You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Dam H: The antihaemorrhagic vitamin of the chick. Biochem J. 29:1273–1285. 1935. View Article : Google Scholar : PubMed/NCBI | |
|
Palmer CR, Blekkenhorst LC, Lewis JR, Ward NC, Schultz CJ, Hodgson JM, Croft KD and Sim M: Quantifying dietary vitamin K and its link to cardiovascular health: A narrative review. Food Funct. 11:2826–2837. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hirota Y, Tsugawa N, Nakagawa K, Suhara Y, Tanaka K, Uchino Y, Takeuchi A, Sawada N, Kamao M, Wada A, et al: Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats. J Biol Chem. 288:33071–33080. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Simes DC, Viegas CSB, Araújo N and Marreiros C: Vitamin K as a diet supplement with impact in human health: Current evidence in age-related diseases. Nutrients. 12:1382020. View Article : Google Scholar : | |
|
Mirza F and Canalis E: Management of endocrine disease: Secondary osteoporosis: Pathophysiology and management. Eur J Endocrinol. 173:R131–R151. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cheung CL, Ang SB, Chadha M, Chow ES, Chung YS, Hew FL, Jaisamrarn U, Ng H, Takeuchi Y, Wu CH, et al: An updated hip fracture projection in Asia: The Asian federation of osteoporosis societies study. Osteoporos Sarcopenia. 4:16–21. 2018. View Article : Google Scholar | |
|
Wasilewski GB, Vervloet MG and Schurgers LJ: The bone-vasculature axis: Calcium supplementation and the role of vitamin K. Front Cardiovasc Med. 6:62019. View Article : Google Scholar : PubMed/NCBI | |
|
Danziger J, Young RL, Shea MK, Tracy RP, Ix JH, Jenny NS and Mukamal KJ: Vitamin K-dependent protein activity and incident ischemic cardiovascular disease: The multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 36:1037–1042. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Iribarren C, Sidney S, Sternfeld B and Browner WS: Calcification of the aortic arch: Risk factors and association with coronary heart disease, stroke, and peripheral vascular disease. JAMA. 283:2810–2815. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Kondos GT, Hoff JA, Sevrukov A, Daviglus ML, Garside DB, Devries SS, Chomka EV and Liu K: Electron-beam tomography coronary artery calcium and cardiac events: A 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation. 107:2571–2576. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Ferland G: The discovery of vitamin K and its clinical applications. Ann Nutr Metab. 61:213–218. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Cheung CL, Sahni S, Cheung BM, Sing CW and Wong IC: Vitamin K intake and mortality in people with chronic kidney disease from NHANES III. Clin Nutr. 34:235–240. 2015. View Article : Google Scholar | |
|
Fusaro M, Plebani M, Iervasi G and Gallieni M: Vitamin K deficiency in chronic kidney disease: Evidence is building up. Am J Nephrol. 45:1–3. 2017. View Article : Google Scholar | |
|
Turner ME, Adams MA and Holden RM: The vitamin K metabolome in chronic kidney disease. Nutrients. 10:10762018. View Article : Google Scholar : | |
|
Kaesler N, Magdeleyns E, Herfs M, Schettgen T, Brandenburg V, Fliser D, Vermeer C, Floege J, Schlieper G and Krüger T: Impaired vitamin K recycling in uremia is rescued by vitamin K supplementation. Kidney Int. 86:286–293. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Di Lullo L, House A, Gorini A, Santoboni A, Russo D and Ronco C: Chronic kidney disease and cardiovascular complications. Heart Fail Rev. 20:259–272. 2015. View Article : Google Scholar | |
|
Shearer MJ, Mallinson CN, Webster GR and Barkhan P: Clearance from plasma and excretion in urine, faeces and bile of an intravenous dose of tritiated vitamin K 1 in man. Br J Haematol. 22:579–588. 1972. View Article : Google Scholar : PubMed/NCBI | |
|
Schurgers LJ, Teunissen KJF, Hamulyák K, Knapen MH, Vik H and Vermeer C: Vitamin K-containing dietary supplements: Comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood. 109:3279–3283. 2007. View Article : Google Scholar | |
|
Halder M, Petsophonsakul P, Akbulut AC, Pavlic A, Bohan F, Anderson E, Maresz K, Kramann R and Schurgers L: Vitamin K: Double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. Int J Mol Sci. 20:8962019. View Article : Google Scholar : | |
|
Willems BAG, Vermeer C, Reutelingsperger CP and Schurgers LJ: The realm of vitamin K dependent proteins: Shifting from coagulation toward calcification. Mol Nutr Food Res. 58:1620–1635. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kearon C, Akl EA, Comerota AJ, Prandoni P, Bounameaux H, Goldhaber SZ, Nelson ME, Wells PS, Gould MK, Dentali F, et al: Antithrombotic therapy for VTE disease: Antithrombotic therapy and prevention of thrombosis, 9th ed: American college of chest physicians evidence-based clinical practice guidelines. Chest. 141(2 Suppl): e419S–e496S. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Tie JK and Stafford DW: Structural and functional insights into enzymes of the vitamin K cycle. J Thromb Haemost. 14:236–247. 2016. View Article : Google Scholar : | |
|
Huang M, Rigby AC, Morelli X, Grant MA, Huang G, Furie B, Seaton B and Furie BC: Structural basis of membrane binding by Gla domains of vitamin K-dependent proteins. Nat Struct Biol. 10:751–756. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Girolami A, Ferrari S, Cosi E, Santarossa C and Randi ML: Vitamin K-dependent coagulation factors that may be responsible for both bleeding and thrombosis (FII, FVII, and FIX). Clin Appl Thromb Hemost. 24(9 Suppl): 42S–47S. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mahdi AJ, Obaji SG and Collins PW: Role of enhanced half-life factor VIII and IX in the treatment of haemophilia. Br J Haematol. 169:768–776. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Muller MP, Wang Y, Morrissey JH and Tajkhorshid E: Lipid specificity of the membrane binding domain of coagulation factor X. J Thromb Haemost. 15:2005–2016. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Rezaie AR: Regulation of the protein C anticoagulant and antiinflammatory pathways. Curr Med Chem. 17:2059–2069. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Mosnier LO, Zlokovic BV and Griffin JH: The cytoprotective protein C pathway. Blood. 109:3161–3172. 2007. View Article : Google Scholar | |
|
Mosnier LO and Griffin JH: Protein C anticoagulant activity in relation to anti-inflammatory and anti-apoptotic activities. Front Biosci. 11:2381–2399. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Majid Z, Tahir F, Ahmed J, Bin Arif T and Haq A: Protein C deficiency as a risk factor for stroke in young adults: A review. Cureus. 12:e74722020.PubMed/NCBI | |
|
Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, et al: Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 344:699–709. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Dahlbäck B: Vitamin K-dependent protein S: Beyond the protein C pathway. Semin Thromb Hemost. 44:176–184. 2018. View Article : Google Scholar | |
|
Suleiman L, Négrier C and Boukerche H: Protein S: A multi-functional anticoagulant vitamin K-dependent protein at the crossroads of coagulation, inflammation, angiogenesis, and cancer. Crit Rev Oncol Hematol. 88:637–654. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Fricke DR, Chatterjee S and Majumder R: Protein S in preventing thrombosis. Aging (Albany NY). 11:847–848. 2019. View Article : Google Scholar | |
|
Yasuma T, Yano Y, D'Alessandro-Gabazza CN, Toda M, Gil-Bernabe P, Kobayashi T, Nishihama K, Hinneh JA, Mifuji-Moroka R, Roeen Z, et al: Amelioration of diabetes by protein S. Diabetes. 65:1940–1951. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Topalidou M, Effraimidou S, Farmakiotis D, Papadakis E, Papaioannou G, Korantzis I and Garipidou V: Low protein Z levels, but not the intron F G79A polymorphism, are associated with unexplained pregnancy loss. Thromb Res. 124:24–27. 2009. View Article : Google Scholar | |
|
Ghozlan MF, Mohamed AAE, Eissa DS and Eldawy HS: Low protein Z level: A thrombophilic risk biomarker for acute coronary syndrome. Indian J Hematol Blood Transfus. 35:339–346. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kulman JD, Harris JE, Haldeman BA and Davie EW: Primary structure and tissue distribution of two novel proline-rich gamma-carboxyglutamic acid proteins. Proc Natl Acad Sci USA. 94:9058–9062. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Kulman JD, Harris JE, Xie L and Davie EW: Proline-rich Gla protein 2 is a cell-surface vitamin K-dependent protein that binds to the transcriptional coactivator Yes-associated protein. Proc Natl Acad Sci USA. 104:8767–8772. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kulman JD, Harris JE, Xie L and Davie EW: Identification of two novel transmembrane gamma-carboxyglutamic acid proteins expressed broadly in fetal and adult tissues. Proc Natl Acad Sci USA. 98:1370–1375. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Iwamoto J: Vitamin K2 therapy for postmenopausal osteoporosis. Nutrients. 6:1971–1980. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Mizokami A, Kawakubo-Yasukochi T and Hirata M: Osteocalcin and its endocrine functions. Biochem Pharmacol. 132:1–8. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wen L, Chen J, Duan L and Li S: Vitamin K-dependent proteins involved in bone and cardiovascular health (Review). Mol Med Rep. 18:3–15. 2018.PubMed/NCBI | |
|
Naito K, Watari T, Obayashi O, Katsube S, Nagaoka I and Kaneko K: Relationship between serum undercarboxylated osteocalcin and hyaluronan levels in patients with bilateral knee osteoarthritis. Int J Mol Med. 29:756–760. 2012.PubMed/NCBI | |
|
Sweatt A, Sane DC, Hutson SM and Wallin R: Matrix Gla protein (MGP) and bone morphogenetic protein-2 in aortic calcified lesions of aging rats. J Thromb Haemost. 1:178–185. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Yao Y, Zebboudj AF, Shao E, Perez M and Boström K: Regulation of bone morphogenetic protein-4 by matrix GLA protein in vascular endothelial cells involves activin-like kinase receptor 1. J Biol Chem. 281:33921–33930. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Roy ME and Nishimoto SK: Matrix Gla protein binding to hydroxyapatite is dependent on the ionic environment: Calcium enhances binding affinity but phosphate and magnesium decrease affinity. Bone. 31:296–302. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Zuo PY, Chen XL, Lei YH, Liu CY and Liu YW: Growth arrest-specific gene 6 protein promotes the proliferation and migration of endothelial progenitor cells through the PI3K/AKT signaling pathway. Int J Mol Med. 34:299–306. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu C, Zheng H, Tao H, Yu W, Jiang X, Li A, Jin H, Lv A and Li H: Vitamin K2 inhibits rat vascular smooth muscle cell calcification by restoring the Gas6/Axl/Akt anti-apoptotic pathway. Mol Cell Biochem. 433:149–159. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Tao H, Qiu C, Ma X, Li S, Guo X, Lv A and Li H: Vitamin K2 regression aortic calcification induced by warfarin via Gas6/Axl survival pathway in rats. Eur J Pharmacol. 786:10–18. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kawamoto A, Tkebuchava T, Yamaguchi J, Nishimura H, Yoon YS, Milliken C, Uchida S, Masuo O, Iwaguro H, Ma H, et al: Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation. 107:461–468. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang L, Liu CY, Yang QF, Wang P and Zhang W: Plasma level of growth arrest-specific 6 (GAS6) protein and genetic variations in the GAS6 gene in patients with acute coronary syndrome. Am J Clin Pathol. 131:738–743. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Chen LW, Chen W, Hu ZQ, Bian JL, Ying L, Hong GL, Qiu QM, Zhao GJ and Lu ZQ: Protective effects of growth arrest-specific protein 6 (Gas6) on sepsis-induced acute kidney injury. Inflammation. 39:575–582. 2016. View Article : Google Scholar | |
|
Novitskiy SV, Zaynagetdinov R, Vasiukov G, Gutor S, Han W, Serezani A, Matafonov A, Gleaves LA, Sherrill TP, Polosukhin VV and Blackwell TS: Gas6/MerTK signaling is negatively regulated by NF-κB and supports lung carcinogenesis. Oncotarget. 10:7031–7042. 2019. View Article : Google Scholar | |
|
Eitzinger N, Surmann-Schmitt C, Bösl M, Schett G, Engelke K, Hess A, von der Mark K and Stock M: Ucma is not necessary for normal development of the mouse skeleton. Bone. 50:670–680. 2012. View Article : Google Scholar | |
|
Stock M, Menges S, Eitzinger N, Geßlein M, Botschner R, Wormser L, Distler A, Schlötzer-Schrehardt U, Dietel K, Distler J, et al: A dual role of upper zone of growth plate and cartilage matrix-associated protein in human and mouse osteoarthritic cartilage: Inhibition of aggrecanases and promotion of bone turnover. Arthritis Rheumatol. 69:1233–1245. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Seuffert F, Weidner D, Baum W, Schett G and Stock M: Upper zone of growth plate and cartilage matrix associated protein protects cartilage during inflammatory arthritis. Arthritis Res Ther. 20:882018. View Article : Google Scholar : PubMed/NCBI | |
|
Cavaco S, Viegas CS, Rafael MS, Ramos A, Magalhães J, Blanco FJ, Vermeer C and Simes DC: Gla-rich protein is involved in the cross-talk between calcification and inflammation in osteoarthritis. Cell Mol Life Sci. 73:1051–1065. 2016. View Article : Google Scholar | |
|
Viegas CS, Cavaco S, Neves PL, Ferreira A, João A, Williamson MK, Price PA, Cancela ML and Simes DC: Gla-rich protein is a novel vitamin K-dependent protein present in serum that accumulates at sites of pathological calcifications. Am J Pathol. 175:2288–2298. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Lee YJ, Park SY, Lee SJ, Boo YC, Choi JY and Kim JE: Ucma, a direct transcriptional target of Runx2 and Osterix, promotes osteoblast differentiation and nodule formation. Osteoarthritis Cartilage. 23:1421–1431. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
O'Grady S and Morgan MP: Microcalcifications in breast cancer: From pathophysiology to diagnosis and prognosis. Biochim Biophys Acta Rev Cancer. 1869:310–320. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SH, Lee YJ, Park SI and Kim JE: Unique cartilage matrix-associated protein inhibits the migratory and invasive potential of triple-negative breast cancer. Biochem Biophys Res Commun. 530:680–685. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Duchamp de Lageneste O, Julien A, Abou-Khalil R, Frangi G, Carvalho C, Cagnard N, Cordier C, Conway SJ and Colnot C: Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun. 9:7732018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu S, Barbe MF, Liu C, Hadjiargyrou M, Popoff SN, Rani S, Safadi FF and Litvin J: Periostin-like-factor in osteogenesis. J Cell Physiol. 218:584–592. 2009. View Article : Google Scholar | |
|
Cobo T, Viloria CG, Solares L, Fontanil T, González-Chamorro E, De Carlos F, Cobo J, Cal S and Obaya AJ: Role of periostin in adhesion and migration of bone remodeling cells. PLoS One. 11:e01478372016. View Article : Google Scholar : PubMed/NCBI | |
|
Heo SC, Shin WC, Lee MJ, Kim BR, Jang IH, Choi EJ, Lee JS and Kim JH: Periostin accelerates bone healing mediated by human mesenchymal stem cell-embedded hydroxyapatite/tricalcium phosphate scaffold. PLoS One. 10:e01166982015. View Article : Google Scholar : PubMed/NCBI | |
|
Kanisicak O, Khalil H, Ivey MJ, Karch J, Maliken BD, Correll RN, Brody MJ, J Lin SC, Aronow BJ and Tallquist MD: Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun. 7:122602016. View Article : Google Scholar : PubMed/NCBI | |
|
Kaur H, Takefuji M, Ngai CY, Carvalho J, Bayer J, Wietelmann A, Poetsch A, Hoelper S, Conway SJ, Möllmann H, et al: Targeted ablation of periostin-expressing activated fibroblasts prevents adverse cardiac remodeling in mice. Circ Res. 118:1906–1917. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Taniyama Y, Katsuragi N, Sanada F, Azuma J, Iekushi K, Koibuchi N, Okayama K, Ikeda-Iwabu Y, Muratsu J, Otsu R, et al: Selective blockade of periostin exon 17 preserves cardiac performance in acute myocardial infarction. Hypertension. 67:356–361. 2016. View Article : Google Scholar | |
|
Izuhara K, Conway SJ, Moore BB, Matsumoto H, Holweg CT, Matthews JG and Arron JR: Roles of periostin in respiratory disorders. Am J Respir Crit Care Med. 193:949–956. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
James A, Janson C, Malinovschi A, Holweg C, Alving K, Ono J, Ohta S, Ek A, Middelveld R, Dahlén B, et al: Serum periostin relates to type-2 inflammation and lung function in asthma: Data from the large population-based cohort Swedish GA(2)LEN. Allergy. 72:1753–1760. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Litvin J, Blagg A, Mu A, Matiwala S, Montgomery M, Berretta R, Houser S and Margulies K: Periostin and periostin-like factor in the human heart: Possible therapeutic targets. Cardiovasc Pathol. 15:24–32. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Zoch ML, Clemens TL and Riddle RC: New insights into the biology of osteocalcin. Bone. 82:42–49. 2016. View Article : Google Scholar | |
|
Cagman Z, Bingol Ozakpinar O, Cirakli Z, Gedikbasi A, Ay P, Colantonio D, Uras AR, Adeli K and Uras F: Reference intervals for growth arrest-specific 6 protein in adults. Scand J Clin Lab Invest. 77:109–114. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Varnum BC, Young C, Elliott G, Garcia A, Bartley TD, Fridell YW, Hunt RW, Trail G, Clogston C, Toso RJ, et al: Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature. 373:623–626. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Ye J, Zhao G, Hong G, Hu X, Cao K, Wu Y and Lu Z: Gas6 attenuates lipopolysaccharide-induced TNF-α expression and apoptosis in H9C2 cells through NF-κB and MAPK inhibition via the Axl/PI3K/Akt pathway. Int J Mol Med. 44:982–994. 2019.PubMed/NCBI | |
|
Tanabe K, Nagata K, Ohashi K, Nakano T, Arita H and Mizuno K: Roles of gamma-carboxylation and a sex hormone-binding globulin-like domain in receptor-binding and in biological activities of Gas6. FEBS Lett. 408:306–310. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Bellido-Martín L and de Frutos PG: Vitamin K-dependent actions of Gas6. Vitam Horm. 78:185–209. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wu G, Ma Z, Cheng Y, Hu W, Deng C, Jiang S, Li T, Chen F and Yang Y: Targeting Gas6/TAM in cancer cells and tumor microenvironment. Mol Cancer. 17:202018. View Article : Google Scholar : PubMed/NCBI | |
|
Melaragno MG, Cavet ME, Yan C, Tai LK, Jin ZG, Haendeler J and Berk BC: Gas6 inhibits apoptosis in vascular smooth muscle: Role of Axl kinase and Akt. J Mol Cell Cardiol. 37:881–887. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
McCloskey P, Fridell YW, Attar E, Villa J, Jin Y, Varnum B and Liu ET: GAS6 mediates adhesion of cells expressing the receptor tyrosine kinase Axl. J Biol Chem. 272:23285–23291. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Stenhoff J, Dahlbäck B and Hafizi S: Vitamin K-dependent Gas6 activates ERK kinase and stimulates growth of cardiac fibroblasts. Biochem Biophys Res Commun. 319:871–878. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Rizzoni D, Rizzoni M, Nardin M, Chiarini G, Agabiti-Rosei C, Aggiusti C, Paini A, Salvetti M and Muiesan ML: Vascular aging and disease of the small vessels. High Blood Press Cardiovasc Prev. 26:183–189. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Jin CW, Wang H, Chen YQ, Tang MX, Fan GQ, Wang ZH, Li L, Zhang Y, Zhang W and Zhong M: Gas6 delays senescence in vascular smooth muscle cells through the PI3K/Akt/FoxO signaling pathway. Cell Physiol Biochem. 35:1151–1166. 2015. View Article : Google Scholar | |
|
Clauser S, Meilhac O, Bièche I, Raynal P, Bruneval P, Michel JB and Borgel D: Increased secretion of Gas6 by smooth muscle cells in human atherosclerotic carotid plaques. Thromb Haemost. 107:140–149. 2012. View Article : Google Scholar | |
|
Holden RM, Hétu MF, Li TY, Ward EC, Couture LE, Herr JE, Christilaw E, Adams MA and Johri AM: Circulating Gas6 is associated with reduced human carotid atherosclerotic plaque burden in high risk cardiac patients. Clin Biochem. 64:6–11. 2019. View Article : Google Scholar | |
|
Tjwa M, Moons L and Lutgens E: Pleiotropic role of growth arrest-specific gene 6 in atherosclerosis. Curr Opin Lipidol. 20:386–392. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Meir KS and Leitersdorf E: Atherosclerosis in the apolipoprotein-E-deficient mouse: A decade of progress. Arterioscler Thromb Vasc Biol. 24:1006–1014. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Park JK, Theuer S, Kirsch T, Lindschau C, Klinge U, Heuser A, Plehm R, Todiras M, Carmeliet P, Haller H, et al: Growth arrest specific protein 6 participates in DOCA-induced target-organ damage. Hypertension. 54:359–364. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao YF, Xu DC, Zhu GF, Zhu M, Tang K, Li WM and Xu YW: Growth arrest-specific 6 exacerbates pressure overload-induced cardiac hypertrophy. Hypertension. 67:118–129. 2016. View Article : Google Scholar | |
|
van der Meer JH, van der Poll T and van 't Veer C: TAM receptors, Gas6, and protein S: Roles in inflammation and hemostasis. Blood. 123:2460–2469. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao GJ, Zheng JY, Bian JL, Chen LW, Dong N, Yu Y, Hong GL, Chandoo A, Yao YM and Lu ZQ: Growth arrest-specific 6 enhances the suppressive function of CD4+CD25+ regulatory T cells mainly through axl receptor. Mediators Inflamm. 2017:68484302017. | |
|
Haase VH: Mechanisms of hypoxia responses in renal tissue. J Am Soc Nephrol. 24:537–541. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Giangola MD, Yang WL, Rajayer SR, Kuncewitch M, Molmenti E, Nicastro J, Coppa GF and Wang P: Growth arrest-specific protein 6 protects against renal ischemia-reperfusion injury. J Surg Res. 199:572–579. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ishimoto Y, Ohashi K, Mizuno K and Nakano T: Promotion of the uptake of PS liposomes and apoptotic cells by a product of growth arrest-specific gene, gas6. J Biochem. 127:411–417. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Lee IJ, Hilliard B, Swami A, Madara JC, Rao S, Patel T, Gaughan JP, Lee J, Gadegbeku CA, Choi ET and Cohen PL: Growth arrest-specific gene 6 (Gas6) levels are elevated in patients with chronic renal failure. Nephrol Dial Transplant. 27:4166–4172. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hallajzadeh J, Ghorbanihaghjo A, Argani H, Dastmalchi S and Rashtchizadeh N: Growth arrest-specific 6 protein and matrix Gla protein in hemodialysis patients. Iran J Kidney Dis. 9:249–255. 2015.PubMed/NCBI | |
|
Panichi V, Migliori M, De Pietro S, Taccola D, Bianchi AM, Giovannini L, Norpoth M, Metelli MR, Cristofani R, Bertelli AAE, et al: C-reactive protein and interleukin-6 levels are related to renal function in predialytic chronic renal failure. Nephron. 91:594–600. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Weiner DE, Tabatabai S, Tighiouart H, Elsayed E, Bansal N, Griffith J, Salem DN, Levey AS and Sarnak MJ: Cardiovascular outcomes and all-cause mortality: Exploring the interaction between CKD and cardiovascular disease. Am J Kidney Dis. 48:392–401. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Silaghi CN, Ilyés T, Filip VP, Farca M, van Ballegooijen AJ and Crăciun AM: Vitamin K dependent proteins in kidney disease. Int J Mol Sci. 20:15712019. View Article : Google Scholar : | |
|
Wu CS, Hu CY, Tsai HF, Chyuan IT, Chan CJ, Chang SK and Hsu PN: Elevated serum level of growth arrest-specific protein 6 (Gas6) in systemic lupus erythematosus patients is associated with nephritis and cutaneous vasculitis. Rheumatol Int. 34:625–629. 2014. View Article : Google Scholar | |
|
Nagai K, Miyoshi M, Kake T, Fukushima N, Matsuura M, Shibata E, Yamada S, Yoshikawa K, Kanayama HO, Fukawa T, et al: Dual involvement of growth arrest-specific gene 6 in the early phase of human IgA nephropathy. PLoS One. 8:e667592013. View Article : Google Scholar : PubMed/NCBI | |
|
Nagai K, Arai H, Yanagita M, Matsubara T, Kanamori H, Nakano T, Iehara N, Fukatsu A, Kita T and Doi T: Growth arrest-specific gene 6 is involved in glomerular hypertrophy in the early stage of diabetic nephropathy. J Biol Chem. 278:18229–18234. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Nagai K, Matsubara T, Mima A, Sumi E, Kanamori H, Iehara N, Fukatsu A, Yanagita M, Nakano T, Ishimoto Y, et al: Gas6 induces Akt/mTOR-mediated mesangial hypertrophy in diabetic nephropathy. Kidney Int. 68:552–561. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Hung YJ, Lee CH, Chu NF and Shieh YS: Plasma protein growth arrest-specific 6 levels are associated with altered glucose tolerance, inflammation, and endothelial dysfunction. Diabetes Care. 33:1840–1844. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Wang J, Ge L, Shan J, Zhang C and Liu J: Growth arrest-specific protein 6 (Gas6) as a noninvasive biomarker for early detection of diabetic nephropathy. Clin Exp Hypertens. 39:382–387. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tian W, Wang L, Yuan L, Duan W, Zhao W, Wang S and Zhang Q: A prognostic risk model for patients with triple negative breast cancer based on stromal natural killer cells, tumor-associated macrophages and growth-arrest specific protein 6. Cancer Sci. 107:882–889. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ammoun S, Provenzano L, Zhou L, Barczyk M, Evans K, Hilton DA, Hafizi S and Hanemann CO: Axl/Gas6/NFκB signalling in schwannoma pathological proliferation, adhesion and survival. Oncogene. 33:336–346. 2014. View Article : Google Scholar | |
|
Buehler M, Tse B, Leboucq A, Jacob F, Caduff R, Fink D, Goldstein DR and Heinzelmann-Schwarz V: Meta-analysis of microarray data identifies GAS6 expression as an independent predictor of poor survival in ovarian cancer. Biomed Res Int. 2013:2382842013. View Article : Google Scholar : PubMed/NCBI | |
|
Loges S, Schmidt T, Tjwa M, van Geyte K, Lievens D, Lutgens E, Vanhoutte D, Borgel D, Plaisance S, Hoylaerts M, et al: Malignant cells fuel tumor growth by educating infiltrating leukocytes to produce the mitogen Gas6. Blood. 115:2264–2273. 2010. View Article : Google Scholar | |
|
Waizenegger JS, Ben-Batalla I, Weinhold N, Meissner T, Wroblewski M, Janning M, Riecken K, Binder M, Atanackovic D, Taipaleenmaeki H, et al: Role of growth arrest-specific gene 6-Mer axis in multiple myeloma. Leukemia. 29:696–704. 2015. View Article : Google Scholar | |
|
Husain H, Scur M, Murtuza A, Bui N, Woodward B and Kurzrock R: Strategies to overcome bypass mechanisms mediating clinical resistance to EGFR tyrosine kinase inhibition in lung cancer. Mol Cancer Ther. 16:265–272. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Paolino M, Choidas A, Wallner S, Pranjic B, Uribesalgo I, Loeser S, Jamieson AM, Langdon WY, Ikeda F, Fededa JP, et al: The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature. 507:508–512. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Viegas CS, Simes DC, Laizé V, Williamson MK, Price PA and Cancela ML: Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates. J Biol Chem. 283:36655–36664. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Viegas CS, Rafael MS, Enriquez JL, Teixeira A, Vitorino R, Luís IM, Costa RM, Santos S, Cavaco S, Neves J, et al: Gla-rich protein acts as a calcification inhibitor in the human cardiovascular system. Arterioscler Thromb Vasc Biol. 35:399–408. 2015. View Article : Google Scholar | |
|
Surmann-Schmitt C, Dietz U, Kireva T, Adam N, Park J, Tagariello A, Onnerfjord P, Heinegård D, Schlötzer-Schrehardt U, Deutzmann R, et al: Ucma, a novel secreted cartilage-specific protein with implications in osteogenesis. J Biol Chem. 283:7082–7093. 2008. View Article : Google Scholar | |
|
Neacsu CD, Grosch M, Tejada M, Winterpacht A, Paulsson M, Wagener R and Tagariello A: Ucmaa (Grp-2) is required for zebrafish skeletal development. Evidence for a functional role of its glutamate γ-carboxylation. Matrix Biol. 30:369–378. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Cancela ML, Conceição N and Laizé V: Gla-rich protein, a new player in tissue calcification? Adv Nutr. 3:174–181. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Mackie EJ, Tatarczuch L and Mirams M: The skeleton: A multi-functional complex organ: The growth plate chondrocyte and endochondral ossification. J Endocrinol. 211:109–121. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Granadeiro L, Dirks RP, Ortiz-Delgado JB, Gavaia PJ, Sarasquete C, Laizé V, Cancela ML and Fernández I: Warfarin-exposed zebrafish embryos resembles human warfarin embryopathy in a dose and developmental-time dependent manner-from molecular mechanisms to environmental concerns. Ecotoxicol Environ Saf. 181:559–571. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
R Sousa A, Barreira R and Santos E: Low-dose warfarin maternal anticoagulation and fetal warfarin syndrome. BMJ Case Rep. 2018:bcr20172231592018. View Article : Google Scholar | |
|
Maruotti N, Corrado A and Cantatore FP: Osteoblast role in osteoarthritis pathogenesis. J Cell Physiol. 232:2957–2963. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JYL and Henrotin YE: Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes. Osteoarthritis Cartilage. 13:988–997. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Sokolove J and Lepus CM: Role of inflammation in the pathogenesis of osteoarthritis: Latest findings and interpretations. Ther Adv Musculoskelet Dis. 5:77–94. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Okuyan HM, Terzi MY, Ozcan O and Kalaci A: Association of UCMA levels in serum and synovial fluid with severity of knee osteoarthritis. Int J Rheum Dis. 22:1884–1890. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Misra D, Booth SL, Tolstykh I, Felson DT, Nevitt MC, Lewis CE, Torner J and Neogi T: Vitamin K deficiency is associated with incident knee osteoarthritis. Am J Med. 126:243–248. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hunt JL, Fairman R, Mitchell ME, Carpenter JP, Golden M, Khalapyan T, Wolfe M, Neschis D, Milner R, Scoll B, et al: Bone formation in carotid plaques: A clinicopathological study. Stroke. 33:1214–1219. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Cozzolino M, Fusaro M, Ciceri P, Gasperoni L and Cianciolo G: The role of vitamin K in vascular calcification. Adv Chronic Kidney Dis. 26:437–444. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hruska KA: Vascular smooth muscle cells in the pathogenesis of vascular calcification. Circ Res. 104:710–711. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Dhore CR, Cleutjens JP, Lutgens E, Cleutjens KB, Geusens PP, Kitslaar PJ, Tordoir JH, Spronk HM, Vermeer C and Daemen MJ: Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 21:1998–2003. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Kapustin AN and Shanahan CM: Calcium regulation of vascular smooth muscle cell-derived matrix vesicles. Trends Cardiovasc Med. 22:133–137. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kapustin AN, Davies JD, Reynolds JL, McNair R, Jones GT, Sidibe A, Schurgers LJ, Skepper JN, Proudfoot D, Mayr M and Shanahan CM: Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res. 109:e1–e12. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Toroian D, Lim JE and Price PA: The size exclusion characteristics of type I collagen: Implications for the role of noncollagenous bone constituents in mineralization. J Biol Chem. 282:22437–22447. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Price PA, Toroian D and Lim JE: Mineralization by inhibitor exclusion: The calcification of collagen with fetuin. J Biol Chem. 284:17092–17101. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
New SEP and Aikawa E: Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res. 108:1381–1391. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ikeda K, Souma Y, Akakabe Y, Kitamura Y, Matsuo K, Shimoda Y, Ueyama T, Matoba S, Yamada H, Okigaki M and Matsubara H: Macrophages play a unique role in the plaque calcification by enhancing the osteogenic signals exerted by vascular smooth muscle cells. Biochem Biophys Res Commun. 425:39–44. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
New SEP, Goettsch C, Aikawa M, Marchini JF, Shibasaki M, Yabusaki K, Libby P, Shanahan CM, Croce K and Aikawa E: Macrophage-derived matrix vesicles: An alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res. 113:72–77. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Evrard S, Delanaye P, Kamel S, Cristol JP and Cavalier E: SFBC/SN joined working group on vascular calcifications: Vascular calcification: From pathophysiology to biomarkers. Clin Chim Acta. 438:401–414. 2015. View Article : Google Scholar | |
|
Tesfamariam B: Involvement of vitamin K-dependent proteins in vascular calcification. J Cardiovasc Pharmacol Ther. 24:323–333. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Viegas CSB, Santos L, Macedo AL, Matos AA, Silva AP, Neves PL, Staes A, Gevaert K, Morais R, Vermeer C, et al: Chronic kidney disease circulating calciprotein particles and extracellular vesicles promote vascular calcification: A role for GRP (Gla-Rich Protein). Arterioscler Thromb Vasc Biol. 38:575–587. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Pasch A, Farese S, Gräber S, Wald J, Richtering W, Floege J and Jahnen-Dechent W: Nanoparticle-based test measures overall propensity for calcification in serum. J Am Soc Nephrol. 23:1744–1752. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Viegas CSB, Costa RM, Santos L, Videira PA, Silva Z, Araújo N, Macedo AL, Matos AP, Vermeer C and Simes DC: Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: Implications for calcification-related chronic inflammatory diseases. PLoS One. 12:e01778292017. View Article : Google Scholar : PubMed/NCBI | |
|
Willems BA, Furmanik M, Caron MMJ, Chatrou MLL, Kusters DHM, Welting TJM, Stock M, Rafael MS, Viegas CSB, Simes DC, et al: Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling. Sci Rep. 8:49612018. View Article : Google Scholar : PubMed/NCBI | |
|
Karamouzis MV, Likaki-Karatza E, Ravazoula P, Badra FA, Koukouras D, Tzorakoleftherakis E, Papavassiliou AG and Kalofonos HP: Non-palpable breast carcinomas: Correlation of mammographically detected malignant-appearing microcalcifications and molecular prognostic factors. Int J Cancer. 102:86–90. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JH, Ko ES, Kim DY, Han H, Sohn JH and Choe DH: Noncalcified ductal carcinoma in situ: Imaging and histologic findings in 36 tumors. J Ultrasound Med. 28:903–910. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Avdan Aslan A, Gültekin S, Esendağli Yilmaz G and Kurukahvecioğlu O: Is there any association between mammographic features of microcalcifications and breast cancer subtypes in ductal carcinoma in situ? Acad Radiol. Jun 30–2020.Online ahead of print. View Article : Google Scholar : PubMed/NCBI | |
|
Viegas CS, Herfs M, Rafael MS, Enriquez JL, Teixeira A, Luís IM, van 't Hoofd CM, João A, Maria VL, Cavaco S, et al: Gla-rich protein is a potential new vitamin K target in cancer: Evidences for a direct GRP-mineral interaction. Biomed Res Int. 2014:3402162014. View Article : Google Scholar : PubMed/NCBI | |
|
Huisse MG, Leclercq M, Belghiti J, Flejou JF, Suttie JW, Bezeaud A, Stafford DW and Guillin MC: Mechanism of the abnormal vitamin K-dependent gamma-carboxylation process in human hepatocellular carcinomas. Cancer. 74:1533–1541. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Pasierski T: Vitamin K antagonists in anticoagulant therapy of patients with cancer. Pol Arch Med Wewn. 122:60–64. 2012.PubMed/NCBI | |
|
Vermeer C: Vitamin K: The effect on health beyond coagulation-an overview. Food Nutr Res. 56:2012. View Article : Google Scholar | |
|
Cox RF, Hernandez-Santana A, Ramdass S, McMahon G, Harmey JH and Morgan MP: Microcalcifications in breast cancer: Novel insights into the molecular mechanism and functional consequence of mammary mineralisation. Br J Cancer. 106:525–537. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Takeshita S, Kikuno R, Tezuka K and Amann E: Osteoblast-specific factor 2: Cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J. 294:271–278. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Coutu DL, Wu JH, Monette A, Rivard GE, Blostein MD and Galipeau J: Periostin, a member of a novel family of vitamin K-dependent proteins, is expressed by mesenchymal stromal cells. J Biol Chem. 283:17991–8001. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong H, Li X, Zhang J and Wu X: Overexpression of periostin is positively associated with gastric cancer metastasis through promoting tumor metastasis and invasion. J Cell Biochem. 120:9927–9935. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nakazawa T, Nakajima A, Seki N, Okawa A, Kato M, Moriya H, Amizuka N, Einhorn TA and Yamazaki M: Gene expression of periostin in the early stage of fracture healing detected by cDNA microarray analysis. J Orthop Res. 22:520–525. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Gao P, Zhi Y, Xu W, Wu Y, Yin J and Zhang J: Periostin: Its role in asthma and its potential as a diagnostic or therapeutic target. Respir Res. 16:572015. View Article : Google Scholar : PubMed/NCBI | |
|
Duchamp de Lageneste O and Colnot C: Periostin in bone regeneration. Adv Exp Med Biol. 1132:49–61. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC and Einhorn TA: Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res. 87:107–118. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Einhorn TA and Gerstenfeld LC: Fracture healing: Mechanisms and interventions. Nat Rev Rheumatol. 11:45–54. 2015. View Article : Google Scholar : | |
|
Zhang X, Xie C, Lin AS, Ito H, Awad H, Lieberman JR, Rubery PT, Schwarz EM, O'Keefe RJ and Guldberg RE: Periosteal progenitor cell fate in segmental cortical bone graft transplantations: Implications for functional tissue engineering. J Bone Miner Res. 20:2124–2137. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Neagu TP, Ţigliş M, Cocoloş I and Jecan CR: The relationship between periosteum and fracture healing. Rom J Morphol Embryol. 57:1215–1220. 2016. | |
|
Kudo A: Periostin in bone biology. Adv Exp Med Biol. 1132:43–47. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Allen MR, Hock JM and Burr DB: Periosteum: Biology, regulation, and response to osteoporosis therapies. Bone. 35:1003–1012. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Kashima TG, Nishiyama T, Shimazu K, Shimazaki M, Kii I, Grigoriadis AE, Fukayama M and Kudo A: Periostin, a novel marker of intramembranous ossification, is expressed in fibrous dysplasia and in c-Fos-overexpressing bone lesions. Hum Pathol. 40:226–237. 2009. View Article : Google Scholar | |
|
Varughese R, Semprini R, Munro C, Fingleton J, Holweg C, Weatherall M, Beasley R and Braithwaite I: Serum periostin levels following small bone fractures, long bone fractures and joint replacements: An observational study. Allergy Asthma Clin Immunol. 14:302018. View Article : Google Scholar : PubMed/NCBI | |
|
Roberts SJ, van Gastel N, Carmeliet G, Carmeliet G and Luyten FP: Uncovering the periosteum for skeletal regeneration: The stem cell that lies beneath. Bone. 70:10–18. 2015. View Article : Google Scholar | |
|
Matsuzawa M, Arai C, Nomura Y, Murata T, Yamakoshi Y, Oida S, Hanada N and Nakamura Y: Periostin of human periodontal ligament fibroblasts promotes migration of human mesenchymal stem cell through the αvβ3 integrin/FAK/PI3K/Akt pathway. J Periodont Res. 50:855–863. 2015. View Article : Google Scholar | |
|
Hwang EY, Jeong MS, Park EK, Kim JH and Jang SB: Structural characterization and interaction of periostin and bone morphogenetic protein for regulation of collagen cross-linking. Biochem Biophys Res Commun. 449:425–431. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Rezaieyazdi Z, Falsoleiman H, Khajehdaluee M, Saghafi M and Mokhtari-Amirmajdi E: Reduced bone density in patients on long-term warfarin. Int J Rheum Dis. 12:130–135. 2009. View Article : Google Scholar | |
|
Tufano A, Coppola A, Contaldi P, Franchini M and Minno GD: Oral anticoagulant drugs and the risk of osteoporosis: New anticoagulants better than old? Semin Thromb Hemost. 41:382–388. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jeong HM, Cho DH, Jin YH, Chung JO, Chung MY, Chung DJ and Lee KY: Inhibition of osteoblastic differentiation by warfarin and 18-α-glycyrrhetinic acid. Arch Pharm Res. 34:1381–1387. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Verma D, Kumar R, Pereira RS, Karantanou C, Zanetti C, Minciacchi VR, Fulzele K, Kunz K, Hoelper S, Zia-Chahabi S, et al: Vitamin K antagonism impairs the bone marrow microenvironment and hematopoiesis. Blood. 134:227–238. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sugimoto I, Hirakawa K, Ishino T, Takeno S and Yajin K: Vitamin D3, vitamin K2, and warfarin regulate bone metabolism in human paranasal sinus bones. Rhinology. 45:208–213. 2007.PubMed/NCBI | |
|
Rousseau JC, Sornay-Rendu E, Bertholon C, Chapurlat R and Garnero P: Serum periostin is associated with fracture risk in postmenopausal women: A 7-year prospective analysis of the OFELY study. J Clin Endocrinol Metab. 99:2533–2539. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kim BJ, Rhee Y, Kim CH, Baek KH, Min YK, Kim DY, Ahn SH, Kim H, Lee SH, Lee SY, et al: Plasma periostin associates significantly with non-vertebral but not vertebral fractures in post-menopausal women: Clinical evidence for the different effects of periostin depending on the skeletal site. Bone. 81:435–441. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Rousseau JC, Sornay-Rendu E, Bertholon C, Garnero P and Chapurlat R: Serum periostin is associated with prevalent knee osteoarthritis and disease incidence/progression in women: The OFELY study. Osteoarthr Cartil. 23:1736–1742. 2015. View Article : Google Scholar | |
|
Snider P, Hinton RB, Moreno-Rodriguez RA, Wang J, Rogers R, Lindsley A, Li F, Ingram DA, Menick D, Field L, et al: Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ Res. 102:752–760. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Nagaraju CK, Robinson EL, Abdesselem M, Trenson S, Dries E, Gilbert G, Janssens S, Van Cleemput J, Rega F, Meyns B, et al: Myofibroblast phenotype and reversibility of fibrosis in patients with end-stage heart failure. J Am Coll Cardiol. 73:2267–2282. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng X, Wang S, Zou X, Jing Y, Yang R, Li S and Wang F: Ginsenoside Rb1 improves cardiac function and remodeling in heart failure. Exp Anim. 66:217–228. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Xie J, Hao H, Lin H, Wang L, Zhang Y, Chen L, Cao S, Huang X, Liao W, et al: Ablation of periostin inhibits post-infarction myocardial regeneration in neonatal mice mediated by the phosphatidylinositol 3 kinase/glycogen synthase kinase 3β/cyclin D1 signalling pathway. Cardiovasc Res. 113:620–632. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hixson JE, Shimmin LC, Montasser ME, Kim DK, Zhong Y, Ibarguen H, Follis J, Malcom G, Strong J, Howard T, et al: Common variants in the periostin gene influence development of atherosclerosis in young persons. Arterioscler Thromb Vasc Biol. 31:1661–1667. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hakuno D, Kimura N, Yoshioka M, Mukai M, Kimura T, Okada Y, Yozu R, Shukunami C, Hiraki Y, Kudo A, et al: Periostin advances atherosclerotic and rheumatic cardiac valve degeneration by inducing angiogenesis and MMP production in humans and rodents. J Clin Invest. 120:2292–2306. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lindner V, Wang Q, Conley BA, Friesel RE and Vary CP: Vascular injury induces expression of periostin: Implications for vascular cell differentiation and migration. Arterioscler Thromb Vasc Biol. 25:77–83. 2005. View Article : Google Scholar | |
|
Schwanekamp JA, Lorts A, Vagnozzi RJ, Vanhoutte D and Molkentin JD: Deletion of periostin protects against atherosclerosis in mice by altering inflammation and extracellular matrix remodeling. Arterioscler Thromb Vasc Biol. 36:60–68. 2016. View Article : Google Scholar | |
|
Ahlfeld SK, Gao Y, Wang J, Horgusluoglu E, Bolanis E, Clapp DW and Conway SJ: Periostin downregulation is an early marker of inhibited neonatal murine lung alveolar septation. Birth Defects Res A Clin Mol Teratol. 97:373–385. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Bozyk PD, Bentley JK, Popova AP, Anyanwu AC, Linn MD, Goldsmith AM, Pryhuber GS, Moore BB and Hershenson MB: Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication. PLoS One. 7:e313362012. View Article : Google Scholar : PubMed/NCBI | |
|
Naik PK, Bozyk PD, Bentley JK, Popova AP, Birch CM, Wilke CA, Fry CD, White ES, Sisson TH, Tayob N, et al: Periostin promotes fibrosis and predicts progression in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 303:L1046–L1056. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kanemitsu Y, Suzuki M, Fukumitsu K, Asano T, Takeda N, Nakamura Y, Ozawa Y, Masaki A, Ono J, Kurokawa R, et al: A novel pathophysiologic link between upper and lower airways in patients with chronic rhinosinusitis: Association of sputum periostin levels with upper airway inflammation and olfactory function. World Allergy Organ J. 13:1000942020. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh S, Matsumoto N, Tanaka H, Yasokawa N, Kittaka M, Kurose K, Abe M, Yoshioka D, Shirai R, Nakazato M and Kobashi Y: Elevated levels of periostin and TGF-β1 in the bronchoalveolar lavage fluid of patients with idiopathic eosinophilic pneumonia. Asian Pac J Allergy Immunol. 38:208–213. 2020. | |
|
Tanaka J, Hebisawa A, Oguma T, Tomomatsu K, Suzuki J, Shimizu H, Kawabata Y, Ishiguro T, Takayanagi N, Ueda S, et al: Evaluating serum periostin levels in allergic bronchopulmonary aspergillosis. Allergy. 75:974–977. 2020. View Article : Google Scholar | |
|
Wilson MS and Wynn TA: Pulmonary fibrosis: Pathogenesis, etiology and regulation. Mucosal Immunol. 2:103–121. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Behr J, Kreuter M, Hoeper MM, Wirtz H, Klotsche J, Koschel D, Andreas S, Claussen M, Grohé C, Wilkens H, et al: Management of patients with idiopathic pulmonary fibrosis in clinical practice: The INSIGHTS-IPF registry. Eur Respir J. 46:186–196. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Okamoto M, Hoshino T, Kitasato Y, Sakazaki Y, Kawayama T, Fujimoto K, Ohshima K, Shiraishi H, Uchida M, Ono J, et al: Periostin, a matrix protein, is a novel biomarker for idiopathic interstitial pneumonias. Eur Respir J. 37:1119–1127. 2011. View Article : Google Scholar | |
|
Nance T, Smith KS, Anaya V, Richardson R, Ho L, Pala M, Mostafavi S, Battle A, Feghali-Bostwick C, Rosen G and Montgomery SB: Transcriptome analysis reveals differential splicing events in IPF lung tissue. PLoS One. 9:e975502014. View Article : Google Scholar : PubMed/NCBI | |
|
Ashley SL, Wilke CA, Kim KK and Moore BB: Periostin regulates fibrocyte function to promote myofibroblast differentiation and lung fibrosis. Mucosal Immunol. 10:341–351. 2017. View Article : Google Scholar : | |
|
Yoshihara T, Nanri Y, Nunomura S, Yamaguchi Y, Feghali-Bostwick C, Ajito K, Murakami S, Mawatari M and Izuhara K: Periostin plays a critical role in the cell cycle in lung fibroblasts. Respir Res. 21:382020. View Article : Google Scholar : PubMed/NCBI | |
|
Nanri Y, Nunomura S, Terasaki Y, Yoshihara T, Hirano Y, Yokosaki Y, Yamaguchi Y, Feghali-Bostwick C, Ajito K, Murakami S, et al: Cross-talk between transforming growth factor-beta and periostin can be targeted for pulmonary fibrosis. Am J Respir Cell Mol Biol. 62:204–216. 2020. View Article : Google Scholar | |
|
De Brouwer B, Piscaer I, Von Der Thusen JH, Grutters JC, Schutgens RE, Wouters EF and Janssen R: Should vitamin K be supplemented instead of antagonised in patients with idiopathic pulmonary fibrosis? Expert Rev Respir Med. 12:169–175. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, Ellwanger A, Sidhu SS, Dao-Pick TP, Pantoja C, et al: Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci USA. 104:15858–15863. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Izuhara K, Nunomura S, Nanri Y, Ogawa M, Ono J, Mitamura Y and Yoshihara T: Periostin in inflammation and allergy. Cell Mol Life Sci. 74:4293–4303. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tartibi HM and Bahna SL: Clinical and biological markers of asthma control. Expert Rev Clin Immunol. 10:1453–1461. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Johansson MW, Annis DS and Mosher DF: α(M)β(2) integrin-mediated adhesion and motility of IL-5-stimulated eosinophils on periostin. Am J Respir Cell Mol Biol. 48:503–510. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Sidhu SS, Yuan S, Innes AL, Kerr S, Woodruff PG, Hou L, Muller SJ and Fahy JV: Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma. Proc Natl Acad Sci USA. 107:14170–14175. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Kimur I, Tanizaki Y, Sato S, Saito K and Takahashi K: Menaquinone (vitamin K2) therapy for bronchial asthma. II. Clinical effect of menaquinone on bronchial asthma. Acta medica Okayama. 29:127–135. 1975.PubMed/NCBI | |
|
Litonjua AA: Fat-soluble vitamins and atopic disease: What is the evidence? Proc Nutr Soc. 71:67–74. 2012. View Article : Google Scholar : | |
|
El Basha NR, Osman HM, Abdelaal AA, Saed SM and Shaaban HH: Increased expression of serum periostin and YKL40 in children with severe asthma and asthma exacerbation. J Investig Med. 66:1102–1108. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Matsusaka M, Kabata H, Fukunaga K, Suzuki Y, Masaki K, Mochimaru T, Sakamaki F, Oyamada Y, Inoue T, Oguma T, et al: Phenotype of asthma related with high serum periostin levels. Allergol Int. 64:175–180. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kim MA, Izuhara K, Ohta S, Ono J, Yoon MK, Ban GY, Yoo HS, Shin YS, Ye YM, Nahm DH and Park HS: Association of serum periostin with aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol. 113:314–320. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Asano T, Kanemitsu Y, Takemura M, Yokota M, Fukumitsu K, Takeda N, Ichikawa H, Uemura T, Takakuwa O, Ohkubo H, et al: Serum periostin as a biomarker for comorbid chronic rhinosinusitis in patients with asthma. Ann Am Thorac Soc. 14:667–675. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cianchetti S, Cardini C, Puxeddu I, Latorre M, Bartoli ML, Bradicich M, Dente F, Bacci E, Celi A and Paggiaro P: Distinct profile of inflammatory and remodelling biomarkers in sputum of severe asthmatic patients with or without persistent airway obstruction. World Allergy Organ J. 12:1000782019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Chen JP, Duan L and Li S: Effect of vitamin K2 on type 2 diabetes mellitus: A review. Diabetes Res Clin Pract. 136:39–51. 2018. View Article : Google Scholar | |
|
Mukai K, Morimoto H, Kikuchi S and Nagaoka S: Kinetic study of free-radical-scavenging action of biological hydroquinones (reduced forms of ubiquinone, vitamin K and tocopherol quinone) in solution. Biochim Biophys Acta. 1157:313–317. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Westhofen P, Watzka M, Marinova M, Hass M, Kirfel G, Müller J, Bevans CG, Müller CR and Oldenburg J: Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1) mediates vitamin K-dependent intracellular anti-oxidant function. J Biol Chem. 286:15085–15094. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Vos M, Esposito G, Edirisinghe JN, Vilain S, Haddad DM, Slabbaert JR, Van Meensel S, Schaap O, De Strooper B, Meganathan R, et al: Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science. 336:1306–1310. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Fujii S, Shimizu A, Takeda N, Oguchi K, Katsurai T, Shirakawa H, Komai M and Kagechika H: Systematic synthesis and anti-inflammatory activity of ω-carboxylated menaquinone derivatives-investigations on identified and putative vitamin K2 metabolites. Bioorg Med Chem. 23:2344–2352. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Myneni VD and Mezey E: Immunomodulatory effect of vitamin K2: Implications for bone health. Oral Dis. 24:67–71. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ishizuka M, Kubota K, Shimoda M, Kita J, Kato M, Park KH and Shiraki T: Effect of menatetrenone, a vitamin k2 analog, on recurrence of hepatocellular carcinoma after surgical resection: A prospective randomized controlled trial. Anticancer Res. 32:5415–5420. 2012.PubMed/NCBI | |
|
Zhong JH, Mo XS, Xiang BD, Yuan WP, Jiang JF, Xie GS and Li LQ: Postoperative use of the chemopreventive vitamin K2 analog in patients with hepatocellular carcinoma. PLoS One. 8:e580822013. View Article : Google Scholar : PubMed/NCBI | |
|
Enomoto M, Tsuchida A, Miyazawa K, Yokoyama T, Kawakita H, Tokita H, Naito M, Itoh M, Ohyashiki K and Aoki T: Vitamin K2-induced cell growth inhibition via autophagy formation in cholangiocellular carcinoma cell lines. Int J Mol Med. 20:801–808. 2007.PubMed/NCBI | |
|
Sibayama-Imazu T, Fujisawa Y, Masuda Y, Aiuchi T, Nakajo S, Itabe H and Nakaya K: Induction of apoptosis in PA-1 ovarian cancer cells by vitamin K2 is associated with an increase in the level of TR3/Nur77 and its accumulation in mitochondria and nuclei. J Cancer Res Clin Oncol. 134:803–812. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Showalter SL, Wang Z, Costantino CL, Witkiewicz AK, Yeo CJ, Brody JR and Carr BI: Naturally occurring K vitamins inhibit pancreatic cancer cell survival through a caspase-dependent pathway. J Gastroenterol Hepatol. 25:738–744. 2010. View Article : Google Scholar | |
|
Xv F, Chen J, Duan L and Li S: Research progress on the anticancer effects of vitamin K2. Oncol Lett. 15:8926–8934. 2018.PubMed/NCBI |