs. Nat Immunol. 18:962–972. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Wang L, Wu F, Song Y, Li X, Wu Q, Duan Y and Jin Z: Long noncoding RNA related to periodontitis interacts with miR-182 to upregulate osteogenic differentiation in periodontal mesenchymal stem cells of periodontitis patients. Cell Death Dis. 7:e23272016. View Article : Google Scholar : PubMed/NCBI

29 

Jin C, Jia L, Huang Y, Zheng Y, Du N, Liu Y and Zhou Y: Inhibition of lncRNA MIR31HG promotes osteogenic differentiation of human adipose-derived stem cells. Stem Cells. 34:2707–2720. 2016. View Article : Google Scholar : PubMed/NCBI

30 

He S, Yang S, Zhang Y, Li X, Gao D, Zhong Y, Cao L, Ma H, Liu Y, Li G, et al: LncRNA ODIR1 inhibits osteogenic differentiation of hUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/OSX axis. Cell Death Dis. 10:9472019. View Article : Google Scholar : PubMed/NCBI

31 

Li L, Wang XQ, Liu XT, Guo R and Zhang RD: Integrative analysis reveals key mRNAs and lncRNAs in monocytes of osteoporotic patients. Math Biosci Eng. 16:5947–5971. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A and Lawrence JB: An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell. 33:717–726. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Naganuma T, Nakagawa S, Tanigawa A, Sasaki YF, Goshima N and Hirose T: Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J. 31:4020–4034. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Luo Y, Hao T, Zhang J, Zhang M, Sun P and Wu L: MicroRNA-592 suppresses the malignant phenotypes of thyroid cancer by regulating lncRNA NEAT1 and downregulating NOVA1. Int J Mol Med. 44:1172–1182. 2019.PubMed/NCBI

35 

Liu R, Tang A, Wang X, Chen X, Zhao L, Xiao Z and Shen S: Inhibition of lncRNA NEAT1 suppresses the inflammatory response in IBD by modulating the intestinal epithelial barrier and by exosome-mediated polarization of macrophages. Int J Mol Med. 42:2903–2913. 2018.PubMed/NCBI

36 

Zhang F, Wu L, Qian J, Qu B, Xia S, La T, Wu Y, Ma J, Zeng J, Guo Q, et al: Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. J Autoimmun. 75:96–104. 2016. View Article : Google Scholar : PubMed/NCBI

37 

He F, Zhang C and Huang Q: Long noncoding RNA nuclear enriched abundant transcript 1/miRNA-124 axis correlates with increased disease risk, elevated inflammation, deteriorative disease condition, and predicts decreased survival of sepsis. Medicine (Baltimore). 98:e164702019. View Article : Google Scholar

38 

Huang Q, Huang C, Luo Y, He F and Zhang R: Circulating lncRNA NEAT1 correlates with increased risk, elevated severity and unfavorable prognosis in sepsis patients. Am J Emerg Med. 36:1659–1663. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Chen DD, Hui LL, Zhang XC and Chang Q: NEAT1 contributes to ox-LDL-induced inflammation and oxidative stress in macro-phages through inhibiting miR-128. J Cell Biochem. Sep 11–2018.Epub ahead of print. View Article : Google Scholar

40 

Huang-Fu N, Cheng JS, Wang Y, Li ZW and Wang SH: Neat1 regulates oxidized low-density lipoprotein-induced inflammation and lipid uptake in macrophages via paraspeckle formation. Mol Med Rep. 17:3092–3098. 2018.

41 

Zhang P, Cao L, Zhou R, Yang X and Wu M: The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nat Commun. 10:14952019. View Article : Google Scholar : PubMed/NCBI

42 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

43 

Joshi-Tope G, Gillespie M, Vastrik I, D'Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L, et al: Reactome: A knowledgebase of biological pathways. Nucleic Acids Res. 33:D428–D432. 2005. View Article : Google Scholar :

44 

Yu G, Wang LG, Han Y and He QY: ClusterProfiler: An R package for comparing biological themes among gene clusters. Omics. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Claude-Taupin A, Bissa B, Jia J, Gu Y and Deretic V: Role of autophagy in IL-1β export and release from cells. Seminars in cell & developmental biology. 83:36–41. 2018. View Article : Google Scholar

46 

Harris J, Hartman M, Roche C, Zeng SG, O'Shea A, Sharp FA, Lambe EM, Creagh EM, Golenbock DT, Tschopp J, et al: Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem. 286:9587–9597. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Krakauer T: Inflammasomes, autophagy, and cell death: The trinity of innate host defense against intracellular bacteria. Mediators Inflamm. 2019:24712152019. View Article : Google Scholar : PubMed/NCBI

48 

Gao C, Chen J, Fan F, Long Y, Tang S, Jiang C, Wang J and Xu Y and Xu Y: RIPK2-mediated autophagy and negatively regulated ROS-NLRP3 inflammasome signaling in GMCs stimulated with high glucose. Mediators Inflamm. 2019:62075632019. View Article : Google Scholar : PubMed/NCBI

49 

Chakravarty D, Sboner A, Nair SS, Giannopoulou E, Li R, Hennig S, Mosquera JM, Pauwels J, Park K, Kossai M, et al: The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun. 5:53832014. View Article : Google Scholar : PubMed/NCBI

50 

Fu JW, Kong Y and Sun X: Long noncoding RNA NEAT1 is an unfavorable prognostic factor and regulates migration and invasion in gastric cancer. J Cancer Res Clin Oncol. 142:1571–1579. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Li S, Shuch BM and Gerstein MB: Whole-genome analysis of papillary kidney cancer finds significant noncoding alterations. PLoS Genetics. 13:e10066852017. View Article : Google Scholar : PubMed/NCBI

52 

Ning L, Li Z, Wei D, Chen H and Yang C: LncRNA, NEAT1 is a prognosis biomarker and regulates cancer progression via epithelial-mesenchymal transition in clear cell renal cell carcinoma. Cancer Biomark. 19:75–83. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Taiana E, Favasuli V, Ronchetti D, Todoerti K, Pelizzoni F, Manzoni M, Barbieri M, Fabris S, Silvestris I, Gallo Cantafio ME, et al: Long non-coding RNA NEAT1 targeting impairs the DNA repair machinery and triggers anti-tumor activity in multiple myeloma. Leukemia. 34:234–244. 2020. View Article : Google Scholar

54 

Zeng C, Liu S, Lu S, Yu X, Lai J, Wu Y, Chen S, Wang L, Yu Z, Luo G and Li Y: The c-Myc-regulated lncRNA NEAT1 and paraspeckles modulate imatinib-induced apoptosis in CML cells. Mol Cancer. 17:1302018. View Article : Google Scholar : PubMed/NCBI

55 

Zeng C, Xu Y, Xu L, Yu X, Cheng J, Yang L, Chen S and Li Y: Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer. 14:6932014. View Article : Google Scholar : PubMed/NCBI

56 

Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A, Kalev P, Boeckx B, Wijnhoven PW, Radaelli E, Vermi W, et al: p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med. 22:861–868. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Mello SS, Sinow C, Raj N and Attardi LD: Neat1 is a p53-inducible lincRNA essential for transformation suppression. Genes Dev. 31:1095–1108. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Jen J, Tang YA, Lu YH, Lin CC, Lai WW and Wang YC: Oct4 transcriptionally regulates the expression of long non-coding RNAs NEAT1 and MALAT1 to promote lung cancer progression. Mol Cancer. 16:1042017. View Article : Google Scholar : PubMed/NCBI

59 

Zheng X, Zhang Y, Liu Y, Fang L, Li L, Sun J, Pan Z, Xin W and Huang P: HIF-2α activated lncRNA NEAT1 promotes hepa-tocellular carcinoma cell invasion and metastasis by affecting the epithelial-mesenchymal transition. J Cell Biochem. 119:3247–3256. 2018. View Article : Google Scholar

60 

Zhong J, Jiang L, Huang Z, Zhang H, Cheng C, Liu H, He J, Wu J, Darwazeh R, Wu Y and Sun X: The long non-coding RNA Neat1 is an important mediator of the therapeutic effect of bexarotene on traumatic brain injury in mice. Brain Behav Immun. 65:183–194. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Barutcu AR, Hong D, Lajoie BR, McCord RP, van Wijnen AJ, Lian JB, Stein JL, Dekker J, Imbalzano AN and Stein GS: RUNX1 contributes to higher-order chromatin organization and gene regulation in breast cancer cells. Biochim Biophys Acta. 1859:1389–1397. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Lo PK, Zhang Y, Wolfson B, Gernapudi R, Yao Y, Duru N and Zhou Q: Dysregulation of the BRCA1/long non-coding RNA NEAT1 signaling axis contributes to breast tumorigenesis. Oncotarget. 7:65067–65089. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Henning P, Conaway HH and Lerner UH: Retinoid receptors in bone and their role in bone remodeling. Front Endocrinol (Lausanne). 6:312015. View Article : Google Scholar

64 

Menéndez-Gutiérrez MP and Ricote M: The multi-faceted role of retinoid X receptor in bone remodeling. Cell Mol Life Sci. 74:2135–2149. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Menéndez-Gutiérrez MP, Rőszer T, Fuentes L, Núñez V, Escolano A, Redondo JM, De Clerck N, Metzger D, Valledor AF and Ricote M: Retinoid X receptors orchestrate osteoclast differentiation and postnatal bone remodeling. J Clin Invest. 125:809–823. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Nowak B, Matuszewska A, Filipiak J, Nikodem A, Merwid-Ląd A, Pieśniewska M, Fereniec-Gołębiewska L, Kwiatkowska J and Szeląg A: The influence of bexarotene, a selective agonist of the retinoid receptor X (RXR), and tazarotene, a selective agonist of the retinoid acid receptor (RAR), on bone metabolism in rats. Adv Med Sci. 61:85–89. 2016. View Article : Google Scholar

67 

Wang Y, Moser AH, Shigenaga JK, Grunfeld C and Feingold KR: Downregulation of liver X receptor-alpha in mouse kidney and HK-2 proximal tubular cells by LPS and cytokines. J Lipid Res. 46:2377–2387. 2005. View Article : Google Scholar : PubMed/NCBI

68 

Huang Y, Wang H, Hao Y, Lin H, Dong M, Ye J, Song L, Wang Y, Li Q, Shan B, et al: Myeloid PTEN promotes chemotherapy-induced NLRP3-inflammasome activation and antitumour immunity. Nat Cell Biol. 22:716–727. 2020. View Article : Google Scholar : PubMed/NCBI

69 

He H, Jiang H, Chen Y, Ye J, Wang A, Wang C, Liu Q, Liang G, Deng X, Jiang W and Zhou R: Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun. 9:25502018. View Article : Google Scholar : PubMed/NCBI

70 

Yao X, Zhang C, Xing Y, Xue G, Zhang Q, Pan F, Wu G, Hu Y, Guo Q, Lu A, et al: Remodelling of the gut microbiota by hyperactive NLRP3 induces regulatory T cells to maintain homeostasis. Nat Commun. 8:18962017. View Article : Google Scholar : PubMed/NCBI

71 

Wang X, Jiang W, Yan Y, Gong T, Han J, Tian Z and Zhou R: RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway. Nat Immunol. 15:1126–1133. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Hoss F, Rodriguez-Alcazar JF and Latz E: Assembly and regulation of ASC specks. Cell Mol Life Sci. 74:1211–1229. 2017. View Article : Google Scholar

73 

Afonina IS, Zhong Z, Karin M and Beyaert R: Limiting inflammation-the negative regulation of NF-kappaB and the NLRP3 inflammasome. Nat Immunol. 18:861–869. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Kong Y, Huang T, Zhang H, Zhang Q, Ren J, Guo X, Fan H and Liu L: The lncRNA NEAT1/miR-29b/Atg9a axis regulates IGFBPrP1-induced autophagy and activation of mouse hepatic stellate cells. Life Sci. 237:1169022019. View Article : Google Scholar : PubMed/NCBI

75 

Liu F, Ai FY, Zhang DC, Tian L, Yang ZY and Liu SJ: LncRNA NEAT1 knockdown attenuates autophagy to elevate 5-FU sensitivity in colorectal cancer via targeting miR-34a. Cancer Med. 9:1079–1091. 2020. View Article : Google Scholar

76 

Cao Z, Wang Y, Long Z and He G: Interaction between autophagy and the NLRP3 inflammasome. Acta Biochim Biophys Sin (Shanghai). 51:1087–1095. 2019. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Dai W, Wang M, Wang P, Wen J, Wang J, Cha S, Xiao X, He Y, Shu R, Bai D, Bai D, et al: lncRNA NEAT1 ameliorates LPS‑induced inflammation in MG63 cells by activating autophagy and suppressing the NLRP3 inflammasome. Int J Mol Med 47: 607-620, 2021.
APA
Dai, W., Wang, M., Wang, P., Wen, J., Wang, J., Cha, S. ... Bai, D. (2021). lncRNA NEAT1 ameliorates LPS‑induced inflammation in MG63 cells by activating autophagy and suppressing the NLRP3 inflammasome. International Journal of Molecular Medicine, 47, 607-620. https://doi.org/10.3892/ijmm.2020.4827
MLA
Dai, W., Wang, M., Wang, P., Wen, J., Wang, J., Cha, S., Xiao, X., He, Y., Shu, R., Bai, D."lncRNA NEAT1 ameliorates LPS‑induced inflammation in MG63 cells by activating autophagy and suppressing the NLRP3 inflammasome". International Journal of Molecular Medicine 47.2 (2021): 607-620.
Chicago
Dai, W., Wang, M., Wang, P., Wen, J., Wang, J., Cha, S., Xiao, X., He, Y., Shu, R., Bai, D."lncRNA NEAT1 ameliorates LPS‑induced inflammation in MG63 cells by activating autophagy and suppressing the NLRP3 inflammasome". International Journal of Molecular Medicine 47, no. 2 (2021): 607-620. https://doi.org/10.3892/ijmm.2020.4827
Copy and paste a formatted citation
x
Spandidos Publications style
Dai W, Wang M, Wang P, Wen J, Wang J, Cha S, Xiao X, He Y, Shu R, Bai D, Bai D, et al: lncRNA NEAT1 ameliorates LPS‑induced inflammation in MG63 cells by activating autophagy and suppressing the NLRP3 inflammasome. Int J Mol Med 47: 607-620, 2021.
APA
Dai, W., Wang, M., Wang, P., Wen, J., Wang, J., Cha, S. ... Bai, D. (2021). lncRNA NEAT1 ameliorates LPS‑induced inflammation in MG63 cells by activating autophagy and suppressing the NLRP3 inflammasome. International Journal of Molecular Medicine, 47, 607-620. https://doi.org/10.3892/ijmm.2020.4827
MLA
Dai, W., Wang, M., Wang, P., Wen, J., Wang, J., Cha, S., Xiao, X., He, Y., Shu, R., Bai, D."lncRNA NEAT1 ameliorates LPS‑induced inflammation in MG63 cells by activating autophagy and suppressing the NLRP3 inflammasome". International Journal of Molecular Medicine 47.2 (2021): 607-620.
Chicago
Dai, W., Wang, M., Wang, P., Wen, J., Wang, J., Cha, S., Xiao, X., He, Y., Shu, R., Bai, D."lncRNA NEAT1 ameliorates LPS‑induced inflammation in MG63 cells by activating autophagy and suppressing the NLRP3 inflammasome". International Journal of Molecular Medicine 47, no. 2 (2021): 607-620. https://doi.org/10.3892/ijmm.2020.4827
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team