Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
April-2021 Volume 47 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2021 Volume 47 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role and clinical significance of TGF‑β1 and TGF‑βR1 in malignant tumors (Review)

  • Authors:
    • Junmin Wang
    • Hongjiao Xiang
    • Yifei Lu
    • Tao Wu
  • View Affiliations / Copyright

    Affiliations: Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 55
    |
    Published online on: February 15, 2021
       https://doi.org/10.3892/ijmm.2021.4888
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The appearance and growth of malignant tumors is a complicated process that is regulated by a number of genes. In recent years, studies have revealed that the transforming growth factor‑β (TGF‑β) signaling pathway serves an important role in cell cycle regulation, growth and development, differentiation, extracellular matrix synthesis and immune response. Notably, two members of the TGF‑β signaling pathway, TGF‑β1 and TGF‑β receptor 1 (TGF‑βR1), are highly expressed in a variety of tumors, such as breast cancer, colon cancer, gastric cancer and hepatocellular carcinoma. Moreover, an increasing number of studies have demonstrated that TGF‑β1 and TGF‑βR1 promote proliferation, migration and epithelial‑mesenchymal transition of tumor cells by activating other signaling pathways, signaling molecules or microRNAs (miRs), such as the NF‑κB signaling pathway and miR‑133b. In addition, some inhibitors targeting TGF‑β1 and TGF‑βR1 have exhibited positive effects in in vitro experiments. The present review discusses the association between TGF‑β1 or TGF‑βR1 and tumors, and the development of some inhibitors, hoping to provide more approaches to help identify novel tumor markers to restrain and cure tumors.
View Figures

Figure 1

Figure 2

View References

1 

Massagué J: TGF-β signaling in development and disease. FEBS Lett. 586:18332012. View Article : Google Scholar

2 

Hata A and Chen YG: TGF-beta signaling from receptors to smads. Cold Spring Harb Perspect Biol. 8:a0220612016. View Article : Google Scholar

3 

Zhang Y, Alexander PB and Wang XF: TGF-beta family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol. 9:a0221452017. View Article : Google Scholar

4 

Wu MY and Hill CS: Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell. 16:329–343. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Ma W, Qin Y, Chapuy B and Lu C: LRRC33 is a novel binding and potential regulating protein of TGF-β1 function in human acute myeloid leukemia cells. PLoS One. 14:e02134822019. View Article : Google Scholar

6 

Maishi N and Hida K: Tumor endothelial cells accelerate tumor metastasis. Cancer Sci. 108:1921–1926. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Selleri S, Rumio C, Sabatino M, Marincola FM and Wang E: Tumor microenvironment and the immune response. Surg Oncol Clin N Am. 16:737–753. vii–viii. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Yamamoto T, Akisue T, Marui T, Fujita I, Matsumoto K, Hitora T, Kawamoto T, Nagira K, Nakatani T and Kurosaka M: Expression of transforming growth factor beta isoforms and their receptors in malignant fibrous histiocytoma of soft tissues. Clin Cancer Res. 10:5804–5807. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Dropmann A, Dediulia T, Breitkopf-Heinlein K, Korhonen H, Janicot M, Weber SN, Thomas M, Piiper A, Bertran E, Fabregat I, et al: TGF-β1 and TGF-β2 abundance in liver diseases of mice and men. Oncotarget. 7:19499–19518. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Ebert MP, Yu J, Miehlke S, Fei G, Lendeckel U, Ridwelski K, Stolte M, Bayerdörffer E and Malfertheiner P: Expression of transforming growth factor beta-1 in gastric cancer and in the gastric mucosa of first-degree relatives of patients with gastric cancer. Br J Cancer. 82:1795–1800. 2000. View Article : Google Scholar : PubMed/NCBI

11 

Andersson J, Tran DQ, Pesu M, Davidson TS, Ramsey H, O'Shea JJ and Shevach EM: CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-beta-dependent manner. J Exp Med. 205:1975–1981. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Peng L, Yuan XQ, Zhang CY, Ye F, Zhou HF, Li WL, Liu ZY, Zhang YQ, Pan X and Li GC: High TGF-beta1 expression predicts poor disease prognosis in hepatocellular carcinoma patients. Oncotarget. 8:34387–34397. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Neuzillet C, de Gramont A, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S and Raymond E: Perspectives of TGF-β inhibition in pancreatic and hepatocellular carcinomas. Oncotarget. 5:78–94. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Papageorgis P: TGFbeta signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J Oncol. 2015:5871932015. View Article : Google Scholar

15 

Vander Ark A, Cao J and Li X: TGF-β receptors: In and beyond TGF-β signaling. Cell Signal. 52:112–120. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Baxter SW, Choong DY, Eccles DM and Campbell IG: Transforming growth factor beta receptor 1 polyalanine polymorphism and exon 5 mutation analysis in breast and ovarian cancer. Cancer Epidemiol Biomarkers Prev. 11:211–214. 2002.PubMed/NCBI

17 

Liu J, Johnson K, Li J, Piamonte V, Steffy BM, Hsieh MH, Ng N, Zhang J, Walker JR, Ding S, et al: Regenerative phenotype in mice with a point mutation in transforming growth factor beta type I receptor (TGFBR1). Proc Natl Acad Sci USA. 108:14560–14565. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Jiang F, Yu Q, Chu Y, Zhu X, Lu W, Liu Q and Wang Q: MicroRNA-98-5p inhibits proliferation and metastasis in non-small cell lung cancer by targeting TGFBR1. Int J Oncol. 54:128–138. 2019.

19 

Grandclement C, Pallandre JR, Valmary Degano S, Viel E, Bouard A, Balland J, Rémy-Martin JP, Simon B, Rouleau A, Boireau W, et al: Neuropilin-2 expression promotes TGF-β1-mediated epithelial to mesenchymal transition in colorectal cancer cells. PLoS One. 6:e204442011. View Article : Google Scholar

20 

He B, Xu T, Pan B, Pan Y, Wang X, Dong J, Sun H, Xu X, Liu X and Wang S: Polymorphisms of TGFBR1, TLR4 are associated with prognosis of gastric cancer in a Chinese population. Cancer Cell Int. 18:1912018. View Article : Google Scholar :

21 

Kim W, Kim E, Lee S, Kim D, Chun J, Park KH, Youn H and Youn B: TFAP2C-mediated upregulation of TGFBR1 promotes lung tumorigenesis and epithelial-mesenchymal transition. Exp Mol Med. 48:e2732016. View Article : Google Scholar : PubMed/NCBI

22 

Zhang L, Song X, Chen X, Wang Q, Zheng X, Wu C and Jiang J: Circular RNA CircCACTIN promotes gastric cancer progression by sponging MiR-331-3p and regulating TGFBR1 expression. Int J Biol Sci. 15:1091–1103. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Knight PG and Glister C: TGF-beta superfamily members and ovarian follicle development. Reproduction. 132:191–206. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Hinck AP, Mueller TD and Springer TA: Structural biology and evolution of the TGF-β family. Cold Spring Harb Perspect Biol. 8. pp. a0221032016, View Article : Google Scholar

25 

Meng XM, Nikolic-Paterson DJ and Lan HY: TGF-β: The master regulator of fibrosis. Nat Rev Nephrol. 12:325–338. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Huang T, David L, Mendoza V, Yang Y, Villarreal M, De K, Sun L, Fang X, López-Casillas F, Wrana JL and Hinck AP: TGF-β signalling is mediated by two autonomously functioning TβRI:TβRII pairs. EMBO J. 30:1263–1276. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Feng XH and Derynck R: A kinase subdomain of transforming growth factor-beta (TGF-beta) type I receptor determines the TGF-beta intracellular signaling specificity. EMBO J. 16:3912–3923. 1997. View Article : Google Scholar : PubMed/NCBI

28 

Lo RS, Chen YG, Shi Y, Pavletich NP and Massagué J: The L3 loop: A structural motif determining specific interactions between SMAD proteins and TGF-beta receptors. EMBO J. 17:996–1005. 1998. View Article : Google Scholar : PubMed/NCBI

29 

Itman C, Mendis S, Barakat B and Loveland KL: All in the family: TGF-beta family action in testis development. Reproduction. 132:233–246. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Attisano L and Wrana JL: Signal transduction by the TGF-beta superfamily. Science. 296:1646–1647. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Huynh LK, Hipolito CJ and Ten Dijke P: A perspective on the development of TGF-beta inhibitors for cancer treatment. Biomolecules. 9:7432019. View Article : Google Scholar

32 

Wu Y, Tran T, Dwabe S, Sarkissyan M, Kim J, Nava M, Clayton S, Pietras R, Farias-Eisner R and Vadgama JV: A83-01 inhibits TGF-β-induced upregulation of Wnt3 and epithelial to mesenchymal transition in HER2-overexpressing breast cancer cells. Breast Cancer Res Treat. 163:449–460. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Katagiri T and Watabe T: Bone morphogenetic proteins. Cold Spring Harb Perspect Biol. 8:a0218992016. View Article : Google Scholar : PubMed/NCBI

34 

Katz LH, Li Y, Chen JS, Muñoz NM, Majumdar A, Chen J and Mishra L: Targeting TGF-β signaling in cancer. Expert Opin Ther Targets. 17:743–760. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Krenning G, Barauna VG, Krieger JE, Harmsen MC and Moonen JR: Endothelial plasticity: Shifting phenotypes through force feedback. Stem Cells Int. 2016:97629592016. View Article : Google Scholar : PubMed/NCBI

36 

Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T and Springer TA: Latent TGF-β structure and activation. Nature. 474:343–349. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Zhang J, Li H, Yi D, Lai C, Wang H, Zou W and Cao B: Knockdown of vascular cell adhesion molecule 1 impedes transforming growth factor beta 1-mediated proliferation, migration, and invasion of endometriotic cyst stromal cells. Reprod Biol Endocrinol. 17:692019. View Article : Google Scholar : PubMed/NCBI

38 

Robertson IB, Horiguchi M, Zilberberg L, Dabovic B, Hadjiolova K and Rifkin DB: Latent TGF-β-binding proteins. Matrix Biol. 47:44–53. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Ehrlich M, Horbelt D, Marom B, Knaus P and Henis YI: Homomeric and heteromeric complexes among TGF-beta and BMP receptors and their roles in signaling. Cell Signal. 23:1424–1432. 2011. View Article : Google Scholar : PubMed/NCBI

40 

ten Dijke P, Miyazono K and Heldin CH: Signaling via hetero-oligomeric complexes of type I and type II serine/threonine kinase receptors. Curr Opin Cell Biol. 8:139–145. 1996. View Article : Google Scholar : PubMed/NCBI

41 

Sun D, Han S, Liu C, Zhou R, Sun W, Zhang Z and Qu J: Microrna-199a-5p functions as a tumor suppressor via suppressing connective tissue growth factor (CTGF) in follicular thyroid carcinoma. Med Sci Monit. 22:1210–1217. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Das R, Xu S, Nguyen TT, Quan X, Choi SK, Kim SJ, Lee EY, Cha SK and Park KS: Transforming growth factor β1-induced apoptosis in podocytes via the extracellular signal-regulated kinase-mammalian target of rapamycin complex 1-NADPH Oxidase 4 axis. J Biol Chem. 290:30830–30842. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Mihaly SR, Ninomiya-Tsuji J and Morioka S: TAK1 control of cell death. Cell Death Differ. 21:1667–1676. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Tvrdík D, Dundr P, Povýsil C, Pytlík R and Planková M: Up-regulation of p21WAF1 expression is mediated by Sp1/Sp3 transcription factors in TGFbeta1-arrested malignant B cells. Med Sci Monit. 12:BR227–BR234. 2006.PubMed/NCBI

45 

Stanilova S, Stanilov N, Julianov A, Manolova I and Miteva L: Transforming growth factor-β1 gene promoter -509C/T polymorphism in association with expression affects colorectal cancer development and depends on gender. PLoS One. 13:e02017752018. View Article : Google Scholar

46 

Al Shareef Z, Kardooni H, Murillo-Garzó V, Domenici G, Stylianakis E, Steel JH, Rabano M, Gorroño-Etxebarria I, Zabalza I, Vivanco MD, et al: Protective effect of stromal Dickkopf-3 in prostate cancer: Opposing roles for TGFBI and ECM-1. Oncogene. 37:5305–5324. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Wang ST, Liu JJ, Wang CZ, Lin B, Hao YY, Wang YF, Gao S, Qi Y, Zhang SL and Iwamori M: Expression and correlation of Lewis y antigen and TGF-beta1 in ovarian epithelial carcinoma. Oncol Rep. 27:1065–1071. 2012. View Article : Google Scholar

48 

Zhang N, Bi X, Zeng Y, Zhu Y, Zhang Z, Liu Y, Wang J, Li X, Bi J and Kong C: TGF-β1 promotes the migration and invasion of bladder carcinoma cells by increasing fascin1 expression. Oncol Rep. 36:977–983. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Wakefield LM, Letterio JJ, Chen T, Danielpour D, Allison RS, Pai LH, Denicoff AM, Noone MH, Cowan KH, O'Shaughnessy JA, et al: Transforming growth factor-beta1 circulates in normal human plasma and is unchanged in advanced metastatic breast cancer. Clin Cancer Res. 1:129–136. 1995.PubMed/NCBI

50 

Shuang ZY, Wu WC, Xu J, Lin G, Liu YC, Lao XM, Zheng L and Li S: Transforming growth factor-β1-induced epithelial-mesenchymal transition generates ALDH-positive cells with stem cell properties in cholangiocarcinoma. Cancer Lett. 354:320–328. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Safina A, Vandette E and Bakin AV: ALK5 promotes tumor angiogenesis by upregulating matrix metalloproteinase-9 in tumor cells. Oncogene. 26:2407–2422. 2007. View Article : Google Scholar

52 

Moore-Smith L and Pasche B: TGFBR1 signaling and breast cancer. J Mammary Gland Biol Neoplasia. 16:89–95. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Rosman DS, Phukan S, Huang CC and Pasche B: TGFBR1*6A enhances the migration and invasion of MCF-7 breast cancer cells through RhoA activation. Cancer Res. 68:1319–1328. 2008. View Article : Google Scholar : PubMed/NCBI

54 

Slattery ML, Lundgreen A, Herrick JS, Wolff RK and Caan BJ: Genetic variation in the transforming growth factor-β signaling pathway and survival after diagnosis with colon and rectal cancer. Cancer. 117:4175–4183. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Javle M, Li Y, Tan D, Dong X, Chang P, Kar S and Li D: Biomarkers of TGF-β signaling pathway and prognosis of pancreatic cancer. PLoS One. 9:e859422014. View Article : Google Scholar

56 

Bian Y, Knobloch TJ, Sadim M, Kaklamani V, Raji A, Yang GY, Weghorst CM and Pasche B: Somatic acquisition of TGFBR1*6A by epithelial and stromal cells during head and neck and colon cancer development. Hum Mol Genet. 16:3128–3135. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Pasche B, Pennison MJ, Jimenez H and Wang M: TGFBR1 and cancer susceptibility. Trans Am Clin Climatol Assoc. 125:300–312. 2014.PubMed/NCBI

58 

Myers ER, Moorman P, Gierisch JM, Havrilesky LJ, Grimm LJ, Ghate S, Davidson B, Mongtomery RC, Crowley MJ, McCrory DC, et al: Benefits and harms of breast cancer screening: A systematic review. JAMA. 314:1615–1634. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Oeffinger KC, Fontham ET, Etzioni R, Herzig A, Michaelson JS, Shih YC, Walter LC, Church TR, Flowers CR, LaMonte SJ, et al: Breast cancer screening for women at average risk: 2015 guide-line update from the American cancer society. JAMA. 314:1599–1614. 2015. View Article : Google Scholar : PubMed/NCBI

60 

DeSantis CE, Ma J, Goding Sauer A, Newman LA and Jemal A: Breast cancer statistics, 2017 racial disparity in mortality by state. CA Cancer J Clin. 67:439–448. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Park SJ, Kim JG, Kim ND, Yang K, Shim JW and Heo K: Estradiol, TGF-β1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett. 11:1895–1902. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Menezes ME, Shen XN, Das SK, Emdad L, Sarkar D and Fisher PB: MDA-9/Syntenin (SDCBP) modulates small GTPases RhoA and Cdc42 via transforming growth factor β1 to enhance epithelial-mesenchymal transition in breast cancer. Oncotarget. 7:80175–80189. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Wang S, Huang M, Wang Z, Wang W, Zhang Z, Qu S and Liu C: MicroRNA-133b targets TGFβ receptor I to inhibit TGF-β-induced epithelial-to-mesenchymal transition and metastasis by suppressing the TGF-β/SMAD pathway in breast cancer. Int J Oncol. 55:1097–1109. 2019.PubMed/NCBI

64 

Lee YS and Dutta A: MicroRNAs in cancer. Annu Rev Pathol. 4:199–227. 2009. View Article : Google Scholar :

65 

Ye Z, Zhao L, Li J, Chen W and Li X: MiR-30d blocked transforming growth Factor beta1-induced epithelial-mesenchymal transition by targeting snail in ovarian cancer cells. Int J Gynecol Cancer. 25:1574–1581. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Dai X, Fang M, Li S, Yan Y, Zhong Y and Du B: MiR-21 is involved in transforming growth factor β1-induced chemoresistance and invasion by targeting PTEN in breast cancer. Oncol Lett. 14:6929–6936. 2017.PubMed/NCBI

67 

Li C, Zhou D, Hong H, Yang S, Zhang L, Li S, Hu P, Ren H, Mei Z and Tang H: TGFβ1-miR-140-5p axis mediated up-regulation of Flap Endonuclease 1 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Aging (Albany NY). 11:5593–5612. 2019. View Article : Google Scholar

68 

Chen Y, Huang S, Wu B, Fang J, Zhu M, Sun L, Zhang L, Zhang Y, Sun M, Guo L and Wang S: Transforming growth factor-β1 promotes breast cancer metastasis by downregulating miR-196a-3p expression. Oncotarget. 8:49110–49122. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Zhao XP, Huang YY, Huang Y, Lei P, Peng JL, Wu S, Wang M, Li WH, Zhu HF and Shen GX: Transforming growth factor-beta1 upregulates the expression of CXC chemokine receptor 4 (CXCR4) in human breast cancer MCF-7 cells. Acta Pharmacol Sin. 31:347–354. 2010. View Article : Google Scholar : PubMed/NCBI

70 

Chen HS, Bai MH, Zhang T, Li GD and Liu M: Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int J Oncol. 46:1730–1738. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Mishra AK, Parish CR, Wong ML, Licinio J and Blackburn AC: Leptin signals via TGFB1 to promote metastatic potential and stemness in breast cancer. PLoS One. 12:e01784542017. View Article : Google Scholar : PubMed/NCBI

72 

Fallone F, Deudon R, Muller C and Vaysse C: Breast cancer, obesity and adipose tissue: A high-risk combination. Med Sci (Paris). 34:1079–1086. 2018.In French. View Article : Google Scholar

73 

Lee K, Kruper L, Dieli-Conwright CM and Mortimer JE: The impact of obesity on breast cancer diagnosis and treatment. Curr Oncol Rep. 21:412019. View Article : Google Scholar : PubMed/NCBI

74 

Catteau X, Simon P and Noël JC: Myofibroblastic stromal reaction and lymph node status in invasive breast carcinoma: Possible role of the TGF-β1/TGF-βR1 pathway. BMC Cancer. 14:4992014. View Article : Google Scholar

75 

Cox DG, Penney K, Guo Q, Hankinson SE and Hunter DJ: TGFB1 and TGFBR1 polymorphisms and breast cancer risk in the Nurses' Health Study. BMC Cancer. 7:1752007. View Article : Google Scholar : PubMed/NCBI

76 

Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Engstrom PF, et al: NCCN guidelines insights: Colon cancer, version 2. 2018.J Natl Compr Canc Netw. 16:359–369. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA and Jemal A: Colorectal cancer statistics, 2020. CA Cancer J Clin. 70:145–164. 2020. View Article : Google Scholar : PubMed/NCBI

78 

Xu Y and Pasche B: TGF-beta signaling alterations and susceptibility to colorectal cancer. Hum Mol Genet. 16(Spec 1 SPEC): R14–R20. 2007. View Article : Google Scholar : PubMed/NCBI

79 

Kong J, Du J, Wang Y, Yang M, Gao J, Wei X, Fang W, Zhan J and Zhang H: Focal adhesion molecule Kindlin-1 mediates activation of TGF-β signaling by interacting with TGF-βRI, SARA and Smad3 in colorectal cancer cells. Oncotarget. 7:76224–76237. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Chen K, Wei H, Ling S and Yi C: Expression and significance of transforming growth factor-beta1 in epithelial ovarian cancer and its extracellular matrix. Oncol Lett. 8:2171–2174. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Engle SJ, Hoying JB, Boivin GP, Ormsby I, Gartside PS and Doetschman T: Transforming growth factor beta1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res. 59:3379–3386. 1999.PubMed/NCBI

82 

Schmidt-Weber CB and Blaser K: Regulation and role of transforming growth factor-beta in immune tolerance induction and inflammation. Curr Opin Immunol. 16:709–716. 2004. View Article : Google Scholar : PubMed/NCBI

83 

Bierie B and Moses HL: Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev. 21:49–59. 2010. View Article : Google Scholar

84 

Vrba L and Futscher BW: Epigenetic silencing of lncRNA MORT in 16 TCGA cancer types. F1000Res. 7:2112018. View Article : Google Scholar :

85 

Zhou T, Wu L, Zong Z, Ma N, Li Y, Jiang Z, Wang Q and Chen S: Long non-coding RNA mortal obligate RNA transcript inhibits the migration and invasion of colon cancer cells by inactivating transforming growth factor β1. Oncol Lett. 19:1131–1136. 2020.PubMed/NCBI

86 

Townsend PA, Cutress RI, Sharp A, Brimmell M and Packham G: BAG-1: A multifunctional regulator of cell growth and survival. Biochim Biophys Acta. 1603:83–98. 2003.PubMed/NCBI

87 

Skeen VR, Collard TJ, Southern SL, Greenhough A, Hague A, Townsend PA, Paraskeva C and Williams AC: BAG-1 suppresses expression of the key regulatory cytokine transforming growth factor β (TGF-β1) in colorectal tumour cells. Oncogene. 32:4490–4499. 2013. View Article : Google Scholar

88 

Dumond A, Demange L and Pagès G: Neuropilins: Relevant therapeutic targets to improve the treatment of cancers. Med Sci (Paris). 36:487–496. 2020.In French. View Article : Google Scholar

89 

Huang Y, Fang W, Wang Y, Yang W and Xiong B: Transforming growth factor-β1 induces glutathione peroxidase-1 and protects from H2O2-induced cell death in colon cancer cells via the Smad2/ERK1/2/HIF-1α pathway. Int J Mol Med. 29:906–912. 2012.PubMed/NCBI

90 

Lei XG, Cheng WH and McClung JP: Metabolic regulation and function of glutathione peroxidase-1. Annu Rev Nutr. 27:41–61. 2007. View Article : Google Scholar : PubMed/NCBI

91 

Li Y, Zhu G, Zhai H, Jia J, Yang W, Li X and Liu L: Simultaneous stimulation with tumor necrosis factor-α and transforming growth factor-β1 induces epithelial-mesenchymal transition in colon cancer cells via the NF-κB pathway. Oncol Lett. 15:6873–6880. 2018.PubMed/NCBI

92 

Tomsic J, Guda K, Liyanarachchi S, Hampel H, Natale L, Markowitz SD, Tanner SM and de la Chapelle A: Allele-specific expression of TGFBR1 in colon cancer patients. Carcinogenesis. 31:1800–1804. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Zhou R, Huang Y, Cheng B, Wang Y and Xiong B: TGFBR1*6A is a potential modifier of migration and invasion in colorectal cancer cells. Oncol Lett. 15:3971–3976. 2018.PubMed/NCBI

94 

Luyimbazi D, Nelson RA, Choi AH, Li L, Chao J, Sun V, Hamner JB and Kim J: Estimates of conditional survival in gastric cancer reveal a reduction of racial disparities with long-term follow-up. J Gastrointest Surg. 19:251–257. 2015. View Article : Google Scholar

95 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

96 

Pennison M and Pasche B: Targeting transforming growth factor-beta signaling. Curr Opin Oncol. 19:579–585. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Derynck R and Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 425:577–584. 2003. View Article : Google Scholar : PubMed/NCBI

98 

Ijichi H, Ikenoue T, Kato N, Mitsuno Y, Togo G, Kato J, Kanai F, Shiratori Y and Omata M: Systematic analysis of the TGF-beta-Smad signaling pathway in gastrointestinal cancer cells. Biochem Biophys Res Commun. 289:350–357. 2001. View Article : Google Scholar : PubMed/NCBI

99 

Ma GF, Miao Q, Zeng XQ, Luo TC, Ma LL, Liu YM, Lian JJ, Gao H and Chen SY: Transforming growth factor-β1 and -β2 in gastric precancer and cancer and roles in tumor-cell interactions with peripheral blood mononuclear cells in vitro. PLoS One. 8:e542492013. View Article : Google Scholar

100 

Zhou Y, Jin GF, Jiang GJ, Wang HM, Tan YF, Ding WL, Wang LN, Chen WS, Ke Q, Shen J, et al: Correlations of polymorphisms of TGFB1 and TGFBR2 genes to genetic susceptibility to gastric cancer. Ai Zheng. 26:581–585. 2007.In Chinese. PubMed/NCBI

101 

Yanagihara K and Tsumuraya M: Transforming growth factor beta 1 induces apoptotic cell death in cultured human gastric carcinoma cells. Cancer Res. 52:4042–4045. 1992.PubMed/NCBI

102 

Wang KS, Hu ZL, Li JH, Xiao DS and Wen JF: Enhancement of metastatic and invasive capacity of gastric cancer cells by transforming growth factor-beta1. Acta Biochim Biophys Sin (Shanghai). 38:179–186. 2006. View Article : Google Scholar

103 

Takeuchi Y and Nishikawa H: Roles of regulatory T cells in cancer immunity. Int Immunol. 28:401–409. 2016. View Article : Google Scholar : PubMed/NCBI

104 

Deng B, Zhu JM, Wang Y, Liu TT, Ding YB, Xiao WM, Lu GT, Bo P and Shen XZ: Intratumor hypoxia promotes immune tolerance by inducing regulatory T cells via TGF-β1 in gastric cancer. PLoS One. 8:e637772013. View Article : Google Scholar

105 

Lee MS, Kim TY, Kim YB, Lee SY, Ko SG, Jong HS, Kim TY, Bang YJ and Lee JW: The signaling network of transforming growth factor beta1, protein kinase Cdelta, and integrin underlies the spreading and invasiveness of gastric carcinoma cells. Mol Cell Biol. 25:6921–6936. 2005. View Article : Google Scholar : PubMed/NCBI

106 

Zhou H, Wang K, Hu Z and Wen J: TGF-β1 alters microRNA profile in human gastric cancer cells. Chin J Cancer Res. 25:102–111. 2013.PubMed/NCBI

107 

Zhu Y, Kong F, Zhang C, Ma C, Xia H, Quan B and Cui H: CD133 mediates the TGF-β1-induced activation of the PI3K/ERK/P70S6K signaling pathway in gastric cancer cells. Oncol Lett. 14:7211–7216. 2017.

108 

Zhao Y, Xia S, Cao C and Du X: Effect of TGF-β1 on apoptosis of colon cancer cells via the ERK signaling pathway. J BUON. 24:449–455. 2019.PubMed/NCBI

109 

Jin S, Gao J, Qi Y, Hao Y, Li X, Liu Q, Liu J, Liu D, Zhu L and Lin B: TGF-β1 fucosylation enhances the autophagy and mitophagy via PI3K/Akt and Ras-Raf-MEK-ERK in ovarian carcinoma. Biochem Biophys Res Commun. 524:970–976. 2020. View Article : Google Scholar : PubMed/NCBI

110 

Cascione M, Leporatti S, Dituri F and Giannelli G: Transforming growth factor-β promotes morphomechanical effects involved in epithelial to mesenchymal transition in living hepatocellular carcinoma. Int J Mol Sci. 20:1082018. View Article : Google Scholar

111 

Sun SL and Wang XY: TGF-β1 promotes proliferation and invasion of hepatocellular carcinoma cell line HepG2 by activating GLI-1 signaling. Eur Rev Med Pharmacol Sci. 22:7688–7695. 2018.PubMed/NCBI

112 

Qu Z, Feng J, Pan H, Jiang Y, Duan Y and Fa Z: Exosomes derived from HCC cells with different invasion characteristics mediated EMT through TGF-β/Smad signaling pathway. Onco Targets Ther. 12:6897–6905. 2019. View Article : Google Scholar :

113 

Zhang C, Chen B, Jiao A, Li F, Sun N, Zhang G and Zhang J: MiR-663a inhibits tumor growth and invasion by regulating TGF-β1 in hepatocellular carcinoma. BMC Cancer. 18:11792018. View Article : Google Scholar

114 

Tang YH, He GL, Huang SZ, Zhong KB, Liao H, Cai L, Gao Y, Peng ZW and Fu SJ: The long noncoding RNA AK002107 negatively modulates miR-140-5p and targets TGFBR1 to induce epithelial-mesenchymal transition in hepatocellular carcinoma. Mol Oncol. 13:1296–1310. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Zhang Y, Li B, Li X, Tan H, Cheng D and Shi H: An imaging target TGF-β1 for hepatocellular carcinoma in mice. Hell J Nucl Med. 20:76–78. 2017.PubMed/NCBI

116 

Balzarini P, Benetti A, Invernici G, Cristini S, Zicari S, Caruso A, Gatta LB, Berenzi A, Imberti L, Zanotti C, et al: Transforming growth factor-beta1 induces microvascular abnormalities through a down-modulation of neural cell adhesion molecule in human hepatocellular carcinoma. Lab Invest. 92:1297–1309. 2012. View Article : Google Scholar : PubMed/NCBI

117 

Yao S, Tian C, Ding Y, Ye Q, Gao Y, Yang N and Li Q: Down-regulation of Krüppel-like factor-4 by microRNA-135a-5p promotes proliferation and metastasis in hepatocellular carcinoma by transforming growth factor-β1. Oncotarget. 7:42566–42578. 2016. View Article : Google Scholar : PubMed/NCBI

118 

Li W, Liu M, Su Y, Zhou X, Liu Y and Zhang X: The Janus-faced roles of Krüppel-like factor 4 in oral squamous cell carcinoma cells. Oncotarget. 6:44480–44494. 2015. View Article : Google Scholar : PubMed/NCBI

119 

Tian C, Yao S, Liu L, Ding Y, Ye Q, Dong X, Gao Y, Yang N and Li Q: Klf4 inhibits tumor growth and metastasis by targeting microRNA-31 in human hepatocellular carcinoma. Int J Mol Med. 39:47–56. 2017. View Article : Google Scholar

120 

Zhang X, Fan Q, Li Y, Yang Z, Yang L, Zong Z, Wang B, Meng X, Li Q, Liu J and Li H: Transforming growth factor-beta1 suppresses hepatocellular carcinoma proliferation via activation of Hippo signaling. Oncotarget. 8:29785–29794. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Zhang Y, Shi K, Liu H, Chen W, Luo Y, Wei X and Wu Z: MiR-4458 inhibits the epithelial-mesenchymal transition of hepatocellular carcinoma cells by suppressing the TGF-β signaling pathway via targeting TGFBR1. Acta Biochim Biophys Sin (Shanghai). 52:554–562. 2020. View Article : Google Scholar

122 

Perrier ND, Brierley JD and Tuttle RM: Differentiated and anaplastic thyroid carcinoma: Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 68:55–63. 2018. View Article : Google Scholar

123 

Saini S, Tulla K, Maker AV, Burman KD and Prabhakar BS: Therapeutic advances in anaplastic thyroid cancer: A current perspective. Mol Cancer. 17:1542018. View Article : Google Scholar : PubMed/NCBI

124 

Kebebew E: Anaplastic thyroid cancer: Rare, fatal, and neglected. Surgery. 152:1088–1089. 2012. View Article : Google Scholar : PubMed/NCBI

125 

Li Y, Chen D, Hao FY and Zhang KJ: Targeting TGF-β1 and AKT signal on growth and metastasis of anaplastic thyroid cancer cell in vivo. Eur Rev Med Pharmacol Sci. 20:2581–2587. 2016.PubMed/NCBI

126 

Zhang X, Liu L, Deng X, Li D, Cai H, Ma Y, Jia C, Wu B, Fan Y and Lv Z: MicroRNA 483-3p targets Pard3 to potentiate TGF-β1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Oncogene. 38:699–715. 2019. View Article : Google Scholar

127 

Yin Q, Liu S, Dong A, Mi X, Hao F and Zhang K: Targeting transforming growth factor-Beta1 (TGF-β1) inhibits tumorigenesis of anaplastic thyroid carcinoma cells through ERK1/2-NFκB-PUMA signaling. Med Sci Monit. 22:2267–2277. 2016. View Article : Google Scholar : PubMed/NCBI

128 

Zhong J, Liu C, Zhang QH, Chen L, Shen YY, Chen YJ, Zeng X, Zu XY and Cao RX: TGF-β1 induces HMGA1 expression: The role of HMGA1 in thyroid cancer proliferation and invasion. Int J Oncol. 50:1567–1578. 2017. View Article : Google Scholar : PubMed/NCBI

129 

Cui M, Chang Y, Du W, Liu S, Qi J, Luo R and Luo S: Upregulation of lncRNA-ATB by transforming growth factor-β1 (TGF-β1) promotes migration and invasion of papillary thyroid carcinoma cells. Med Sci Monit. 24:5152–5158. 2018. View Article : Google Scholar : PubMed/NCBI

130 

Li T, Zhao N, Lu J, Zhu Q, Liu X, Hao F and Jiao X: Epigallocatechin gallate (EGCG) suppresses epithelial-mesenchymal transition (EMT) and invasion in anaplastic thyroid carcinoma cells through blocking of TGF-β1/Smad signaling pathways. Bioengineered. 10:282–291. 2019. View Article : Google Scholar : PubMed/NCBI

131 

He J, Jin Y, Zhou M, Li X, Chen W, Wang Y, Gu S, Cao Y, Chu C, Liu X and Zou Q: Solute carrier family 35 member F2 is indispensable for papillary thyroid carcinoma progression through activation of transforming growth factor-β type I receptor/apoptosis signal-regulating kinase 1/mitogen-activated protein kinase signaling axis. Cancer Sci. 109:642–655. 2018. View Article : Google Scholar :

132 

Bonnet D: Cancer stem cells: Lessons from leukaemia. Cell Prolif. 38:357–361. 2005. View Article : Google Scholar : PubMed/NCBI

133 

Xie W, Wang X, Du W, Liu W, Qin X and Huang S: Detection of molecular targets on the surface of CD34+CD38-bone marrow cells in myelodysplastic syndromes. Cytometry A. 77:840–848. 2010. View Article : Google Scholar : PubMed/NCBI

134 

Lyengar V and Shimanovsky A: Leukemia. StatPearls Publishing, StatPearls Publishing LLC; Treasure Island, FL: 2020

135 

Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, Reaman GH and Carroll WL: Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: A report from the children's oncology group. J Clin Oncol. 30:1663–1669. 2012. View Article : Google Scholar : PubMed/NCBI

136 

Huang F, Wan J, Hu W and Hao S: Enhancement of anti-leukemia immunity by leukemia-derived exosomes via downregulation of TGF-β1 expression. Cell Physiol Biochem. 44:240–254. 2017. View Article : Google Scholar

137 

Geyh S, Rodríguez-Paredes M, Jäger P, Koch A, Bormann F, Gutekunst J, Zilkens C, Germing U, Kobbe G, Lyko F, et al: Transforming growth factor β1-mediated functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia. Haematologica. 103:1462–1471. 2018. View Article : Google Scholar : PubMed/NCBI

138 

Taetle R, Payne C, Dos Santos B, Russell M and Segarini P: Effects of transforming growth factor beta 1 on growth and apoptosis of human acute myelogenous leukemia cells. Cancer Res. 53:3386–3393. 1993.PubMed/NCBI

139 

Verheyden S and Demanet C: NK cell receptors and their ligands in leukemia. Leukemia. 22:249–257. 2008. View Article : Google Scholar

140 

Nursal AF, Pehlivan M, Sahin HH and Pehlivan S: The Associations of IL-6, IFN-γ, TNF-α, IL-10, and TGF-β1 functional variants with acute myeloid leukemia in turkish patients. Genet Test Mol Biomarkers. 20:544–551. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Rouce RH, Shaim H, Sekine T, Weber G, Ballard B, Ku S, Barese C, Murali V, Wu MF, Liu H, et al: The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia. 30:800–811. 2016. View Article : Google Scholar

142 

Gong Y, Zhao M, Yang W, Gao A, Yin X, Hu L, Wang X, Xu J, Hao S, Cheng T and Cheng H: Megakaryocyte-derived excessive transforming growth factor β1 inhibits proliferation of normal hematopoietic stem cells in acute myeloid leukemia. Exp Hematol. 60:40–46.e2. 2018. View Article : Google Scholar

143 

Wang H, Wu Q, Zhang Y, Zhang HN, Wang YB and Wang W: TGF-β1-induced epithelial-mesenchymal transition in lung cancer cells involves upregulation of miR-9 and downregulation of its target, E-cadherin. Cell Mol Biol Lett. 22:222017. View Article : Google Scholar

144 

Xue C, Hu Z, Jiang W, Zhao Y, Xu F, Huang Y, Zhao H, Wu J, Zhang Y, Zhao L, et al: National survey of the medical treatment status for non-small cell lung cancer (NSCLC) in China. Lung Cancer. 77:371–375. 2012. View Article : Google Scholar : PubMed/NCBI

145 

Yano T, Okamoto T, Fukuyama S and Maehara Y: Therapeutic strategy for postoperative recurrence in patients with non-small cell lung cancer. World J Clin Oncol. 5:1048–1054. 2014. View Article : Google Scholar : PubMed/NCBI

146 

Li L, Yan S, Zhang H, Zhang M, Huang G and Chen M: Interaction of hnRNP K with MAP 1B-LC1 promotes TGF-β1-mediated epithelial to mesenchymal transition in lung cancer cells. BMC Cancer. 19:8942019. View Article : Google Scholar

147 

Shi S, Zhao J, Wang J, Mi D and Ma Z: HPIP silencing inhibits TGF-β1-induced EMT in lung cancer cells. Int J Mol Med. 39:479–483. 2017. View Article : Google Scholar : PubMed/NCBI

148 

Zhang HW, Wang EW, Li LX, Yi SH, Li LC, Xu FL, Wang DL, Wu YZ and Nian WQ: A regulatory loop involving miR-29c and Sp1 elevates the TGF-β1 mediated epithelial-to-mesenchymal transition in lung cancer. Oncotarget. 7:85905–85916. 2016. View Article : Google Scholar : PubMed/NCBI

149 

Jiang W, Xu Z, Yu L, Che J, Zhang J and Yang J: MicroRNA-144-3p suppressed TGF-β1-induced lung cancer cell invasion and adhesion by regulating the Src-Akt-Erk pathway. Cell Biol Int. 2019.Epub ahead of print.

150 

Zhao X, Liu Y and Yu S: Long noncoding RNA AWPPH promotes hepatocellular carcinoma progression through YBX1 and serves as a prognostic biomarker. Biochim Biophys Acta Mol Basis Dis. 1863:1805–1816. 2017. View Article : Google Scholar : PubMed/NCBI

151 

Zhu F, Zhang X, Yu Q, Han G, Diao F, Wu C and Zhang Y: LncRNA AWPPH inhibits SMAD4 via EZH2 to regulate bladder cancer progression. J Cell Biochem. 119:4496–4505. 2018. View Article : Google Scholar

152 

Tang L, Wang T, Zhang Y, Zhang J, Zhao H, Wang H, Wu Y and Liu K: Long non-coding RNA AWPPH promotes postoperative distant recurrence in resected non-small cell lung cancer by upregulating transforming growth factor beta 1 (TGF-β1). Med Sci Monit. 25:2535–2541. 2019. View Article : Google Scholar : PubMed/NCBI

153 

Chae DK, Park J, Cho M, Ban E, Jang M, Yoo YS, Kim EE, Baik JH and Song EJ: MiR-195 and miR-497 suppress tumorigenesis in lung cancer by inhibiting SMURF2-induced TGF-β receptor I ubiquitination. Mol Oncol. 13:2663–2678. 2019. View Article : Google Scholar : PubMed/NCBI

154 

Hypes MK, Pirisi L and Creek KE: Mechanisms of decreased expression of transforming growth factor-beta receptor type I at late stages of HPV16-mediated transformation. Cancer Lett. 282:177–186. 2009. View Article : Google Scholar : PubMed/NCBI

155 

Xu F, Zhang J, Hu G, Liu L and Liang W: Hypoxia and TGF-β1 induced PLOD2 expression improve the migration and invasion of cervical cancer cells by promoting epithelial-to-mesenchymal transition (EMT) and focal adhesion formation. Cancer Cell Int. 17:542017. View Article : Google Scholar

156 

Li MY, Liu JQ, Chen DP, Li ZY, Qi B, Yin WJ and He L: p68 prompts the epithelial-mesenchymal transition in cervical cancer cells by transcriptionally activating the TGF-β1 signaling pathway. Oncol Lett. 15:2111–2116. 2018.PubMed/NCBI

157 

Yang L, Yu Y, Xiong Z, Chen H, Tan B and Hu H: Downregulation of SEMA4C inhibit epithelial-mesenchymal transition (EMT) and the invasion and metastasis of cervical cancer cells via inhibiting transforming growth factor-beta 1 (TGF-β1)-induced Hela cells p38 mitogen-activated protein kinase (MAPK) activation. Med Sci Monit. 26:e9181232020. View Article : Google Scholar

158 

Cheng Y, Guo Y, Zhang Y, You K, Li Z and Geng L: MicroRNA-106b is involved in transforming growth factor β1-induced cell migration by targeting disabled homolog 2 in cervical carcinoma. J Exp Clin Cancer Res. 35:112016. View Article : Google Scholar

159 

Finkielstein CV and Capelluto DG: Disabled-2: A modular scaffold protein with multifaceted functions in signaling. Bioessays. 38(Suppl 1): S45–S55. 2016. View Article : Google Scholar : PubMed/NCBI

160 

Tao MZ, Gao X, Zhou TJ, Guo QX, Zhang Q and Yang CW: Effects of TGF-beta1 on the proliferation and apoptosis of human cervical cancer Hela cells in vitro. Cell Biochem Biophys. 73:737–741. 2015. View Article : Google Scholar

161 

Wang H, Wang J, Liu H and Wang X: TGF-β1 activates NOX4/ROS pathway to promote the invasion and migration of cervical cancer cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 35:121–127. 2019.In Chinese. PubMed/NCBI

162 

Deng M, Cai X, Long L, Xie L, Ma H, Zhou Y, Liu S and Zeng C: CD36 promotes the epithelial-mesenchymal transition and metastasis in cervical cancer by interacting with TGF-β. J Transl Med. 17:3522019. View Article : Google Scholar

163 

Wongnoppavich A, Dukaew N, Choonate S and Chairatvit K: Upregulation of maspin expression in human cervical carcinoma cells by transforming growth factor β1 through the convergence of Smad and non-Smad signaling pathways. Oncol Lett. 13:3646–3652. 2017. View Article : Google Scholar : PubMed/NCBI

164 

Ju W, Luo X and Zhang N: LncRNA NEF inhibits migration and invasion of HPV-negative cervical squamous cell carcinoma by inhibiting TGF-β pathway. Biosci Rep. Apr 26–2019.Epub ahead of print. View Article : Google Scholar

165 

Levovitz C, Chen D, Ivansson E, Gyllensten U, Finnigan JP, Alshawish S, Zhang W, Schadt EE, Posner MR, Genden EM, et al: TGFβ receptor 1: An immune susceptibility gene in HPV-associated cancer. Cancer Res. 74:6833–6844. 2014. View Article : Google Scholar : PubMed/NCBI

166 

Zhu L, Zhang Q, Li S, Jiang S, Cui J and Dang G: Interference of the long noncoding RNA CDKN2B-AS1 upregulates miR-181a-5p/TGFβI axis to restrain the metastasis and promote apoptosis and senescence of cervical cancer cells. Cancer Med. 8:1721–1730. 2019. View Article : Google Scholar : PubMed/NCBI

167 

Wu T, Chen X, Peng R, Liu H, Yin P, Peng H, Zhou Y, Sun Y, Wen L, Yi H, et al: Let-7a suppresses cell proliferation via the TGF-β/SMAD signaling pathway in cervical cancer. Oncol Rep. 36:3275–3282. 2016. View Article : Google Scholar : PubMed/NCBI

168 

Fang F, Huang B, Sun S, Xiao M, Guo J, Yi X, Cai J and Wang Z: MiR-27a inhibits cervical adenocarcinoma progression by downregulating the TGF-βRI signaling pathway. Cell Death Dis. 9:3952018. View Article : Google Scholar

169 

Wu M, Chen X, Lou J, Zhang S, Zhang X, Huang L, Sun R, Huang P, Wang F and Pan S: TGF-β1 contributes to CD8+ Treg induction through p38 MAPK signaling in ovarian cancer microenvironment. Oncotarget. 7:44534–44544. 2016. View Article : Google Scholar : PubMed/NCBI

170 

Wang YQ, Li YM, Li X, Liu T, Liu XK, Zhang JQ, Guo JW, Guo LY and Qiao L: Hypermethylation of TGF-β1 gene promoter in gastric cancer. World J Gastroenterol. 19:5557–5564. 2013. View Article : Google Scholar : PubMed/NCBI

171 

Ji M, Shi H, Xie Y, Zhao Z, Li S, Chang C, Cheng X and Li Y: Ubiquitin specific protease 22 promotes cell proliferation and tumor growth of epithelial ovarian cancer through synergy with transforming growth factor β1. Oncol Rep. 33:133–140. 2015. View Article : Google Scholar

172 

Teng Y, Zhao L, Zhang Y, Chen W and Li X: Id-1, a protein repressed by miR-29b, facilitates the TGFβ1-induced epithelial-mesenchymal transition in human ovarian cancer cells. Cell Physiol Biochem. 33:717–730. 2014. View Article : Google Scholar

173 

Facciabene A, Motz GT and Coukos G: T-regulatory cells: Key players in tumor immune escape and angiogenesis. Cancer Res. 72:2162–2171. 2012. View Article : Google Scholar : PubMed/NCBI

174 

Zhang J, Liu W, Shen F, Ma X, Liu X, Tian F, Zeng W, Xi X and Lin Y: The activation of microRNA-520h-associated TGF-β1/c-Myb/Smad7 axis promotes epithelial ovarian cancer progression. Cell Death Dis. 9:8842018. View Article : Google Scholar

175 

Wang YQ, Qi XW, Wang F, Jiang J and Guo QN: Association between TGFBR1 polymorphisms and cancer risk: A meta-analysis of 35 case-control studies. PLoS One. 7:e428992012. View Article : Google Scholar : PubMed/NCBI

176 

Eli Lilly: Company: A study in participants with diabetic kidney disease. ClinicalTrials.gov. 2010, https://clinicaltrials.gov/ct2/show/NCT01113801. Accessed Sep 17, 2019.

177 

Zhang Q, Hou X, Evans BJ, VanBlaricom JL, Weroha SJ and Cliby WA: LY2157299 monohydrate, a TGF-βR1 inhibitor, suppresses tumor growth and ascites development in ovarian cancer. Cancers (Basel). 10. pp. 2602018, View Article : Google Scholar

178 

Herbertz S, Sawyer JS, Stauber AJ, Gueorguieva I, Driscoll KE, Estrem ST, Cleverly AL, Desaiah D, Guba SC, Benhadji KA, et al: Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther. 9:4479–4499. 2015.PubMed/NCBI

179 

Fujiwara Y, Nokihara H, Yamada Y, Yamamoto N, Sunami K, Utsumi H, Asou H, TakahashI O, Ogasawara K, Gueorguieva I and Tamura T: Phase 1 study of galunisertib, a TGF-beta receptor I kinase inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 76:1143–1152. 2015. View Article : Google Scholar : PubMed/NCBI

180 

Brandes AA, Carpentier AF, Kesari S, Sepulveda-Sanchez JM, Wheeler HR, Chinot O, Cher L, Steinbach JP, Capper D, Specenier P, et al: A Phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol. 18:1146–1156. 2016. View Article : Google Scholar : PubMed/NCBI

181 

Ikeda M, Takahashi H, Kondo S, Lahn MMF, Ogasawara K, Benhadji KA, Fujii H and Ueno H: Phase 1b study of galunisertib in combination with gemcitabine in Japanese patients with metastatic or locally advanced pancreatic cancer. Cancer Chemother Pharmacol. 79:1169–1177. 2017. View Article : Google Scholar : PubMed/NCBI

182 

Rodón J, Carducci M, Sepulveda-Sánchez JM, Azaro A, Calvo E, Seoane J, Braña I, Sicart E, Gueorguieva I, Cleverly A, et al: Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-β receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer. Invest New Drugs. 33:357–370. 2015. View Article : Google Scholar

183 

MedPacto: Dose escalation and proof-of-concept studies of vactosertib (TEW-7197) monotherapy in patients with MDS. ClinicalTrials.gov. 2017, https://clinicaltrials.gov/ct2/show/NCT03074006. Accessed Mar 24, 2020.

184 

MedPacto: First in human dose escalation study of vactosertib (TEW-7197) in subjects with advanced stage solid tumors. ClinicalTrials.gov. 2014, https://clinicaltrials.gov/ct2/show/NCT02160106 Accessed Sep 5, 2019.

185 

Eli Lilly: Company: A study of LY3200882 in participants with solid tumors. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/results/NCT02937272. Accessed Aug 19, 2020.

186 

Callahan JF, Burgess JL, Fornwald JA, Gaster LM, Harling JD, Harrington FP, Heer J, Kwon C, Lehr R, Mathur A, et al: Identification of novel inhibitors of the transforming growth factor beta1 (TGF-beta1) type 1 receptor (ALK5). J Med Chem. 45:999–1001. 2002. View Article : Google Scholar : PubMed/NCBI

187 

Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ and Hill CS: SB-431542 is a potent and specific inhibitor of transforming growth factor-beta super-family type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 62:65–74. 2002. View Article : Google Scholar : PubMed/NCBI

188 

Tanaka H, Shinto O, Yashiro M, Yamazoe S, Iwauchi T, Muguruma K, Kubo N, Ohira M and Hirakawa K: Transforming growth factor β signaling inhibitor, SB-431542, induces maturation of dendritic cells and enhances anti-tumor activity. Oncol Rep. 24:1637–1643. 2010. View Article : Google Scholar : PubMed/NCBI

189 

Melisi D, Ishiyama S, Sclabas GM, Fleming JB, Xia Q, Tortora G, Abbruzzese JL and Chiao PJ: LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol Cancer Ther. 7:829–840. 2008. View Article : Google Scholar : PubMed/NCBI

190 

Zhang ZH, Miao YY, Ke BL, Liu K and Xu X: LY2109761, transforming growth factor β receptor type I and type II dual inhibitor, is a novel approach to suppress endothelial mesenchymal transformation in human corneal endothelial cells. Cell Physiol Biochem. 50:963–972. 2018. View Article : Google Scholar

191 

Tandon M, Salamoun JM, Carder EJ, Farber E, Xu S, Deng F, Tang H, Wipf P and Wang QJ: SD-208, a novel protein kinase D inhibitor, blocks prostate cancer cell proliferation and tumor growth in vivo by inducing G2/M cell cycle arrest. PLoS One. 10:e01193462015. View Article : Google Scholar : PubMed/NCBI

192 

Araujo SC, Maltarollo VG, Almeida MO, Ferreira LL, Andricopulo AD and Honorio KM: Structure-based virtual screening, molecular dynamics and binding free energy calculations of Hit candidates as ALK-5 inhibitors. Molecules. 25:2642020. View Article : Google Scholar :

193 

de Gouville AC, Boullay V, Krysa G, Pilot J, Brusq JM, Loriolle F, Gauthier JM, Papworth SA, Laroze A, Gellibert F and Huet S: Inhibition of TGF-beta signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br J Pharmacol. 145:166–177. 2005. View Article : Google Scholar : PubMed/NCBI

194 

Park CY, Kim DK and Sheen YY: EW-7203, a novel small molecule inhibitor of transforming growth factor-β (TGF-β) type I receptor/activin receptor-like kinase-5, blocks TGF-β1-mediated epithelial-to-mesenchymal transition in mammary epithelial cells. Cancer Sci. 102:1889–1896. 2011. View Article : Google Scholar : PubMed/NCBI

195 

Ehata S, Hanyu A, Fujime M, Katsuno Y, Fukunaga E, Goto K, Ishikawa Y, Nomura K, Yokoo H, Shimizu T, et al: Ki26894, a novel transforming growth factor-beta type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci. 98:127–133. 2007. View Article : Google Scholar

196 

Suzuki E, Kim S, Cheung HK, Corbley MJ, Zhang X, Sun L, Shan F, Singh J, Lee WC, Albelda SM and Ling LE: A novel small-molecule inhibitor of transforming growth factor beta type I receptor kinase (SM16) inhibits murine mesothelioma tumor growth in vivo and prevents tumor recurrence after surgical resection. Cancer Res. 67:2351–2359. 2007. View Article : Google Scholar : PubMed/NCBI

197 

Moore-Smith LD, Isayeva T, Lee JH, Frost A and Ponnazhagan S: Silencing of TGF-β1 in tumor cells impacts MMP-9 in tumor microenvironment. Sci Rep. 7:86782017. View Article : Google Scholar

198 

Li XF, Yan PJ and Shao ZM: Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene. 28:3937–3948. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang J, Xiang H, Lu Y and Wu T: Role and clinical significance of TGF‑β1 and TGF‑βR1 in malignant tumors (Review). Int J Mol Med 47: 55, 2021.
APA
Wang, J., Xiang, H., Lu, Y., & Wu, T. (2021). Role and clinical significance of TGF‑β1 and TGF‑βR1 in malignant tumors (Review). International Journal of Molecular Medicine, 47, 55. https://doi.org/10.3892/ijmm.2021.4888
MLA
Wang, J., Xiang, H., Lu, Y., Wu, T."Role and clinical significance of TGF‑β1 and TGF‑βR1 in malignant tumors (Review)". International Journal of Molecular Medicine 47.4 (2021): 55.
Chicago
Wang, J., Xiang, H., Lu, Y., Wu, T."Role and clinical significance of TGF‑β1 and TGF‑βR1 in malignant tumors (Review)". International Journal of Molecular Medicine 47, no. 4 (2021): 55. https://doi.org/10.3892/ijmm.2021.4888
Copy and paste a formatted citation
x
Spandidos Publications style
Wang J, Xiang H, Lu Y and Wu T: Role and clinical significance of TGF‑β1 and TGF‑βR1 in malignant tumors (Review). Int J Mol Med 47: 55, 2021.
APA
Wang, J., Xiang, H., Lu, Y., & Wu, T. (2021). Role and clinical significance of TGF‑β1 and TGF‑βR1 in malignant tumors (Review). International Journal of Molecular Medicine, 47, 55. https://doi.org/10.3892/ijmm.2021.4888
MLA
Wang, J., Xiang, H., Lu, Y., Wu, T."Role and clinical significance of TGF‑β1 and TGF‑βR1 in malignant tumors (Review)". International Journal of Molecular Medicine 47.4 (2021): 55.
Chicago
Wang, J., Xiang, H., Lu, Y., Wu, T."Role and clinical significance of TGF‑β1 and TGF‑βR1 in malignant tumors (Review)". International Journal of Molecular Medicine 47, no. 4 (2021): 55. https://doi.org/10.3892/ijmm.2021.4888
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team