|
1
|
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H,
Wang W, Song H, Huang B, Zhu N, et al: Genomic characterisation and
epidemiology of 2019 novel coronavirus: Implications for virus
origins and receptor binding. Lancet. 395:565–574. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He
JX, Liu L, Shan H, Lei CL, Hui DSC, et al: Clinical characteristics
of coronavirus disease 2019 in China. N Engl J Med. 382:1708–1720.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H,
Wu Y, Zhang L, Yu Z, Fang M, et al: Clinical course and outcomes of
critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China:
A single-centered, retrospective, observational study. Lancet
Respir Med. 8:475–481. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gralinski LE and Menachery VD: Return of
the Coronavirus: 2019-nCoV. Viruses. 12:1352020. View Article : Google Scholar :
|
|
5
|
Wang G and Jin X: The progress of 2019
novel coronavirus event in China. J Med Virol. 92:468–472. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fouchier RA, Hartwig NG, Bestebroer TM,
Niemeyer B, de Jong JC, Simon JH and Osterhaus AD: A previously
undescribed coronavirus associated with respiratory disease in
humans. Proc Natl Acad Sci USA. 101:6212–6216. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD,
Jin HJ, Tan KS, Wang DY and Yan Y: The origin, transmission and
clinical therapies on coronavirus disease 2019 (COVID-19)
outbreak-an update on the status. Mil Med Res. 7:112020.
|
|
8
|
Patel S, Rauf A, Khan H and Abu-Izneid T:
Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for
homeostasis and pathologies. Biomed Pharmacother. 94:317–325. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kuba K, Imai Y, Ohto-Nakanishi T and
Penninger JM: Trilogy of ACE2: A peptidase in the renin-angiotensin
system, a SARS receptor, and a partner for amino acid transporters.
Pharmacol Ther. 128:119–128. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hamming I, Cooper ME, Haagmans BL, Hooper
NM, Korstanje R, Osterhaus AD, Timens W, Turner AJ, Navis G and van
Goor H: The emerging role of ACE2 in physiology and disease. J
Pathol. 212:1–11. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kuhn JH, Li W, Choe H and Farzan M:
Angiotensin-converting enzyme 2: A functional receptor for SARS
coronavirus. Cell Mol Life Sci. 61:2738–2743. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Xu X, Chen P, Wang J, Feng J, Zhou H, Li
X, Zhong W and Hao P: Evolution of the novel coronavirus from the
ongoing Wuhan outbreak and modeling of its spike protein for risk
of human transmission. Sci China Life Sci. 63:457–460. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wrapp D, Wang N, Corbett KS, Goldsmith JA,
Hsieh CL, Abiona O, Graham BS and McLellan JS: Cryo-EM structure of
the 2019-nCoV spike in the prefusion conformation. Science.
367:1260–1263. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Tipnis SR, Hooper NM, Hyde R, Karran E,
Christie G and Turner AJ: A human homolog of angiotensin-converting
enzyme. Cloning and functional expression as a
captopril-insensitive carboxypeptidase. J Biol Chem.
275:33238–33243. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Donoghue M, Hsieh F, Baronas E, Godbout K,
Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan
R, et al: A novel angiotensin-converting enzyme-related
carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9.
Circ Res. 87:E1–E9. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Rice GI, Thomas DA, Grant PJ, Turner AJ
and Hooper NM: Evaluation of angiotensin-converting enzyme (ACE),
its homologue ACE2 and neprilysin in angiotensin peptide
metabolism. Biochem J. 383:45–51. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Soubrier F, Alhenc-Gelas F, Hubert C,
Allegrini J, John M, Tregear G and Corvol P: Two putative active
centers in human angiotensin I-converting enzyme revealed by
molecular cloning. Proc Natl Acad Sci USA. 85:9386–9390. 1988.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ehlers MR and Riordan JF:
Angiotensin-converting enzyme: Zinc- and inhibitor-binding
stoichiometries of the somatic and testis isozymes. Biochemistry.
30:7118–7126. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Patel VB, Zhong JC, Grant MB and Oudit GY:
Role of the ACE2/Angiotensin 1-7 axis of the renin-angiotensin
system in heart failure. Circ Res. 118:1313–1326. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Te Riet L, van Esch JH, Roks AJ, van den
Meiracker AH and Danser AH: Hypertension:
Renin-angiotensin-aldosterone system alterations. Circ Res.
116:960–975. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Baig AM, Khaleeq A, Ali U and Syeda H:
Evidence of the COVID-19 virus targeting the CNS: Tissue
distribution, host-virus interaction, and proposed neurotropic
mechanisms. ACS Chem Neurosci. 11:995–998. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Li JW, Han TW, Woodward M, Anderson CS,
Zhou H, Chen YD and Neal B: The impact of 2019 novel coronavirus on
heart injury: A systematic review and meta-analysis. Prog
Cardiovasc Dis. 63:518–524. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hamming I, Timens W, Bulthuis ML, Lely AT,
Navis G and van Goor H: Tissue distribution of ACE2 protein, the
functional receptor for SARS coronavirus. A first step in
understanding SARS pathogenesis. J Pathol. 203:631–637. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hoffmann M, Kleine-Weber H, Schroeder S,
Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH,
Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2
and is blocked by a clinically proven protease inhibitor. Cell.
181:271–280.e8. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yan R, Zhang Y, Li Y, Xia L, Guo Y and
Zhou Q: Structural basis for the recognition of SARS-CoV-2 by
full-length human ACE2. Science. 367:1444–1448. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan
B, Huan Y, Yang P, Zhang Y, Deng W, et al: A crucial role of
angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced
lung injury. Nat Med. 11:875–879. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jiang F, Deng L, Zhang L, Cai Y, Cheung CW
and Xia Z: Review of the clinical characteristics of coronavirus
disease 2019 (COVID-19). J Gen Intern Med. 35:1545–1549. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Bourgonje AR, Abdulle AE, Timens W,
Hillebrands JL, Navis GJ, Gordijn SJ, Bolling MC, Dijkstra G, Voors
AA, Osterhaus AD, et al: Angiotensin-converting enzyme 2 (ACE2),
SARS-CoV-2 and the pathophysiology of coronavirus disease 2019
(COVID-19). J Pathol. 251:228–248. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
da Silva JS, Gabriel-Costa D, Wang H,
Ahmad S, Sun X, Varagic J, Sudo RT, Ferrario CM, Dell Italia LJ,
Sudo GZ and Groban L: Blunting of cardioprotective actions of
estrogen in female rodent heart linked to altered expression of
cardiac tissue chymase and ACE2. J Renin Angiotensin Aldosterone
Syst. 18:14703203177222702017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhou P, Yang XL, Wang XG, Hu B, Zhang L,
Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak
associated with a new coronavirus of probable bat origin. Nature.
579:270–273. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Walls AC, Park YJ, Tortorici MA, Wall A,
McGuire AT and Veesler D: Structure, function, and antigenicity of
the SARS-CoV-2 Spike Glycoprotein. Cell. 181:281–292.e6. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ye R and Liu Z: ACE2 exhibits protective
effects against LPS-induced acute lung injury in mice by inhibiting
the LPS-TLR4 pathway. Exp Mol Pathol. 113:1043502020. View Article : Google Scholar
|
|
33
|
Oudit GY, Kassiri Z, Jiang C, Liu PP,
Poutanen SM, Penninger JM and Butany J: SARS-coronavirus modulation
of myocardial ACE2 expression and inflammation in patients with
SARS. Eur J Clin Invest. 39:618–625. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chen N, Zhou M, Dong X, Qu J, Gong F, Han
Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus pneumonia in
Wuhan, China: A descriptive study. Lancet. 395:507–513. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Inciardi RM, Lupi L, Zaccone G, Italia L,
Raffo M, Tomasoni D, Cani DS, Cerini M, Farina D, Gavazzi E, et al:
Cardiac involvement in a patient with coronavirus disease 2019
(COVID-19). JAMA Cardiol. 5:819–824. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Burrell LM, Risvanis J, Kubota E, Dean RG,
MacDonald PS, Lu S, Tikellis C, Grant SL, Lew RA, Smith AI, et al:
Myocardial infarction increases ACE2 expression in rat and humans.
Eur Heart J. 26:369–375. 322–324. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Qi YF, Zhang J, Wang L, Shenoy V, Krause
E, Oh SP, Pepine CJ, Katovich MJ and Raizada MK:
Angiotensin-converting enzyme 2 inhibits high-mobility group box 1
and attenuates cardiac dysfunction post-myocardial ischemia. J Mol
Med (Berl). 94:37–49. 2016. View Article : Google Scholar
|
|
38
|
Hashimoto T, Perlot T, Rehman A,
Trichereau J, Ishiguro H, Paolino M, Sigl V, Hanada T, Hanada R,
Lipinski S, et al: ACE2 links amino acid malnutrition to microbial
ecology and intestinal inflammation. Nature. 487:477–481. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ferrario CM and Mullick AE: Renin
angiotensin aldosterone inhibition in the treatment of
cardiovascular disease. Pharmacol Res. 125:57–71. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Meng J, Xiao G, Zhang J, He X, Ou M, Bi J,
Yang R, Di W, Wang Z, Li Z, et al: Renin-angiotensin system
inhibitors improve the clinical outcomes of COVID-19 patients with
hypertension. Emerg Microbes Infect. 9:757–760. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Anker SD, Butler J, Khan MS, Abraham WT,
Bauersachs J, Bocchi E, Bozkurt B, Braunwald E, Chopra VK, Cleland
JG, et al: Conducting clinical trials in heart failure during (and
after) the COVID-19 pandemic: An expert consensus position paper
from the heart failure association (HFA) of the European society of
cardiology (ESC). Eur Heart J. 41:2109–2117. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhu N, Zhang D, Wang W, Li X, Yang B, Song
J, Zhao X, Huang B, Shi W, Lu R, et al: A novel coronavirus from
patients with pneumonia in China, 2019. N Engl J Med. 382:727–733.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu
Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
395:497–506. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kim S, Rigatto K, Gazzana MB, Knorst MM,
Richards EM, Pepine CJ and Raizada MK: Altered gut microbiome
profile in patients with pulmonary arterial hypertension.
Hypertension. 75:1063–1071. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Santisteban MM, Kim S, Pepine CJ and
Raizada MK: Brain-gut-bone marrow axis: Implications for
hypertension and related therapeutics. Circ Res. 118:1327–1336.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cheng PK, Wong DA, Tong LK, Ip SM, Lo AC,
Lau CS, Yeung EY and Lim WW: Viral shedding patterns of coronavirus
in patients with probable severe acute respiratory syndrome.
Lancet. 363:1699–1700. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Leung WK, To KF, Chan PK, Chan HL, Wu AK,
Lee N, Yuen KY and Sung JJ: Enteric involvement of severe acute
respiratory syndrome-associated coronavirus infection.
Gastroenterology. 125:1011–1017. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Beli E, Yan Y, Moldovan L, Vieira CP, Gao
R, Duan Y, Prasad R, Bhatwadekar A, White FA, Townsend SD, et al:
Restructuring of the gut microbiome by intermittent fasting
prevents retinopathy and prolongs survival in db/db mice. Diabetes.
67:1867–1879. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Vallianou NG, Stratigou T and Tsagarakis
S: Microbiome and diabetes: Where are we now? Diabetes Res Clin
Pract. 146:111–118. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Budden KF, Gellatly SL, Wood DL, Cooper
MA, Morrison M, Hugenholtz P and Hansbro PM: Emerging pathogenic
links between microbiota and the gut-lung axis. Nat Rev Microbiol.
15:55–63. 2017. View Article : Google Scholar
|
|
51
|
Iyer SN, Lu D, Katovich MJ and Raizada MK:
Chronic control of high blood pressure in the spontaneously
hypertensive rat by delivery of angiotensin type 1 receptor
antisense. Proc Natl Acad Sci USA. 93:9960–9965. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sharma RK, Yang T, Oliveira AC, Lobaton
GO, Aquino V, Kim S, Richards EM, Pepine CJ, Sumners C and Raizada
MK: Microglial cells impact gut microbiota and gut pathology in
angiotensin II-induced hypertension. Circ Res. 124:727–736. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bron PA and Kleerebezem M: Lactic acid
bacteria for delivery of endogenous or engineered therapeutic
molecules. Front microbiol. 9:18212018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Guzik TJ, Mohiddin SA, Dimarco A, Patel V,
Savvatis K, Marelli-Berg FM, Madhur MS, Tomaszewski M, Maffia P,
D'Acquisto F, et al: COVID-19 and the cardiovascular system:
Implications for risk assessment, diagnosis, and treatment options.
Cardiovasc Res. 116:1666–1687. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
South AM, Diz DI and Chappell MC:
COVID-19, ACE2, and the cardiovascular consequences. Am J physiol
Heart Circ physiol. 318:H1084–H1090. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Devaux CA, Rolain JM and Raoult D: ACE2
receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension,
multi-organ failure, and COVID-19 disease outcome. J Microbiol
Immunol Infect. 53:425–435. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li W, Moore MJ, Vasilieva N, Sui J, Wong
SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough
TC, et al: Angiotensin-converting enzyme 2 is a functional receptor
for the SARS coronavirus. Nature. 426:450–454. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ge XY, Li JL, Yang XL, Chmura AA, Z hu G,
E pstein JH, Mazet JK, Hu B, Zhang W, Peng C, et al: Isolation and
characterization of a bat SARS-like coronavirus that uses the ACE2
receptor. Nature. 503:535–538. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Jia HP, Look DC, Shi L, Hickey M, Pewe L,
Netland J, Farzan M, Wohlford-Lenane C, Perlman S and McCray PB Jr:
ACE2 receptor expression and severe acute respiratory syndrome
coronavirus infection depend on differentiation of human airway
epithelia. J Virol. 79:14614–14621. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang J, Zhao S, Liu M, Zhao Z, Xu Y, Wang
P, Lin M, Xu Y, Huang B, Zuo X, et al: ACE2 expression by colonic
epithelial cells is associated with viral infection, immunity and
energy metabolism. medRxiv. 2020–2022. 2020.
|
|
61
|
Cure E and Cumhur Cure M:
Angiotensin-converting enzyme inhibitors and angiotensin receptor
blockers may be harmful in patients with diabetes during COVID-19
pandemic. Diabetes Metab Syndr. 14:349–350. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zeng Y, Zhang B, Zhang X and Yi C:
Clinical characteristics of 9 cancer patients with SARS-CoV-2
infection. Chin Med. 15:472020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
de Abajo FJ, Rodríguez-Martín S, Lerma V,
Mejía-Abril G, Aguilar M, García-Luque A, Laredo L, Laosa O,
Centeno-Soto GA, Ángeles Gálvez M, et al: Use of
renin-angiotensin-aldosterone system inhibitors and risk of
COVID-19 requiring admission to hospital: A case-population study.
Lancet. 395:1705–1714. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhang P, Zhu L, Cai J, Lei F, Qin JJ, Xie
J, Liu YM, Zhao YC, Huang X, Lin L, et al: Association of inpatient
use of angiotensin converting enzyme inhibitors and angiotensin II
receptor blockers with mortality among patients with hypertension
hospitalized with COVID-19. Circ Res. 126:1671–1681. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Daniel M, Bean ZK, Thomas S, Rebecca BA,
Amos Folarin LR, Kevin OG and Rosita Zakeri AM: Treatment with
ACE-inhibitors is associated with less severe disease with
SARS-Covid-19 infection in a multi-site UK acute hospital trust.
NewsRX LLC; pp. 6122020
|
|
66
|
Li J, Wang X, Chen J, Zhang H and Deng A:
Association of renin-angiotensin system inhibitors with severity or
risk of death in patients with hypertension hospitalized for
coronavirus disease 2019 (Covid-19) infection in Wuhan, China. JAMA
Cardiol. 5:825–830. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Alexandre J, Cracowski JL, Richard V and
Bouhanick B: Drugs, COVID-19' working group of the French Society
Of Pharmacology, Therapeutics: Renin-angiotensin-aldosterone system
and COVID-19 infection. Ann Endocrinol (Paris). 81:63–67. 2020.
View Article : Google Scholar
|
|
68
|
Blaising J, Polyak SJ and Pécheur EI:
Arbidol as a broad-spectrum antiviral: An update. Antiviral Res.
107:84–94. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhu Z, Lu Z, Xu T, Chen C, Yang G, Zha T,
Lu J and Xue Y: Arbidol monotherapy is superior to
lopinavir/ritonavir in treating COVID-19. J Infect. 81:e21–e23.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wang Z, Yang B, Li Q, Wen L and Zhang R:
Clinical features of 69 cases with coronavirus disease 2019 in
Wuhan, China. Clin Infect Dis. 71:769–777. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Pécheur EI, Borisevich V, Halfmann P,
Morrey JD, Smee DF, Prichard M, Mire CE, Kawaoka Y, Geisbert TW and
Polyak SJ: The synthetic antiviral drug arbidol inhibits globally
prevalent pathogenic viruses. J Virol. 90:3086–3092. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hulseberg CE, Fénéant L, Szymańska-de Wijs
KM, Kessler Np, Nelson EA, Shoemaker CJ, Schmaljohn CS, Polyak SJ
and White JM: Arbidol and other low-molecular-weight drugs that
inhibit lassa and ebola viruses. J Virol. 93. pp. e02185–18. 2019,
View Article : Google Scholar
|
|
73
|
Xu P, Huang J, Fan Z, Huang W, Qi M, Lin
X, Song W and Yi L: Arbidol/IFN-α2b therapy for patients with
corona virus disease 2019: A retrospective multicenter cohort
study. Microbes Infect. 22:200–205. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Vincent MJ, Bergeron E, Benjannet S,
Erickson BR, Rollin PE, Ksiazek TG, Seidah NG and Nichol ST:
Chloroquine is a potent inhibitor of SARS coronavirus infection and
spread. Virol J. 2:692005. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yao X, Ye F, Zhang M, Cui C, Huang B, Niu
P, Liu X, Zhao L, Dong E, Song C, et al: In vitro antiviral
activity and projection of optimized dosing design of
hydroxychloroquine for the treatment of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 71:732–739.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Multicenter collaboration group of
Department of Science and Technology of Guangdong Province and
Health Commission of Guangdong Province for chloroquine in the
treatment of novel coronavirus pneumonia: Expert consensus on
chloroquine phosphate for the treatment of novel coronavirus
pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 43:185–188. 2020.In
Chinese.
|
|
77
|
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu
M, Shi Z, Hu Z, Zhong W and Xiao G: Remdesivir and chloroquine
effectively inhibit the recently emerged novel coronavirus
(2019-nCoV) in vitro. Cell Res. 30:269–271. 2020. View Article : Google Scholar :
|
|
78
|
Gautret P, Lagier JC, Parola P, Hoang VT,
Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE,
et al: Hydroxychloroquine and azithromycin as a treatment of
COVID-19: Results of an open-label non-randomized clinical trial.
Int J Antimicrob Agents. 56:1059492020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Looareesuwan S, White NJ, Chanthavanich P,
Edwards G, Nicholl DD, Bunch C and Warrell DA: Cardiovascular
toxicity and distribution kinetics of intravenous chloroquine. Br J
Clin Pharmacol. 22:31–36. 1986. View Article : Google Scholar
|
|
80
|
Mackenzie AH: Dose refinements in
long-term therapy of rheumatoid arthritis with antimalarials. Am J
Med. 75:40–45. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhang H, Penninger JM, Li Y, Zhong N and
Slutsky AS: Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2
receptor: Molecular mechanisms and potential therapeutic target.
Intensive Care Med. 46:586–590. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Cortegiani A, Ingoglia G, Ippolito M,
Giarratano A and Einav S: A systematic review on the efficacy and
safety of chloroquine for the treatment of COVID-19. J Crit Care.
57:279–283. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Haschke M, Schuster M, Poglitsch M,
Loibner H, Salzberg M, Bruggisser M, Penninger J and Krähenbühl S:
Pharmacokinetics and pharmacodynamics of recombinant human
angiotensin-converting enzyme 2 in healthy human subjects. Clin
Pharmacokinet 5. 2:783–792. 2013. View Article : Google Scholar
|
|
84
|
Khan A, Benthin C, Zeno B, Albertson TE,
Boyd J, Christie JD, Hall R, Poirier G, Ronco JJ, Tidswell M, et
al: A pilot clinical trial of recombinant human
angiotensin-converting enzyme 2 in acute respiratory distress
syndrome. Crit Care. 21:2342017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Monteil V, Kwon H, Prado P, Hagelkrüys A,
Wimmer RA, Stahl M, Leopoldi A, Garreta E, Hurtado Del pozo C,
Prosper F, et al: Inhibition of SARS-CoV-2 infections in engineered
human tissues using clinical-grade soluble human ACE2. Cell.
181:905–913.e7. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Patel VB, Clarke N, Wang Z, Fan D,
Parajuli N, Basu R, Putko B, Kassiri Z, Turner AJ and Oudit GY:
Angiotensin II induced proteolytic cleavage of myocardial ACE2 is
mediated by TACE/ADAM-17: A positive feedback mechanism in the RAS.
J Mol Cell Cardiol. 66:167–176. 2014. View Article : Google Scholar
|
|
87
|
Agata J, Ura N, Yoshida H, Shinshi Y,
Sasaki H, Hyakkoku M, Taniguchi S and Shimamoto K: Olmesartan is an
angiotensin II receptor blocker with an inhibitory effect on
angiotensin-converting enzyme. Hypertens Res. 29:865–874. 2006.
View Article : Google Scholar
|
|
88
|
Igase M, Strawn WB, Gallagher PE, Geary RL
and Ferrario CM: Angiotensin II AT1 receptors regulate ACE2 and
angiotensin-(1-7) expression in the aorta of spontaneously
hypertensive rats. Am J physiol Heart Circ physiol.
289:H1013–H1019. 2005. View Article : Google Scholar
|
|
89
|
Ferrario CM, Jessup J, Chappell MC,
Averill DB, Brosnihan KB, Tallant EA, Diz DI and Gallagher PE:
Effect of angiotensin-converting enzyme inhibition and angiotensin
II receptor blockers on cardiac angiotensin-converting enzyme 2.
Circulation. 111:2605–2610. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Sukumaran V, Tsuchimochi H, Tatsumi E,
Shirai M and Pearson JT: Azilsartan ameliorates diabetic
cardiomyopathy in young db/db mice through the modulation of
ACE-2/ANG 1-7/Mas receptor cascade. Biochem Pharmacol. 144:90–99.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Sukumaran V, Veeraveedu PT, Lakshmanan AP,
Gurusamy N, Yamaguchi K, Ma M, Suzuki K, Kodama M and Watanabe K:
Olmesartan medoxomil treatment potently improves cardiac
myosin-induced dilated cardiomyopathy via the modulation of ACE-2
and ANG 1-7 mas receptor. Free Radic Res. 46:850–860. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kocks MJ, Lely AT, Boomsma F, de Jong PE
and Navis G: Sodium status and angiotensin-converting enzyme
inhibition: Effects on plasma angiotensin-(1-7) in healthy man. J
Hypertens. 23:597–602. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Ishiyama Y, Gallagher PE, Averill DB,
Tallant EA, Brosnihan KB and Ferrario CM: Upregulation of
angiotensin-converting enzyme 2 after myocardial infarction by
blockade of angiotensin II receptors. Hypertension. 43:970–976.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Tikoo K, Patel G, Kumar S, Karpe PA,
Sanghavi M, Malek V and Srinivasan K: Tissue specific up regulation
of ACE2 in rabbit model of atherosclerosis by atorvastatin: Role of
epigenetic histone modifications. Biochem pharmacol. 93:343–351.
2015. View Article : Google Scholar
|
|
95
|
Shin YH, Min JJ, Lee JH, Kim EH, Kim GE,
Kim MH, Lee JJ and Ahn HJ: The effect of fluvastatin on cardiac
fibrosis and angiotensin-converting enzyme-2 expression in
glucose-controlled diabetic rat hearts. Heart Vessels. 32:618–627.
2017. View Article : Google Scholar
|
|
96
|
Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan
B, Yang P, Sarao R, Wada T, Leong-poi H, et al:
Angiotensin-converting enzyme 2 protects from severe acute lung
failure. Nature. 436:112–116. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Kuba K, Imai Y, Rao S, Jiang C and
Penninger JM: Lessons from SARS: Control of acute lung failure by
the SARS receptor ACE2. J Mol Med (Berl). 84:814–820. 2006.
View Article : Google Scholar
|
|
98
|
Huentelman MJ, Zubcevic J, Hernández prada
JA, Xiao X, Dimitrov DS, Raizada MK and Ostrov DA: Structure-based
discovery of a novel angiotensin-converting enzyme 2 inhibitor.
Hypertension. 44:903–906. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lo CS, Liu F, Shi Y, Maachi H, Chenier I,
Godin N, Filep JG, Ingelfinger JR, Zhang SL and Chan JS: Dual RAS
blockade normalizes angiotensin-converting enzyme-2 expression and
prevents hypertension and tubular apoptosis in Akita
angiotensinogen-transgenic mice. Am J Physiol Renal Physiol.
302:F840–F852. 2012. View Article : Google Scholar :
|
|
100
|
Lusvarghi S and Bewley CA: Griffithsin: An
antiviral lectin with outstanding therapeutic potential. Viruses.
8:2962016. View Article : Google Scholar :
|
|
101
|
O'Keefe BR, Giomarelli B, Barnard DL,
Shenoy SR, Chan PK, McMahon JB, Palmer KE, Barnett BW, Meyerholz
DK, Wohlford-Lenane CL and McCray PB Jr: Broad-spectrum in vitro
activity and in vivo efficacy of the antiviral protein griffithsin
against emerging viruses of the family Coronaviridae. J Virol.
84:2511–2521. 2010. View Article : Google Scholar :
|
|
102
|
Mori T, O'Keefe BR, Sowder RC II, Bringans
S, Gardella R, Berg S, Cochran P, Turpin JA, Buckheit RW Jr,
McMahon JB and Boyd MR: Isolation and characterization of
griffithsin, a novel HIV-inactivating protein, from the red alga
Griffithsia sp. J Biol Chem. 280:9345–9353. 2005. View Article : Google Scholar
|
|
103
|
Hu H, Li L, Kao RY, Kou B, Wang Z, Zhang
L, Zhang H, Hao Z, Tsui WH, Ni A, et al: Screening and
identification of linear B-cell epitopes and entry-blocking peptide
of severe acute respiratory syndrome (SARS)-associated coronavirus
using synthetic overlapping peptide library. J Comb Chem.
7:648–656. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Han Dp, Penn-Nicholson A and Cho MW:
Identification of critical determinants on ACE2 for SARS-CoV entry
and development of a potent entry inhibitor. Virology. 350:15–25.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zost SJ, Gilchuk P, Case JB, Binshtein E,
Chen RE, Nkolola JP, Schäfer A, Reidy JX, Trivette A, Nargi RS, et
al: Potently neutralizing and protective human antibodies against
SARS-CoV-2. Nature. 584:443–449. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Huo J, Le Bas A, Ruza RR, Duyvesteyn HME,
Mikolajek H, Malinauskas T, Tan TK, Rijal P, Dumoux M, Ward PN, et
al: Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block
interaction with ACE2. Nat Struct Mol Biol. 27:846–854. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Pinheiro SV, Simões ESA, Sampaio WO, de
Paula RD, Mendes EP, Bontempo ED, Pesquero JB, Walther T, Alenina
N, Bader M, et al: Nonpeptide AVE 0991 is an angiotensin-(1-7)
receptor Mas agonist in the mouse kidney. Hypertension. 44:490–496.
2004. View Article : Google Scholar : PubMed/NCBI
|