Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2021 Volume 47 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2021 Volume 47 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Atrial fibrosis underlying atrial fibrillation (Review)

  • Authors:
    • Chang Yi Li
    • Jing Rui Zhang
    • Wan Ning Hu
    • Song Nan Li
  • View Affiliations / Copyright

    Affiliations: Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China, Department of Cardiology, Laboratory of Molecular Biology, Head and Neck Surgery, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 9
    |
    Published online on: December 31, 2020
       https://doi.org/10.3892/ijmm.2020.4842
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Atrial fibrillation (AF) is one of the most common tachyarrhythmias observed in the clinic and is characterized by structural and electrical remodelling. Atrial fibrosis, an emblem of atrial structural remodelling, is a complex multifactorial and patient‑specific process involved in the occurrence and maintenance of AF. Whilst there is already considerable knowledge regarding the association between AF and fibrosis, this process is extremely complex, involving intricate neurohumoral and cellular and molecular interactions, and it is not limited to the atrium. Current technological advances have made the non‑invasive evaluation of fibrosis in the atria and ventricles possible, facilitating the selection of patient‑specific ablation strategies and upstream treatment regimens. An improved understanding of the mechanisms and roles of fibrosis in the context of AF is of great clinical significance for the development of treatment strategies targeting the fibrous region. In the present review, a focus was placed on the atrial fibrosis underlying AF, outlining its role in the occurrence and perpetuation of AF, by reviewing recent evaluations and potential treatment strategies targeting areas of fibrosis, with the aim of providing a novel perspective on the management and prevention of AF.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Sanoski CA: Clinical, economic, and quality of life impact of atrial fibrillation. J Manag Care Pharm. 15(6 Suppl B): S4–S9. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Chen PS, Chen LS, Fishbein MC, Lin SF and Nattel S: Role of the autonomic nervous system in atrial fibrillation: Pathophysiology and therapy. Circ Res. 114:1500–1515. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Denham NC, Pearman CM, Caldwell JL, Madders GWP, Eisner DA, Trafford AW and Dibb KM: Calcium in the pathophysiology of atrial fibrillation and heart failure. Front Physiol. 9:13802018. View Article : Google Scholar : PubMed/NCBI

4 

Pellman J and Sheikh F: Atrial fibrillation: Mechanisms, therapeutics, and future directions. Compr Physiol. 5:649–665. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Polyakova V, Miyagawa S, Szalay Z, Risteli J and Kostin S: Atrial extracellular matrix remodelling in patients with atrial fibrillation. J Cell Mol Med. 12:189–208. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Nattel S: Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin Electrophysiol. 3:425–435. 2017. View Article : Google Scholar

7 

de Boer RA, De Keulenaer G, Bauersachs J, Brutsaert D, Cleland JG, Diez J, Du XJ, Ford P, Heinzel FR, Lipson KE, et al: Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the committee of translational research of the heart failure association (HFA) of the European society of cardiology. Eur J Heart Fail. 21:272–285. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Kong P, Christia P and Frangogiannis NG: The pathogenesis of cardiac fibrosis. Cell Mol Life Sc. 71:549–574. 2014. View Article : Google Scholar

9 

Fan D, Takawale A, Lee J and Kassiri Z: Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair. 5:152012. View Article : Google Scholar : PubMed/NCBI

10 

Rog-Zielinska EA, Norris RA, Kohl P and Markwald R: The living scar-cardiac fibroblasts and the injured heart. Trends Mol Med. 22:99–114. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Kohl P and Gourdie RG: Fibroblast-myocyte electrotonic coupling: Does it occur in native cardiac tissue? J Mol Cell Cardiol. 70:37–46. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Ongstad E and Kohl P: Fibroblast-myocyte coupling in the heart: Potential relevance for therapeutic interventions. J Mol Cell Cardiol. 91:238–246. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Nguyen TP, Qu Z and Weiss JN: Cardiac fibrosis and arrhythmogenesis: The road to repair is paved with perils. J Mol Cell Cardiol. 70:83–91. 2014. View Article : Google Scholar

14 

Krul SPJ, Berger WR, Smit NW, van Amersfoorth SC, Driessen AH, van Boven WJ, Fiolet JW, van Ginneken AC, van der Wal AC, de Bakker JM, et al: Atrial fibrosis and conduction slowing in the left atrial appendage of patients undergoing thoracoscopic surgical pulmonary vein isolation for atrial fibrillation. Circ Arrhythm Electrophysiol. 8:288–295. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Nattel S: Electrical coupling between cardiomyocytes and fibroblasts: Experimental testing of a challenging and important concept. Cardiovasc Res. 114:349–352. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Perbellini F, Watson SA, Bardi I and Terracciano CM: Heterocellularity and cellular cross-talk in the cardiovascular system. Front Cardiovasc Med. 5:1432018. View Article : Google Scholar : PubMed/NCBI

17 

Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA and Tallquist MD: Revisiting cardiac cellular composition. Circ Res. 118:400–409. 2016. View Article : Google Scholar :

18 

Zhou P and Pu WT: Recounting cardiac cellular composition. Circ Res. 118:368–370. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Ma Y, de Castro Brás LE, Toba H, Iyer RP, Hall ME, Winniford MD, Lange RA, Tyagi SC and Lindsey ML: Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling. Pflugers Arch. 466:1113–127. 2014.PubMed/NCBI

20 

Burstein B, Libby E, Calderone A and Nattel S: Differential behaviors of atrial versus ventricular fibroblasts: A potential role for platelet-derived growth factor in atrial-ventricular remodeling differences. Circulation. 117:1630–1641. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Moore-Morris T, Cattaneo P, Puceat M and Evans SM: Origins of cardiac fibroblasts. J Mol Cell Cardiol. 91:1–5. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Krenning G, Zeisberg EM and Kalluri R: The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 225:631–637. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Moore-Morris T, Guimarães-Camboa N, Banerjee I, Zambon AC, Kisseleva T, Velayoudon A, Stallcup WB, Gu Y, Dalton ND, Cedenilla M, et al: Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J Clin Invest. 124:2921–2934. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Ali SR, Ranjbarvaziri S, Talkhabi M, Zhao P, Subat A, Hojjat A, Kamran P, Müller AM, Volz KS, Tang Z, et al: Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ Res. 115:625–635. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Lajiness JD and Conway SJ: The dynamic role of cardiac fibroblasts in development and disease. J Cardiovasc Transl Res. 5:739–748. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Travers JG, Kamal FA, Robbins J, Yutzey KE and Blaxall BC: Cardiac fibrosis: The fibroblast awakens. Circ Res. 118:1021–1040. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Kim SK, Park JH, Kim JY, Choi JI, Joung B, Lee MH, Kim SS, Kim YH and Pak HN: High plasma concentrations of transforming growth factor-β and tissue inhibitor of metalloproteinase-1: Potential non-invasive predictors for electroanatomical remodeling of atrium in patients with non-valvular atrial fibrillation. Circ J. 75:557–564. 2011. View Article : Google Scholar

28 

Goudis CA, Kallergis EM and Vardas PE: Extracellular matrix alterations in the atria: Insights into the mechanisms and perpetuation of atrial fibrillation. Europace. 14:623–630. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Frangogiannis NG: The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest. 127:1600–1612. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Rienks M, Papageorgiou AP, Frangogiannis NG and Heymans S: Myocardial extracellular matrix: An ever-changing and diverse entity. Circ Res. 114:872–888. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Liu X, Meng L, Shi Q, Liu S, Cui C, Hu S and Wei Y: Dermatopontin promotes adhesion, spreading and migration of cardiac fibroblasts in vitro. Matrix Biol. 32:23–31. 2013. View Article : Google Scholar

32 

López B, González A, Ravassa S, Beaumont J, Moreno MU, San José G, Querejeta R and Díez J: Circulating biomarkers of myocardial fibrosis: The need for a reappraisal. J Am Coll Cardiol. 65:2449–2456. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Richter B, Gwechenberger M, Socas A, Zorn G, Albinni S, Marx M, Wolf F, Bergler-Klein J, Loewe C, Bieglmayer C, et al: Time course of markers of tissue repair after ablation of atrial fibrillation and their relation to left atrial structural changes and clinical ablation outcome. Int J Cardiol. 152:231–236. 2011. View Article : Google Scholar

34 

Kawamura M, Munetsugu Y, Kawasaki S, Onishi K, Onuma Y, Kikuchi M, Tanno K and Kobayashi Y: Type III procollagen-N-peptide as a predictor of persistent atrial fibrillation recurrence after cardioversion. Europace. 14:1719–1725. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Spinale FG: Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiol Rev. 87:1285–1342. 2007. View Article : Google Scholar : PubMed/NCBI

36 

Li M, Yang G, Xie B, Babu K and Huang C: Changes in matrix metalloproteinase-9 levels during progression of atrial fibrillation. J Int Med Res. 42:224–230. 2014. View Article : Google Scholar

37 

Nakano Y, Niida S, Dote K, Takenaka S, Hirao H, Miura F, Ishida M, Shingu T, Sueda T, Yoshizumi M and Chayama K: Matrix metalloproteinase-9 contributes to human atrial remodeling during atrial fibrillation. J Am Coll Cardiol. 43:818–825. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Wu G, Wang S, Cheng M, Peng B, Liang J, Huang H, Jiang X, Zhang L, Yang B, Cha Y, et al: The serum matrix metalloproteinase-9 level is an independent predictor of recurrence after ablation of persistent atrial fibrillation. Clinics (Sao Paulo). 71:251–256. 2016. View Article : Google Scholar

39 

Liu Y, Xu B, Wu N, Xiang Y, Wu L, Zhang M, Wang J, Chen X, Li Y and Zhong L: Association of MMPs and TIMPs with the occurrence of atrial fibrillation: A systematic review and meta-analysis. Can J Cardiol. 32:803–813. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Molvin J, Jujic A, Melander O, Pareek M, Råstam L, Lindblad U, Daka B, Leosdottir M, Nilsson P, Olsen M and Magnusson M: Exploration of pathophysiological pathways for incident atrial fibrillation using a multiplex proteomic chip. Open Heart. 7:e0011902020. View Article : Google Scholar : PubMed/NCBI

41 

Morikawa M, Derynck R and Miyazono K: TGF-β and the TGF-β family: Context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 8:a0218732016. View Article : Google Scholar

42 

Biernacka A, Dobaczewski M and Frangogiannis NG: TGF-beta signaling in fibrosis. Growth Factors. 29:196–202. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Heldin CH, Miyazono K and ten Dijke P: TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 390:465–471. 1997. View Article : Google Scholar : PubMed/NCBI

44 

Euler-Taimor G and Heger J: The complex pattern of SMAD signaling in the cardiovascular system. Cardiovasc Res. 69:15–25. 2006. View Article : Google Scholar

45 

Zhang D, Chen X, Wang Q, Wu S, Zheng Y and Liu X: Role of the MAPKs/TGF-β1/TRAF6 signaling pathway in postoperative atrial fibrillation. PLoS One. 12:e01737592017. View Article : Google Scholar

46 

Chang SH, Yeh YH, Lee JL, Hsu YJ, Kuo CT and Chen WJ: Transforming growth factor-β-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation. Basic Res Cardiol. 112:582017. View Article : Google Scholar

47 

Liu LJ, Yao FJ, Lu GH, Xu CG, Xu Z, Tang K, Cheng YJ, Gao XR and Wu SH: The role of the Rho/ROCK pathway in Ang II and TGF-β1-induced atrial remodeling. PLoS One. 11:e01616252016. View Article : Google Scholar

48 

Yang Z and Wang H: Increased expression of the TSP-1/TGF-β/MMP-9 axis in atrial fibrillation related to rheumatic heart disease. Int J Clin Exp Med. 11:5699–5706. 2018.

49 

Yeh YH, Kuo CT, Chan TH, Chang GJ, Qi XY, Tsai F, Nattel S and Chen WJ: Transforming growth factor-β and oxidative stress mediate tachycardia-induced cellular remodelling in cultured atrial-derived myocytes. Cardiovasc Res. 91:62–70. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Patel S, Rauf A, Khan H and Abu-Izneid T: Renin-angiotensinaldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother. 94:317–325. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Harada M, Luo X, Qi XY, Tadevosyan A, Maguy A, Ordog B, Ledoux J, Kato T, Naud P, Voigt N, et al: Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation. 126:2051–2064. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Liu L, Geng J, Zhao H, Yun F, Wang X, Yan S, Ding X, Li W, Wang D, Li J, et al: Valsartan reduced atrial fibrillation susceptibility by inhibiting atrial parasympathetic remodeling through MAPKs/neurturin pathway. Cell Physiol Biochem. 36:2039–2050. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Harada M, Van Wagoner DR and Nattel S: Role of inflammation in atrial fibrillation pathophysiology and management. Circ J. 79:495–502. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Gu J, Liu X, Wang QX, Tan HW, Guo M, Jiang WF and Zhou L: Angiotensin II increases CTGF expression via MAPKs/TGF-β1/TRAF6 pathway in atrial fibroblasts. Exp Cell Res. 318:2105–2115. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Nouet S and Nahmias C: Signal transduction from the angiotensin II AT2 receptor. Trends Endocrinol Metab. 11:1–6. 2000. View Article : Google Scholar : PubMed/NCBI

56 

Sakabe M, Fujiki A, Nishida K, Sugao M, Nagasawa H, Tsuneda T, Mizumaki K and Inoue H: Enalapril prevents perpetuation of atrial fibrillation by suppressing atrial fibrosis and over-expression of connexin43 in a canine model of atrial pacing-induced left ventricular dysfunction. J Cardiovasc Pharmacol. 43:851–859. 2004. View Article : Google Scholar : PubMed/NCBI

57 

Li D, Shinagawa K, Pang L, Leung TK, Cardin S, Wang Z and Nattel S: Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation. 104:2608–2614. 2001. View Article : Google Scholar : PubMed/NCBI

58 

Lavall D, Selzer C, Schuster P, Lenski M, Adam O, Schäfers HJ, Böhm M and Laufs U: The mineralocorticoid receptor promotes fibrotic remodeling in atrial fibrillation. J Biol Chem. 289:6656–6668. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Tsai CF, Yang SF, Chu HJ and Ueng KC: Cross-talk between mineralocorticoid receptor/angiotensin II type 1 receptor and mitogen-activated protein kinase pathways underlies aldosterone-induced atrial fibrotic responses in HL-1 cardiomyocytes. Int J Cardiol. 169:17–28. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Bruins P, te Velthuis H, Yazdanbakhsh AP, Jansen PG, van Hardevelt FW, de Beaumont EM, Wildevuur CR, Eijsman L, Trouwborst A and Hack CE: Activation of the complement system during and after cardiopulmonary bypass surgery: Postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation. 96:3542–3548. 1997. View Article : Google Scholar : PubMed/NCBI

61 

Hu YF, Chen YJ, Lin YJ and Chen SA: Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 12:230–243. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Huang CX, Liu Y, Xia WF, Tang YH and Huang H: Oxidative stress: A possible pathogenesis of atrial fibrillation. Med Hypotheses. 72:466–467. 2009. View Article : Google Scholar

63 

Sovari AA and Dudley SC Jr: Reactive oxygen species-targeted therapeutic interventions for atrial fibrillation. Front Physiol. 3:3112012. View Article : Google Scholar : PubMed/NCBI

64 

Görlach A, Bertram K, Hudecova S and Krizanova O: Calcium and ROS: A mutual interplay. Redox Biol. 6:260–271. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Youn JY, Zhang J, Zhang Y, Chen H, Liu D, Ping P, Weiss JN and Cai H: Oxidative stress in atrial fibrillation: An emerging role of NADPH oxidase. J Mol Cell Cardiol. 62:72–79. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Nattel S and Harada M: Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives. J Am Coll Cardiol. 63:2335–2345. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Sirish P, Li N, Timofeyev V, Zhang XD, Wang L, Yang J, Lee KS, Bettaieb A, Ma SM, Lee JH, et al: Molecular mechanisms and new treatment paradigm for atrial fibrillation. Circ Arrhythm Electrophysiol. 9:e0037212016. View Article : Google Scholar : PubMed/NCBI

68 

Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O'Brien S, Keiper EA, Johnson AG, et al: Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 108:2460–2466. 2003. View Article : Google Scholar : PubMed/NCBI

69 

Abe I, Teshima Y, Kondo H, Kaku H, Kira S, Ikebe Y, Saito S, Fukui A, Shinohara T, Yufu K, et al: Association of fibrotic remodeling and cytokines/chemokines content in epicardial adipose tissue with atrial myocardial fibrosis in patients with atrial fibrillation. Heart Rhythm. 15:1717–1727. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Venteclef N, Guglielmi V, Balse E, Gaborit B, Cotillard A, Atassi F, Amour J, Leprince P, Dutour A, Clément K and Hatem SN: Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J. 36:795–805a. 2015. View Article : Google Scholar

71 

Wang Q, Wang X, Yin L, Wang J, Shen H, Gao Y, Min J, Zhang Y and Wang Z: Human epicardial adipose tissue cTGF expression is an independent risk factor for atrial fibrillation and highly associated with atrial fibrosis. Sci Rep. 8:35852018. View Article : Google Scholar : PubMed/NCBI

72 

Li Y, Jian Z, Yang ZY, Chen L, Wang XF, Ma RY and Xiao YB: Increased expression of connective tissue growth factor and transforming growth factor-beta-1 in atrial myocardium of patients with chronic atrial fibrillation. Cardiology. 124:233–240. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Liao CH, Akazawa H, Tamagawa M, Ito K, Yasuda N, Kudo Y, Yamamoto R, Ozasa Y, Fujimoto M, Wang P, et al: Cardiac mast cells cause atrial fibrillation through PDGF-A-mediated fibrosis in pressure-overloaded mouse hearts. J Clin Invest. 120:242–253. 2010. View Article : Google Scholar

74 

Chen Y, Surinkaew S, Naud P, Qi XY, Gillis MA, Shi YF, Tardif JC, Dobrev D and Nattel S: JAK-STAT signalling and the atrial fibrillation promoting fibrotic substrate. Cardiovasc Res. 113:310–320. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Tuuminen R, Nykänen AI, Krebs R, Soronen J, Pajusola K, Keränen MA, Koskinen PK, Alitalo K and Lemström KB: PDGF-A, -C, and -D but not PDGF-B increase TGF-beta1 and chronic rejection in rat cardiac allografts. Arterioscler Thromb Vasc Biol. 29:691–698. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Li PF, He RH, Shi SB, Li R, Wang QT, Rao GT and Yang B: Modulation of miR-10a-mediated TGF-β1/Smads signaling affects atrial fibrillation-induced cardiac fibrosis and cardiac fibroblast proliferation. Biosci Rep. 39:BSR201819312019. View Article : Google Scholar

77 

Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, et al: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 456:980–984. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Adam O, Löhfelm B, Thum T, Gupta SK, Puhl SL, Schäfers HJ, Böhm M and Laufs U: Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res Cardiol. 107:2782012. View Article : Google Scholar : PubMed/NCBI

79 

He X, Zhang K, Gao X, Li L, Tan H, Chen J and Zhou Y: Rapid atrial pacing induces myocardial fibrosis by down-regulating Smad7 via microRNA-21 in rabbit. Heart Vessels. 31:1696–1708. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Wang Y, Cai H, Li H, Gao Z and Song K: Atrial overexpression of microRNA-27b attenuates angiotensin II-induced atrial fibrosis and fibrillation by targeting ALK5. Hum Cell. 31:251–260. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Chen Y, Wakili R, Xiao J, Wu CT, Luo X, Clauss S, Dawson K, Qi X, Naud P, Shi YF, et al: Detailed characterization of microRNA changes in a canine heart failure model: Relationship to arrhythmogenic structural remodeling. J Mol Cell Cardiol. 77:113–124. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Shantsila E, Shantsila A, Blann AD and Lip GY: Left ventricular fibrosis in atrial fibrillation. Am J Cardiol. 111:996–1001. 2013. View Article : Google Scholar : PubMed/NCBI

83 

White SK, Sado DM, Fontana M, Banypersad SM, Maestrini V, Flett AS, Piechnik SK, Robson MD, Hausenloy DJ, Sheikh AM, et al: T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging. 6:955–962. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Neilan TG, Shah RV, Abbasi SA, Farhad H, Groarke JD, Dodson JA, Coelho-Filho O, McMullan CJ, Heydari B, Michaud GF, et al: The incidence, pattern, and prognostic value of left ventricular myocardial scar by late gadolinium enhancement in patients with atrial fibrillation. J Am Coll Cardiol. 62:2205–2214. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Ambale-Venkatesh B and Lima JA: Cardiac MRI: A central prognostic tool in myocardial fibrosis. Nat Rev Cardiol. 12:18–29. 2015. View Article : Google Scholar

86 

Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, McGregor C and Moon JC: Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: Preliminary validation in humans. Circulation. 122:138–144. 2010. View Article : Google Scholar : PubMed/NCBI

87 

Kammerlander AA, Marzluf BA, Zotter-Tufaro C, Aschauer S, Duca F, Bachmann A, Knechtelsdorfer K, Wiesinger M, Pfaffenberger S, Greiser A, et al: T1 mapping by CMR imaging: From histological validation to clinical implication. JACC Cardiovasc Imaging. 9:14–23. 2016. View Article : Google Scholar

88 

Ling LH, Kistler PM, Ellims AH, Iles LM, Lee G, Hughes GL, Kalman JM, Kaye DM and Taylor AJ: Diffuse ventricular fibrosis in atrial fibrillation: Noninvasive evaluation and relationships with aging and systolic dysfunction. J Am Coll Cardiol. 60:2402–2408. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Neilan TG, Mongeon FP, Shah RV, Coelho-Filho O, Abbasi SA, Dodson JA, McMullan CJ, Heydari B, Michaud GF, John RM, et al: Myocardial extracellular volume expansion and the risk of recurrent atrial fibrillation after pulmonary vein isolation. JACC Cardiovasc Imaging. 7:1–11. 2014. View Article : Google Scholar

90 

McLellan AJ, Ling LH, Azzopardi S, Ellims AH, Iles LM, Sellenger MA, Morton JB, Kalman JM, Taylor AJ and Kistler PM: Diffuse ventricular fibrosis measured by T1 mapping on cardiac MRI predicts success of catheter ablation for atrial fibrillation. Circ Arrhythm Electrophysiol. 7:834–840. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Guichard JB, Xiong F, Qi XY, L'Heureux N, Hiram R, Xiao J, Naud P, Tardif JC, Costa AD and Nattel S: Role of atrial arrhythmia and ventricular response in atrial fibrillation induced atrial remodeling. Cardiovasc Res. Jan 24–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

92 

Sasaki N, Okumura Y, Watanabe I, Nagashima K, Sonoda K, Kogawa R, Takahashi K, Iso K, Ohkubo K, Nakai T, et al: Transthoracic echocardiographic backscatter-based assessment of left atrial remodeling involving left atrial and ventricular fibrosis in patients with atrial fibrillation. Int J Cardiol. 176:1064–1066. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Avitall B, Bi J, Mykytsey A and Chicos A: Atrial and ventricular fibrosis induced by atrial fibrillation: Evidence to support early rhythm control. Heart Rhythm. 5:839–845. 2008. View Article : Google Scholar : PubMed/NCBI

94 

Prabhu S, Costello BT, Taylor AJ, Gutman SJ, Voskoboinik A, McLellan AJA, Peck KY, Sugumar H, Iles L, Pathik B, et al: Regression of diffuse ventricular fibrosis following restoration of sinus rhythm with catheter ablation in patients with atrial fibrillation and systolic dysfunction: A substudy of the CAMERA MRI trial. JACC Clin Electrophysiol. 4:999–1007. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Schoonderwoerd BA, Smit MD, Pen L and Van Gelder IC: New risk factors for atrial fibrillation: Causes of 'not-so-lone atrial fibrillation'. Europace. 10:668–673. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Iwasaki YK, Kato T, Xiong F, Shi YF, Naud P, Maguy A, Mizuno K, Tardif JC, Comtois P and Nattel S: Atrial fibrillation promotion with long-term repetitive obstructive sleep apnea in a rat model. J Am Coll Cardiol. 64:2013–2023. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Neilan TG, Farhad H, Dodson JA, Shah RV, Abbasi SA, Bakker JP, Michaud GF, van der Geest R, Blankstein R, Steigner M, et al: Effect of sleep apnea and continuous positive airway pressure on cardiac structure and recurrence of atrial fibrillation. J Am Heart Assoc. 2:e0004212013. View Article : Google Scholar : PubMed/NCBI

98 

Pathak RK, Mahajan R, Lau DH and Sanders P: The implications of obesity for cardiac arrhythmia mechanisms and management. Can J Cardiol. 31:203–210. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Wijesurendra RS and Casadei B: Atrial fibrillation: Effects beyond the atrium? Cardiovasc Res. 105:238–247. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Rahmutula D, Marcus GM, Wilson EE, Ding CH, Xiao Y, Paquet AC, Barbeau R, Barczak AJ, Erle DJ and Olgin JE: Molecular basis of selective atrial fibrosis due to overexpression of transforming growth factor-β1. Cardiovasc Res. 99:769–779. 2013. View Article : Google Scholar : PubMed/NCBI

101 

Xiao HD, Fuchs S, Campbell DJ, Lewis W, Dudley SC Jr, Kasi VS, Hoit BD, Keshelava G, Zhao H, Capecchi MR and Bernstein KE: Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am J Pathol. 165:1019–1032. 2004. View Article : Google Scholar : PubMed/NCBI

102 

Bauer P, regitz-zagrosek V, Kallisch H, Linz W, Schoelkens B, Hildebrandt AG and Fleck E: Myocardial angiotensin receptor type 1 gene expression in a rat model of cardiac volume overload. Basic Res Cardiol. 92:139–146. 1997. View Article : Google Scholar : PubMed/NCBI

103 

Yeh YH, Kuo CT, Chang GJ, Qi XY, Nattel S and Chen WJ: Nicotinamide adenine dinucleotide phosphate oxidase 4 mediates the differential responsiveness of atrial versus ventricular fibroblasts to transforming growth factor-β. Circ Arrhythm Electrophysiol. 6:790–798. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Daccarett M, Badger TJ, Akoum N, Burgon NS, Mahnkopf C, Vergara G, Kholmovski E, McGann CJ, Parker D, Brachmann J, et al: Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. J Am Coll Cardiol. 57:831–838. 2011. View Article : Google Scholar : PubMed/NCBI

105 

Akoum N, Fernandez G, Wilson B, Mcgann C, Kholmovski E and Marrouche N: Association of atrial fibrosis quantified using LGE-MRI with atrial appendage thrombus and spontaneous contrast on transesophageal echocardiography in patients with atrial fibrillation. J Cardiovasc Electrophysiol. 24:1104–1109. 2013. View Article : Google Scholar : PubMed/NCBI

106 

King JB, Azadani PN, Suksaranjit P, Bress AP, Witt DM, Han FT, Chelu MG, Silver MA, Biskupiak J, Wilson BD, et al: Left atrial fibrosis and risk of cerebrovascular and cardiovascular events in patients with atrial fibrillation. J Am Coll Cardiol. 70:1311–1321. 2017. View Article : Google Scholar : PubMed/NCBI

107 

Disertori M, Quintarelli S, Grasso M, Pilotto A, Narula N, Favalli V, Canclini C, Diegoli M, Mazzola S, Marini M, et al: Autosomal recessive atrial dilated cardiomyopathy with standstill evolution associated with mutation of natriuretic peptide precursor A. Circ Cardiovasc Genet. 6:27–36. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Fonseca AC, Alves P, Inácio N, Marto JP, Viana-Baptista M, Pinho-E-Melo T, Ferro JM and Almeida AG: Patients with undetermined stroke have increased atrial fibrosis: A cardiac magnetic resonance imaging study. Stroke. 49:734–737. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Tandon K, Tirschwell D, Longstreth WT Jr, Smith B and Akoum N: Embolic stroke of undetermined source correlates to atrial fibrosis without atrial fibrillation. Neurology. 93:e381–e387. 2019. View Article : Google Scholar : PubMed/NCBI

110 

Spronk HM, De Jong AM, Verheule S, De Boer HC, Maass AH, Lau DH, Rienstra M, van Hunnik A, Kuiper M, Lumeij S, et al: Hypercoagulability causes atrial fibrosis and promotes atrial fibrillation. Eur Heart J. 38:38–50. 2017. View Article : Google Scholar

111 

D'Souza A, Butcher KS and Buck BH: The multiple causes of stroke in atrial fibrillation: Thinking broadly. Can J Cardiol. 34:1503–1511. 2018. View Article : Google Scholar : PubMed/NCBI

112 

Cai H, Li Z, Goette A, Mera F, Honeycutt C, Feterik K, Wilcox JN, Dudley SC Jr, Harrison DG and Langberg JJ: Downregulation of endocardial nitric oxide synthase expression and nitric oxide production in atrial fibrillation: Potential mechanisms for atrial thrombosis and stroke. Circulation. 106:2854–2858. 2002. View Article : Google Scholar : PubMed/NCBI

113 

Friedrichs K, Klinke A and Baldus S: Inflammatory pathways underlying Atrial Fibrillation. Trends Mol Med. 17:556–563. 2011. View Article : Google Scholar : PubMed/NCBI

114 

Korantzopoulos P, Letsas K, Fragakis N, Tse G and Liu T: Oxidative stress and atrial fibrillation: An update. Free Radic Res. 52:1199–1209. 2018. View Article : Google Scholar : PubMed/NCBI

115 

Cao H, Wang J, Xi L, Røe OD, Chen Y and Wang D: Dysregulated atrial gene expression of osteoprotegerin/receptor activator of nuclear factor-κB (RANK)/RANK ligand axis in the development and progression of atrial fibrillation. Circ J. 75:2781–2788. 2011. View Article : Google Scholar

116 

Pinto A, Tuttolomondo A, Casuccio A, Di Raimondo D, Di Sciacca R, Arnao V and Licata G: Immuno-inflammatory predictors of stroke at follow-up in patients with chronic non-valvular atrial fibrillation (NVAF). Clin Sci (Lond). 116:781–789. 2009. View Article : Google Scholar

117 

Li J, Solus J, Chen Q, Rho YH, Milne G, Stein CM and Darbar D: Role of inflammation and oxidative stress in atrial fibrillation. Heart Rhythm. 7:438–444. 2010. View Article : Google Scholar : PubMed/NCBI

118 

Calvo D, Filgueiras-Rama D and Jalife J: Mechanisms and drug development in atrial fibrillation. Pharmacol Rev. 70:505–525. 2018. View Article : Google Scholar : PubMed/NCBI

119 

Sardar MR, Saeed W and Kowey PR: Antiarrhythmic drug therapy for atrial fibrillation. Heart Fail Clin. 12:205–221. 2016. View Article : Google Scholar : PubMed/NCBI

120 

Burashnikov A and Antzelevitch C: Novel pharmacological targets for the rhythm control management of atrial fibrillation. Pharmacol Ther. 132:300–313. 2011. View Article : Google Scholar : PubMed/NCBI

121 

Novo G, Guttilla D, Fazio G, Cooper D and Novo S: The role of the renin-angiotensin system in atrial fibrillation and the therapeutic effects of ACE-Is and ARBS. Br J Clin Pharmacol. 66:345–351. 2008. View Article : Google Scholar : PubMed/NCBI

122 

Li Y, Li W, Yang B, Han W, Dong D, Xue J, Li B, Yang S and Sheng L: Effects of Cilazapril on atrial electrical, structural and functional remodeling in atrial fibrillation dogs. J Electrocardiol. 40:100.e1–e6. 2007. View Article : Google Scholar

123 

Belluzzi F, Sernesi L, Preti P, Salinaro F, Fonte ML and Perlini S: Prevention of recurrent lone atrial fibrillation by the angiotensin-II converting enzyme inhibitor ramipril in normotensive patients. J Am Coll Cardiol. 53:24–29. 2009. View Article : Google Scholar : PubMed/NCBI

124 

Akashiba A, Ono H, Ono Y, Ishimitsu T and Matsuoka H: Valsartan improves L-NAME-exacerbated cardiac fibrosis with TGF-ß inhibition and apoptosis induction in spontaneously hypertensive rats. J Cardiol. 52:239–246. 2008. View Article : Google Scholar : PubMed/NCBI

125 

Kumagai K, Nakashima H, Urata H, Gondo N, Arakawa K and Saku K: Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J Am Coll Cardiol. 41:2197–2204. 2003. View Article : Google Scholar : PubMed/NCBI

126 

Nomura M, Kawano T, Nakayasu K and Nakaya Y: The effects of losartan on signal-averaged P wave in patients with atrial fibrillation. Int J Cardiol. 126:21–27. 2008. View Article : Google Scholar

127 

Takemoto Y, Ramirez RJ, Kaur K, Salvador-Montañés O, Ponce-Balbuena D, Ramos-Mondragón R, Ennis SR, Guerrero-Serna G, Berenfeld O and Jalife J: Eplerenone reduces atrial fibrillation burden without preventing atrial electrical remodeling. J Am Coll Cardiol. 70:2893–2905. 2017. View Article : Google Scholar : PubMed/NCBI

128 

Neefs J, van den Berg NW, Limpens J, Berger WR, Boekholdt SM, Sanders P and de Groot JR: Aldosterone pathway blockade to prevent atrial fibrillation: A systematic review and meta-analysis. Int J Cardiol. 231:155–161. 2017. View Article : Google Scholar : PubMed/NCBI

129 

Rienstra M, Hobbelt AH, Alings M, Tijssen JGP, Smit MD, Brügemann J, Geelhoed B, Tieleman RG, Hillege HL, Tukkie R, et al: Targeted therapy of underlying conditions improves sinus rhythm maintenance in patients with persistent atrial fibrillation: Results of the RACE 3 trial. Eur Heart J. 39:2987–2896. 2018. View Article : Google Scholar : PubMed/NCBI

130 

Schneider MP, Hua TA, Böhm M, Wachtell K, Kjeldsen SE and Schmieder RE: Prevention of atrial fibrillation by Renin-Angiotensin system inhibition a meta-analysis. J Am Coll Cardiol. 55:2299–2307. 2010. View Article : Google Scholar : PubMed/NCBI

131 

European Heart Rhythm Association; European Association for Cardio-Thoracic Surgery; Camm AJ, Kirchhof P, Lip GY, Schotten U, Savelieva I, Ernst S, Van Gelder IC, Al-Attar N, et al: Guidelines for the management of atrial fibrillation: The task force for the management of atrial fibrillation of the European society of cardiology (ESC). Eur Heart J. 31:2369–2429. 2010. View Article : Google Scholar : PubMed/NCBI

132 

Chaugai S, Meng WY and Ali Sepehry A: Effects of RAAS blockers on atrial fibrillation prophylaxis: An updated systematic review and meta-analysis of randomized controlled trials. J Cardiovasc Pharmacol Ther. 21:388–404. 2016. View Article : Google Scholar : PubMed/NCBI

133 

GISSI-AF Investigators; Disertori M, Latini R, Barlera S, Franzosi MG, Staszewsky L, Maggioni AP, Lucci D, Di Pasquale G and Tognoni G: Valsartan for prevention of recurrent atrial fibrillation. N Engl J Med. 360:1606–1617. 2009. View Article : Google Scholar : PubMed/NCBI

134 

Tveit A, Grundvold I, Olufsen M, Seljeflot I, Abdelnoor M, Arnesen H and Smith P: Candesartan in the prevention of relapsing atrial fibrillation. Int J Cardiol. 120:85–91. 2007. View Article : Google Scholar

135 

Shiroshita-Takeshita A, Brundel BJ, Burstein B, Leung TK, Mitamura H, Ogawa S and Nattel S: Effects of simvastatin on the development of the atrial fibrillation substrate in dogs with congestive heart failure. Cardiovasc Res. 74:75–84. 2007. View Article : Google Scholar : PubMed/NCBI

136 

Kuhn EW, Liakopoulos OJ, Stange S, Deppe AC, Slottosch I, Choi YH and Wahlers T: Preoperative statin therapy in cardiac surgery: A meta-analysis of 90,000 patients. Eur J Cardiothorac Surg. 45:17–26. 2014. View Article : Google Scholar

137 

Salvador-Montañés O, Gómez-Gallanti A, Garofalo D, Noujaim SF, Peinado R and Filgueiras-Rama D: Polyunsaturated Fatty acids in atrial fibrillation: Looking for the proper candidates. Front Physiol. 3:3702012. View Article : Google Scholar : PubMed/NCBI

138 

Lee KW, Everett TH IV, Rahmutula D, Guerra JM, Wilson E, Ding C and Olgin JE: Pirfenidone prevents the development of a vulnerable substrate for atrial fibrillation in a canine model of heart failure. Circulation. 114:1703–1712. 2006. View Article : Google Scholar : PubMed/NCBI

139 

Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, et al: Management of patients with atrial fibrillation (compilation of 2006 ACCF/AHA/ESC and 2011 ACCF/AHA/HRS recommendations): A report of the American college of cardiology/American heart association task force on practice guidelines. J Am Coll Cardiol. 61:1935–1944. 2013. View Article : Google Scholar : PubMed/NCBI

140 

Holmqvist F, Kesek M, Englund A, Blomström-Lundqvist C, Karlsson LO, Kennebäck G, Poçi D, Samo-Ayou R, Sigurjónsdóttir R, Ringborn M, et al: A decade of catheter ablation of cardiac arrhythmias in Sweden: Ablation practices and outcomes. Eur Heart J. 40:820–830. 2019. View Article : Google Scholar :

141 

Kottkamp H: Human atrial fibrillation substrate: Towards a specific fibrotic atrial cardiomyopathy. Eur Heart J. 34:2731–2738. 2013. View Article : Google Scholar : PubMed/NCBI

142 

Kottkamp H and Schreiber D: The substrate in 'early persistent' atrial fibrillation: Arrhythmia induced, risk factor induced, or from a specific fibrotic atrial cardiomyopathy? JACC Clin Electrophysiol. 2:140–142. 2016. View Article : Google Scholar : PubMed/NCBI

143 

Oakes RS, Badger TJ, Kholmovski EG, Akoum N, Burgon NS, Fish EN, Blauer JJ, Rao SN, DiBella EV, Segerson NM, et al: Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation. 119:1758–1767. 2009. View Article : Google Scholar : PubMed/NCBI

144 

Rolf S, Kircher S, Arya A, Eitel C, Sommer P, Richter S, Gaspar T, Bollmann A, Altmann D, Piedra C, et al: Tailored atrial substrate modification based on low-voltage areas in catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 7:825–833. 2014. View Article : Google Scholar : PubMed/NCBI

145 

Kapa S, Desjardins B, Callans DJ, Marchlinski FE and Dixit S: Contact electroanatomic mapping derived voltage criteria for characterizing left atrial scar in patients undergoing ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 25:1044–1052. 2014. View Article : Google Scholar : PubMed/NCBI

146 

Marrouche NF, Wilber D, Hindricks G, Jais P, Akoum N, Marchlinski F, Kholmovski E, Burgon N, Hu N, Mont L, et al: Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: The DECAAF study. JAMA. 311:498–506. 2014. View Article : Google Scholar : PubMed/NCBI

147 

Canpolat U, Oto A, Hazırolan T, Sunman H, Yorgun H, Şahiner L, Kaya EB and Aytemir K: A prospective DE-MRI study evaluating the role of TGF-β1 in left atrial fibrosis and implications for outcomes of cryoballoon-based catheter ablation: New insights into primary fibrotic atriocardiomyopathy. J Cardiovasc Electrophysiol. 26:251–259. 2015. View Article : Google Scholar

148 

McGann C, Akoum N, Patel A, Kholmovski E, Revelo P, Damal K, Wilson B, Cates J, Harrison A, Ranjan R, et al: Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ Arrhythm Electrophysiol. 7:23–30. 2014. View Article : Google Scholar :

149 

Stiles MK, John B, Wong CX, Kuklik P, Brooks AG, Lau DH, Dimitri H, Roberts-Thomson KC, Wilson L, De Sciscio P, et al: Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: Characterizing the 'second factor'. J Am Coll Cardiol. 53:1182–1191. 2009. View Article : Google Scholar : PubMed/NCBI

150 

Kottkamp H, Berg J, Bender R, Rieger A and Schreiber D: Box isolation of fibrotic areas (BIFA): A patient-tailored substrate modification approach for ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 27:22–30. 2016. View Article : Google Scholar

151 

Yamaguchi T, Tsuchiya T, Nakahara S, Fukui A, Nagamoto Y, Murotani K, Eshima K and Takahashi N: Efficacy of left atrial voltage-based catheter ablation of persistent atrial fibrillation. J Cardiovasc Electrophysiol. 27:1055–1063. 2016. View Article : Google Scholar : PubMed/NCBI

152 

Yagishita A, Gimbel JR, DE Oliveira S, Manyam H, Sparano D, Cakulev I, Mackall J and Arruda M: Long-term outcome of left atrial voltage-guided substrate ablation during atrial fibrillation: A novel adjunctive ablation strategy. J Cardiovasc Electrophysiol. 28:147–155. 2017. View Article : Google Scholar

153 

Jadidi AS, Lehrmann H, Keyl C, Sorrel J, Markstein V, Minners J, Park CI, Denis A, Jaïs P, Hocini M, et al: Ablation of persistent atrial fibrillation targeting low-voltage areas with selective activation characteristics. Circ Arrhythm Electrophysiol. 9:e0029622016.PubMed/NCBI

154 

Yang G, Yang B, Wei Y, Zhang F, Ju W, Chen H, Li M, Gu K, Lin Y, Wang B, et al: Catheter ablation of nonparoxysmal atrial fibrillation using electrophysiologically guided substrate modification during sinus rhythm after pulmonary vein isolation. Circ Arrhythm Electrophysiol. 9:e0033822016. View Article : Google Scholar : PubMed/NCBI

155 

Kottkamp H, Schreiber D, Moser F and Rieger A: Therapeutic approaches to atrial fibrillation ablation targeting atrial fibrosis. JACC Clin Electrophysiol. 3:643–653. 2017. View Article : Google Scholar

156 

Jadidi AS, Cochet H, Shah AJ, Kim SJ, Duncan E, Miyazaki S, Sermesant M, Lehrmann H, Lederlin M, Linton N, et al: Inverse relationship between fractionated electrograms and atrial fibrosis in persistent atrial fibrillation: Combined magnetic resonance imaging and high-density mapping. J Am Coll Cardiol. 62:802–812. 2013. View Article : Google Scholar : PubMed/NCBI

157 

Gal P and Marrouche NF: Magnetic resonance imaging of atrial fibrosis: Redefining atrial fibrillation to a syndrome. Eur Heart J. 38:14–19. 2017. View Article : Google Scholar

158 

Fochler F, Yamaguchi T, Kheirkahan M, Kholmovski EG, Morris AK and Marrouche NF: Late gadolinium enhancement magnetic resonance imaging guided treatment of post-atrial fibrillation ablation recurrent arrhythmia. Circ Arrhythm Electrophysiol. 12:e0071742019. View Article : Google Scholar : PubMed/NCBI

159 

Boyle PM, Zghaib T, Zahid S, Ali RL, Deng D, Franceschi WH, Hakim JB, Murphy MJ, Prakosa A, Zimmerman SL, et al: Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat Biomed Eng. 3:870–879. 2019. View Article : Google Scholar : PubMed/NCBI

160 

Sohns C and Marrouche NF: Atrial fibrillation and cardiac fibrosis. Eur Heart J. 41:1123–1131. 2020. View Article : Google Scholar

161 

Kottkamp H, Bender R and Berg J: Catheter ablation of atrial fibrillation: How to modify the substrate? J Am Coll Cardiol. 65:196–206. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li CY, Zhang JR, Hu WN and Li SN: Atrial fibrosis underlying atrial fibrillation (Review). Int J Mol Med 47: 9, 2021.
APA
Li, C.Y., Zhang, J.R., Hu, W.N., & Li, S.N. (2021). Atrial fibrosis underlying atrial fibrillation (Review). International Journal of Molecular Medicine, 47, 9. https://doi.org/10.3892/ijmm.2020.4842
MLA
Li, C. Y., Zhang, J. R., Hu, W. N., Li, S. N."Atrial fibrosis underlying atrial fibrillation (Review)". International Journal of Molecular Medicine 47.3 (2021): 9.
Chicago
Li, C. Y., Zhang, J. R., Hu, W. N., Li, S. N."Atrial fibrosis underlying atrial fibrillation (Review)". International Journal of Molecular Medicine 47, no. 3 (2021): 9. https://doi.org/10.3892/ijmm.2020.4842
Copy and paste a formatted citation
x
Spandidos Publications style
Li CY, Zhang JR, Hu WN and Li SN: Atrial fibrosis underlying atrial fibrillation (Review). Int J Mol Med 47: 9, 2021.
APA
Li, C.Y., Zhang, J.R., Hu, W.N., & Li, S.N. (2021). Atrial fibrosis underlying atrial fibrillation (Review). International Journal of Molecular Medicine, 47, 9. https://doi.org/10.3892/ijmm.2020.4842
MLA
Li, C. Y., Zhang, J. R., Hu, W. N., Li, S. N."Atrial fibrosis underlying atrial fibrillation (Review)". International Journal of Molecular Medicine 47.3 (2021): 9.
Chicago
Li, C. Y., Zhang, J. R., Hu, W. N., Li, S. N."Atrial fibrosis underlying atrial fibrillation (Review)". International Journal of Molecular Medicine 47, no. 3 (2021): 9. https://doi.org/10.3892/ijmm.2020.4842
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team