|
1
|
Zhou Y, Wang F, Tang J, Nussinov R and
Cheng F: Artificial intelligence in COVID-19 drug repurposing.
Lancet Digit Heal. 2:e667–e676. 2020. View Article : Google Scholar
|
|
2
|
Konstantinidou S and Papanastasiou I:
Repurposing current therapeutic regimens against SARS-CoV-2
(Review). Exp Ther Med. 2:1845–1855. 2020.
|
|
3
|
Sidiropoulou P, Docea AO, Nikolaou V,
Katsarou MS, Spandidos DA, Tsatsakis A, Calina D and Drakoulis N:
Unraveling the roles of vitamin D status and melanin during
COVID-19 (Review). Int J Mol Med. 47:92–100. 2020. View Article : Google Scholar :
|
|
4
|
Zhang R, Wang X, Ni L, Di X, Ma B, Niu S,
Liu C and Reiter RJ: COVID-19: Melatonin as a potential adjuvant
treatment. Life Sci. 250:1175832020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Turek FW and Gillette MU: Melatonin,
sleep, and circadian rhythms: Rationale for development of specific
melatonin agonists. Sleep Med. 5:523–532. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zlotos DP: Recent advances in melatonin
receptor ligands. Arch Pharm (Weinheim). 338:229–247. 2005.
View Article : Google Scholar
|
|
7
|
Jahanban-Esfahlan R, Mehrzadi S, Reiter
RJ, Seidi K, Majidinia M, Baghi HB, Khatami N, Yousefi B and
Sadeghpour A: Melatonin in regulation of inflammatory pathways in
rheumatoid arthritis and osteoarthritis: Involvement of circadian
clock genes. Br J Pharmacol. 175:3230–3238. 2018. View Article : Google Scholar :
|
|
8
|
Kratz EM and Piwowar A: Melatonin,
advanced oxidation protein products and total antioxidant capacity
as seminal parameters of prooxidant-antioxidant balance and their
connection with expression of metalloproteinases in context of male
fertility. J Physiol Pharmacol. 68:659–668. 2017.
|
|
9
|
Olcese JM: Melatonin and female
reproduction: An expanding universe. Front Endocrinol (Lausanne).
11:852020. View Article : Google Scholar
|
|
10
|
Hosseinzadeh A, Javad-Moosavi SA, Reiter
RJ, Yarahmadi R, Ghaznavi H and Mehrzadi S: Oxidative/nitrosative
stress, autophagy and apoptosis as therapeutic targets of melatonin
in idiopathic pulmonary fibrosis. Expert Opin Ther Targets.
22:1049–1061. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hosseinzadeh A, Javad-Moosavi SA, Reiter
RJ, Hemati K, Ghaznavi H and Mehrzadi S: Idiopathic pulmonary
fibrosis (IPF) signaling pathways and protective roles of
melatonin. Life Sci. 201:17–29. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Luchetti F, Canonico B, Betti M,
Arcangeletti M, Pilolli F, Piroddi M, Canesi L, Papa S and Galli F:
Melatonin signaling and cell protection function. FASEB J.
24:3603–3624. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hill SM, Belancio VP, Dauchy RT, Xiang S,
Brimer S, Mao L, Hauch A, Lundberg PW, Summers W, Yuan L, et al:
Melatonin: An inhibitor of breast cancer. Endocr Relat Cancer.
22:R183–R204. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Carlberg C: Gene regulation by melatonin.
Ann N Y Acad Sci. 917:387–396. 2000. View Article : Google Scholar
|
|
15
|
Bahrampour Juybari K, Pourhanifeh MH,
Hosseinzadeh A, Hemati K and Mehrzadi S: Melatonin potentials
against viral infections including COVID-19: Current evidence and
new findings. Virus Res. 287:1981082020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Weaver SC, Ferro C, Barrera R, Boshell J
and Navarro JC: Venezuelan equine encephalitis. Annu Rev Entomol.
49:141–174. 2004. View Article : Google Scholar
|
|
17
|
Schoneboom BA, Lee JS and Grieder FB:
Early expression of IFN-alpha/beta and iNOS in the brains of
Venezuelan equine encephalitis virus-infected mice. J Interferon
Cytokine Res. 20:205–215. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Schoneboom BA, Fultz MJ, Miller TH,
McKinney LC and Glieder FB: Astrocytes as targets for Venezuelan
equine encephalitis virus infection. J Neurovirol. 5:342–354. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Schoneboom BA, Catlin KMK, Marty AM and
Grieder FB: Inflammation is a component of neurodegeneration in
response to Venezuelan equine encephalitis virus infection in mice.
J Neuroimmunol. 109:132–146. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Cain MD, Salimi H, Gong Y, Yang L,
Hamilton SL, Heffernan JR, Hou J, Miller MJ and Klein RS: Virus
entry and replication in the brain precedes blood-brain barrier
disruption during intranasal alphavirus infection. J Neuroimmunol.
308:118–130. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Keck F, Kortchak S, Bakovic A, Roberts B,
Agrawal N and Narayanan A: Direct and indirect pro-inflammatory
cytokine response resulting from TC-83 infection of glial cells.
Virulence. 9:1403–1421. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Valero N, Mosquera J, Alcocer S, Bonilla
E, Salazar J and Álvarez-Mon M: Melatonin, minocycline and ascorbic
acid reduce oxidative stress and viral titers and increase survival
rate in experimental Venezuelan equine encephalitis. Brain Res.
1622:368–376. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Montiel M, Bonilla E, Valero N, Mosquera
J, Espina LM, Quiroz Y and Álvarez-Mon M: Melatonin decreases brain
apoptosis, oxidative stress, and CD200 expression and increased
survival rate in mice infected by Venezuelan equine encephalitis
virus. Antivir Chem Chemother. 24:99–108. 2015. View Article : Google Scholar
|
|
24
|
Valero N, MarinaEspina L, Bonilla E and
Mosquera J: Melatonin decreases nitric oxide production and lipid
peroxidation and increases interleukin-1 beta in the brain of mice
infected by the Venezuelan equine encephalomyelitis virus. J Pineal
Res. 42:107–112. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Valero N, Meleán E, Bonilla E, Arias J,
Espina LM, Chacin-Bonilla L, Larreal Y, Maldonado M and Añez F: In
vitro, melatonin treatment decreases nitric oxide levels in murine
splenocytes cultured with the venezuelan equine encephalomyelitis
virus. Neurochem Res. 30:1439–1442. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Tuñõn MJ, San-Miguel B, Crespo I, Laliena
A, Vallejo D, Álvarez M, Prieto J and González-Gallego J: Melatonin
treatment reduces endoplasmic reticulum stress and modulates the
unfolded protein response in rabbits with lethal fulminant
hepatitis of viral origin. J Pineal Res. 55:221–228. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Crespo I, Miguel BS, Laliena A, Álvarez M,
Culebras JM, González-Gallego J and Tuñón MJ: Melatonin prevents
the decreased activity of antioxidant enzymes and activates nuclear
erythroid 2-related factor 2 signaling in an animal model of
fulminant hepatic failure of viral origin. J Pineal Res.
49:193–200. 2010.PubMed/NCBI
|
|
28
|
Verdonschot J, Hazebroek M, Merken J,
Debing Y, Dennert R, Brunner-La Rocca HP and Heymans S: Relevance
of cardiac parvovirus B19 in myocarditis and dilated
cardiomyopathy: Review of the literature. Eur J Heart Fail.
18:1430–1441. 2016. View
Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kühl U, Pauschinger M, Seeberg B, Lassner
D, Noutsias M, Poller W and Schultheiss HP: Viral persistence in
the myocardium is associated with progressive cardiac dysfunction.
Circulation. 112:1965–1970. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ouyang H, Zhong J, Lu J, Zhong Y, Hu Y and
Tan Y: Inhibitory effect of melatonin on Mst1 ameliorates
myocarditis through attenuating ER stress and mitochondrial
dysfunction. J Mol Histol. 50:405–415. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Sang Y, Gu X, Pan L, Zhang C, Rong X, Wu
T, Xia T, Li Y, Ge L, Zhang Y and Chu M: Melatonin ameliorates
coxsackievirus B3-induced myocarditis by regulating apoptosis and
autophagy. Front Pharmacol. 9:13842018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Simko F, Hrenak J, Dominguez-Rodriguez A
and Reiter RJ: Melatonin as a putative protection against
myocardial injury in COVID-19 infection. Expert Rev Clin Pharmacol.
13:921–924. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Junaid A, Tang H, van Reeuwijk A,
Abouleila Y, Wuelfroth P, van Duinen V, Stam W, van Zonneveld AJ,
Hankemeier T and Mashaghi A: Ebola hemorrhagic shock
Syndrome-on-a-Chip. iScience. 23:1007652020. View Article : Google Scholar :
|
|
34
|
Martín Giménez VM, Inserra F, Tajer CD,
Mariani J, Ferder L, Reiter RJ and Manucha W: Lungs as target of
COVID-19 infection: Protective common molecular mechanisms of
vitamin D and melatonin as a new potential synergistic treatment.
Life Sci. 254:1178082020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hill-Batorski L, Halfmann P, Neumann G and
Kawaoka Y: The cytoprotective enzyme heme Oxygenase-1 suppresses
ebola virus replication. J Virol. 87:13795–13802. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hazra S, Chaudhuri AG, Tiwary BK and
Chakrabarti N: Matrix metallopeptidase 9 as a host protein target
of chloroquine and melatonin for immunoregulation in COVID-19: A
network-based meta-analysis. Life Sci. 257:1180962020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Habtemariam S, Daglia M, Sureda A,
Selamoglu Z, Fuat Gulhan M and Mohammad Nabavi S: Melatonin and
respiratory diseases: A review. Curr Top Med Chem. 17:467–488.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Shim DW, Shin HJ, Han JW, Ji YE, Jang CH,
Koppula S, Kang TB and Lee KH: A novel synthetic derivative of
melatonin, 5-hydroxy-2'-isobutyl-streptochlorin (HIS), inhibits
inflammatory responses via regulation of TRIF-dependent signaling
and inflammasome activation. Toxicol Appl Pharmacol. 284:227–235.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Reiter RJ, Sharma R, Ma Q,
Dominquez-Rodriguez A, Marik PE and Abreu-Gonzalez P: Melatonin
inhibits COVID-19-induced cytokine storm by reversing aerobic
glycolysis in immune cells: A mechanistic analysis. Med Drug
Discov. 6:1000442020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bouhafs RKL and Jarstrand C: Effects of
antioxidants on surfactant peroxidation by stimulated human
polymorphonuclear leukocytes. Free Radic Res. 36:727–734. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang Y and Li X, Grailer JJ, Wang N, Wang
M, Yao J, Zhong R, Gao GF, Ward PA, Tan DX and Li X: Melatonin
alleviates acute lung injury through inhibiting the NLRP3
inflammasome. J Pineal Res. 60:405–414. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Soussia I Ben, Mies F, Naeije R and
Shlyonsky V: Melatonin down-regulates volume-sensitive chloride
channels in fibroblasts. Pflugers Arch. 464:273–285. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Farhood B, Aliasgharzadeh A, Amini P,
Rezaeyan A, Tavassoli A, Motevaseli E, Shabeeb D, Musa AE and
Najafi M: Mitigation of radiation-induced lung pneumonitis and
fibrosis using metformin and melatonin: A histopathological study.
Medicina (Kaunas). 55:4172019. View Article : Google Scholar
|
|
44
|
Hong S, Kim CY, Lee JE and Seong GJ:
Agmatine protects cultured retinal ganglion cells from tumor
necrosis factor-alpha-induced apoptosis. Life Sci. 84:28–32. 2009.
View Article : Google Scholar
|
|
45
|
Bosco AD, Schedler FB, Colares JR,
Schemitt EG, Hartmann RM, Forgiarini Junior LA, Dias AS and Marroni
NP: Melatonin effects on pulmonary tissue in the experimental model
of hepatopulmonary syndrome. J Bras Pneumol. 45:e201701642019.In
English, Portuguese. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Pita R, Marco-Contelles J, Ramos E, Del
Pino J and Romero A: Toxicity induced by chemical warfare agents:
Insights on the protective role of melatonin. Chem Biol Interact.
206:134–142. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Macit E, Yaren H, Aydin I, Kunak ZI, Yaman
H, Onguru O, Uysal B, Korkmaz A, Turel S and Kenar L: The
protective effect of melatonin and S-methylisothiourea treatments
in nitrogen mustard induced lung toxicity in rats. Environ Toxicol
Pharmacol. 36:1283–1290. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Llinàs L, Peinado VI, Ramon Goñi J,
Rabinovich R, Pizarro S, Rodriguez-Roisin R, Barberà JA and Bastos
R: Similar gene expression profiles in smokers and patients with
moderate COPD. Pulm Pharmacol Ther. 24:32–41. 2011. View Article : Google Scholar
|
|
49
|
Al-Rasheed NM, Fadda L, Attia HA, Sharaf
IA, Mohamed AM and Al-Rasheed NM: Pulmonary prophylactic impact of
melatonin and/or quercetin: A novel therapy for inflammatory
hypoxic stress in rats. Acta Pharm. 67:125–135. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jin H, Wang Y, Zhou L, Liu L, Zhang P,
Deng W and Yuan Y: Melatonin attenuates hypoxic pulmonary
hypertension by inhibiting the inflammation and the proliferation
of pulmonary arterial smooth muscle cells. J Pineal Res.
57:442–450. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hardeland R: Aging, melatonin, and the
pro-and anti-inflammatory networks. Int J Mol Sci. 20:12332019.
View Article : Google Scholar
|
|
52
|
Sehirli AO, Sayiner S and Serakinci N:
Role of melatonin in the treatment of COVID-19; as an adjuvant
through cluster differentiation 147 (CD147). Mol Biol Rep.
47:8229–8233. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wu GC, Peng CK, Liao WI, Pao HP, Huang KL
and Chu SJ: Melatonin receptor agonist protects against acute lung
injury induced by ventilator through up-regulation of IL-10
production. Respir Res. 21:652020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Al-Zaqri N, Pooventhiran T, Alsalme A,
Warad I, John AM and Thomas R: Structural and physico-chemical
evaluation of melatonin and its solution-state excited properties,
with emphasis on its binding with novel coronavirus proteins. J Mol
Liq. 318:1140822020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kleszczyński K, Slominski AT, Steinbrink K
and Reiter RJ: Clinical trials for use of melatonin to fight
against COVID-19 are urgently needed. Nutrients. 12:25612020.
View Article : Google Scholar
|
|
56
|
Wang R, Hozumi Y, Yin C and Wei GW:
Mutations on COVID-19 diagnostic targets. Genomics. 112:5204–5213.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Shariare MH, Parvez MAK, Karikas GA and
Kazi M: The growing complexity of COVID-19 drug and vaccine
candidates: Challenges and critical transitions. J Infect Public
Health. 14:214–220. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shneider A, Kudriavtsev A and Vakhrusheva
A: Can melatonin reduce the severity of COVID-19 pandemic? Int Rev
Immunol. 39:153–162. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Shi J, Xiao Y, Zhang Y, Geng D, Cong D,
Shi KX and Knapp RJ: Challenges of drug development during the
COVID-19 pandemic: Key considerations for clinical trial designs.
Br J Clin Pharmacol. Oct 29–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Parvathaneni V and Gupta V: Utilizing drug
repurposing against COVID-19-Efficacy, limitations, and challenges.
Life Sci. 259:1182752020. View Article : Google Scholar
|
|
61
|
Acuña-Castroviejo D, Escames G, Figueira
JC, de la Oliva P, Borobia AM and Acuña-Fernández C: Clinical trial
to test the efficacy of melatonin in COVID-19. J Pineal Res.
69:e126832020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Bourne RS, Mills GH and Minelli C:
Melatonin therapy to improve nocturnal sleep in critically ill
patients: Encouraging results from a small randomised controlled
trial. Crit Care. 12:R522008. View
Article : Google Scholar : PubMed/NCBI
|
|
63
|
Mistraletti G, Umbrello M, Sabbatini G,
Miori S, Taverna M, Cerri B, Mantovani ES, Formenti P, Spanu P,
D'Agostino A, et al: Melatonin reduces the need for sedation in ICU
patients: A randomized controlled trial. Minerva Anestesiol.
81:1298–1310. 2015.PubMed/NCBI
|
|
64
|
Mistraletti G, Sabbatini G, Taverna M,
Figini MA, Umbrello M, Magni P, Ruscica M, Dozio E, Esposti R,
DeMartini G, et al: Pharmacokinetics of orally administered
melatonin in critically ill patients. J Pineal Res. 48:142–147.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Nordlund JJ and Lerner AB: The effects of
oral melatonin on skin color and on the release of pituitary
hormones. J Clin Endocrinol Metab. 45:768–774. 1977. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Biancatelli RMLC, Berrill M, Mohammed YH
and Marik PE: Melatonin for the treatment of sepsis: The scientific
rationale. J Thorac Dis. 12(Suppl 1): S54–S65. 2020. View Article : Google Scholar
|
|
67
|
Herrera EA and González-Candia A: Comment
on melatonin as a potential adjuvant treatment for COVID-19. Life
Sci. 253:1177392020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Moghadam SO: A review on currently
available potential therapeutic options for covid-19. Int J Gen
Med. 13:443–467. 2020. View Article : Google Scholar
|
|
69
|
Barchas J, DaCosta F and Spector S: Acute
Pharmacology of melatonin. Nature. 214:919–920. 1967. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Papavasiliou PS, Cotzias GC, Duby SE,
Steck AJ, Bell M and Lawrence WH: Melatonin and Parkinsonism. JAMA.
221:881972. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Pandi-Perumal SR, Cardinali DP, Reiter RJ
and Brown GM: Low melatonin as a contributor to SARS-CoV-2 disease.
Melatonin Res. 3:558–576. 2020. View Article : Google Scholar
|
|
72
|
Öztürk G, Akbulut KG and Güney Ş:
Melatonin, aging, and COVID-19: Could melatonin be beneficial for
COVID-19 treatment in the elderly? Turkish J Med Sci. 50:1504–1512.
2020. View Article : Google Scholar
|
|
73
|
EU Clinical Trials Register:
Eudract_number: 2020-001808-42. https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001808-42/ES.
Accessed December 5, 2020.
|
|
74
|
Rodríguez-Rubio M, Figueira JC,
Acuña-Castroviejo D, Borobia AM, Escames G and de La Oliva P: A
phase II, single-center, double-blind, randomized
placebo-controlled trial to explore the efficacy and safety of
intravenous melatonin in patients with COVID-19 admitted to the
intensive care unit (MelCOVID study): A structured summary of a
study protocol for a randomized controlled trial. Trials.
21:6992020. View Article : Google Scholar
|
|
75
|
EU Clinical Trials Register:
Eudract_number: 2020-001530-35. https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001530-35/ES.
Accessed December 5, 2020.
|
|
76
|
ClinicalTrials.gov: Safety and Efficacy of
Melatonin in Outpatients Infected With COVID-19. https://clinicaltrials.gov/ct2/show/NCT04474483?term=melatonin&cond=Covid19&draw=2&rank=1.
Accessed December 5, 2020.
|
|
77
|
ClinicalTrials.gov: Selective Estrogen
Modulation and Melatonin in Early COVID-19. https://clinicaltrials.gov/ct2/show/NCT04531748?term=melatonin&cond=Covid19&draw=2&rank=2.
December 5, 2020.
|
|
78
|
ClinicalTrials.gov: Evaluation of
Therapeutic Effects of Melatonin by Inhibition of NLRP3
Inflammasome in COVID19 Patients. https://clinicaltrials.gov/ct2/show/NCT04409522?term=melatonin&cond=Covid19&draw=1&rank=3.
Accessed December 5, 2020.
|
|
79
|
ClinicalTrials.gov: Efficacy of
Intravenous Melatonin on Mortality in Adult Patients Admitted to
the Intensive Care Unit With COVID-19. https://clinicaltrials.gov/ct2/show/NCT04568863?term=melatonin&cond=Covid19&draw=1&rank=4.
Accessed December 5, 2020.
|
|
80
|
ClinicalTrials.gov: The Effect of
Melatonin and Vitamin C on COVID-19. https://clinicaltrials.gov/ct2/show/NCT04530539?term=melatonin&cond=Covid19&draw=1&rank=5.
Accessed December 5, 2020.
|
|
81
|
ClinicalTrials.gov: Melatonin Agonist on
Hospitalized Patients With Confirmed or Suspected COVID-19.
https://clinicaltrials.gov/ct2/show/NCT04470297?term=melatonin&cond=Covid19&draw=1&rank=6.
Accessed December 5, 2020.
|
|
82
|
ClinicalTrials.gov: Efficacy of Melatonin
in the Prophylaxis of Coronavirus Disease 2019 (COVID-19) Among
Healthcare Workers. https://clinicaltrials.gov/ct2/show/NCT04353128?term=melatonin&cond=Covid19&draw=1&rank=7.
Accessed December 5, 2020.
|
|
83
|
Zhou Y, Hou Y, Shen J, Mehra R, Kallianpur
A, Culver DA, Gack MU, Farha S, Zein J, Comhair S, et al: A network
medicine approach to investigation and population-based validation
of disease manifestations and drug repurposing for COVID-19. PLoS
Biol. 18:e30009702020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
ClinicalTrials.gov: Antioxidants as
Adjuvant Therapy to Standard Therapy in Patients With COVID-19.
https://clinicaltrials.gov/ct2/show/NCT04570254?term=melatonin&cond=Covid19&draw=1&rank=8.
Accessed December 5, 2020.
|
|
85
|
Hassaniazad M, Bazram A, Hassanipour S and
Fathalipour M: Evaluation of the efficacy and safety of favipiravir
and interferon compared to lopinavir/ritonavir and interferon in
moderately ill patients with COVID-19: A structured summary of a
study protocol for a randomized controlled trial. Trials.
21:8862020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
ClinicalTrials.gov: Search of:
Melatonin|Covid19-List Results. https://clinicaltrials.gov/ct2/results?recrs=&cond=Covid19&term=melatonin&cntry=&state=&city=&dist=.
Accessed December 5, 2020.
|
|
87
|
EU Clinical Trials Register: Search for
covid-19 and melatonin. https://www.clinicaltrialsregister.eu/ctr-search/search?query=covid-19+and+melatonin.
Accessed December 5, 2020.
|