You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Massagué J: TGF-β signaling in development and disease. FEBS Lett. 586:18332012. View Article : Google Scholar | |
|
Hata A and Chen YG: TGF-beta signaling from receptors to smads. Cold Spring Harb Perspect Biol. 8:a0220612016. View Article : Google Scholar | |
|
Zhang Y, Alexander PB and Wang XF: TGF-beta family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol. 9:a0221452017. View Article : Google Scholar | |
|
Wu MY and Hill CS: Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell. 16:329–343. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Ma W, Qin Y, Chapuy B and Lu C: LRRC33 is a novel binding and potential regulating protein of TGF-β1 function in human acute myeloid leukemia cells. PLoS One. 14:e02134822019. View Article : Google Scholar | |
|
Maishi N and Hida K: Tumor endothelial cells accelerate tumor metastasis. Cancer Sci. 108:1921–1926. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Selleri S, Rumio C, Sabatino M, Marincola FM and Wang E: Tumor microenvironment and the immune response. Surg Oncol Clin N Am. 16:737–753. vii–viii. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Yamamoto T, Akisue T, Marui T, Fujita I, Matsumoto K, Hitora T, Kawamoto T, Nagira K, Nakatani T and Kurosaka M: Expression of transforming growth factor beta isoforms and their receptors in malignant fibrous histiocytoma of soft tissues. Clin Cancer Res. 10:5804–5807. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Dropmann A, Dediulia T, Breitkopf-Heinlein K, Korhonen H, Janicot M, Weber SN, Thomas M, Piiper A, Bertran E, Fabregat I, et al: TGF-β1 and TGF-β2 abundance in liver diseases of mice and men. Oncotarget. 7:19499–19518. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ebert MP, Yu J, Miehlke S, Fei G, Lendeckel U, Ridwelski K, Stolte M, Bayerdörffer E and Malfertheiner P: Expression of transforming growth factor beta-1 in gastric cancer and in the gastric mucosa of first-degree relatives of patients with gastric cancer. Br J Cancer. 82:1795–1800. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Andersson J, Tran DQ, Pesu M, Davidson TS, Ramsey H, O'Shea JJ and Shevach EM: CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-beta-dependent manner. J Exp Med. 205:1975–1981. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Peng L, Yuan XQ, Zhang CY, Ye F, Zhou HF, Li WL, Liu ZY, Zhang YQ, Pan X and Li GC: High TGF-beta1 expression predicts poor disease prognosis in hepatocellular carcinoma patients. Oncotarget. 8:34387–34397. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Neuzillet C, de Gramont A, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S and Raymond E: Perspectives of TGF-β inhibition in pancreatic and hepatocellular carcinomas. Oncotarget. 5:78–94. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Papageorgis P: TGFbeta signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J Oncol. 2015:5871932015. View Article : Google Scholar | |
|
Vander Ark A, Cao J and Li X: TGF-β receptors: In and beyond TGF-β signaling. Cell Signal. 52:112–120. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Baxter SW, Choong DY, Eccles DM and Campbell IG: Transforming growth factor beta receptor 1 polyalanine polymorphism and exon 5 mutation analysis in breast and ovarian cancer. Cancer Epidemiol Biomarkers Prev. 11:211–214. 2002.PubMed/NCBI | |
|
Liu J, Johnson K, Li J, Piamonte V, Steffy BM, Hsieh MH, Ng N, Zhang J, Walker JR, Ding S, et al: Regenerative phenotype in mice with a point mutation in transforming growth factor beta type I receptor (TGFBR1). Proc Natl Acad Sci USA. 108:14560–14565. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang F, Yu Q, Chu Y, Zhu X, Lu W, Liu Q and Wang Q: MicroRNA-98-5p inhibits proliferation and metastasis in non-small cell lung cancer by targeting TGFBR1. Int J Oncol. 54:128–138. 2019. | |
|
Grandclement C, Pallandre JR, Valmary Degano S, Viel E, Bouard A, Balland J, Rémy-Martin JP, Simon B, Rouleau A, Boireau W, et al: Neuropilin-2 expression promotes TGF-β1-mediated epithelial to mesenchymal transition in colorectal cancer cells. PLoS One. 6:e204442011. View Article : Google Scholar | |
|
He B, Xu T, Pan B, Pan Y, Wang X, Dong J, Sun H, Xu X, Liu X and Wang S: Polymorphisms of TGFBR1, TLR4 are associated with prognosis of gastric cancer in a Chinese population. Cancer Cell Int. 18:1912018. View Article : Google Scholar : | |
|
Kim W, Kim E, Lee S, Kim D, Chun J, Park KH, Youn H and Youn B: TFAP2C-mediated upregulation of TGFBR1 promotes lung tumorigenesis and epithelial-mesenchymal transition. Exp Mol Med. 48:e2732016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Song X, Chen X, Wang Q, Zheng X, Wu C and Jiang J: Circular RNA CircCACTIN promotes gastric cancer progression by sponging MiR-331-3p and regulating TGFBR1 expression. Int J Biol Sci. 15:1091–1103. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Knight PG and Glister C: TGF-beta superfamily members and ovarian follicle development. Reproduction. 132:191–206. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Hinck AP, Mueller TD and Springer TA: Structural biology and evolution of the TGF-β family. Cold Spring Harb Perspect Biol. 8. pp. a0221032016, View Article : Google Scholar | |
|
Meng XM, Nikolic-Paterson DJ and Lan HY: TGF-β: The master regulator of fibrosis. Nat Rev Nephrol. 12:325–338. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Huang T, David L, Mendoza V, Yang Y, Villarreal M, De K, Sun L, Fang X, López-Casillas F, Wrana JL and Hinck AP: TGF-β signalling is mediated by two autonomously functioning TβRI:TβRII pairs. EMBO J. 30:1263–1276. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Feng XH and Derynck R: A kinase subdomain of transforming growth factor-beta (TGF-beta) type I receptor determines the TGF-beta intracellular signaling specificity. EMBO J. 16:3912–3923. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Lo RS, Chen YG, Shi Y, Pavletich NP and Massagué J: The L3 loop: A structural motif determining specific interactions between SMAD proteins and TGF-beta receptors. EMBO J. 17:996–1005. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Itman C, Mendis S, Barakat B and Loveland KL: All in the family: TGF-beta family action in testis development. Reproduction. 132:233–246. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Attisano L and Wrana JL: Signal transduction by the TGF-beta superfamily. Science. 296:1646–1647. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Huynh LK, Hipolito CJ and Ten Dijke P: A perspective on the development of TGF-beta inhibitors for cancer treatment. Biomolecules. 9:7432019. View Article : Google Scholar | |
|
Wu Y, Tran T, Dwabe S, Sarkissyan M, Kim J, Nava M, Clayton S, Pietras R, Farias-Eisner R and Vadgama JV: A83-01 inhibits TGF-β-induced upregulation of Wnt3 and epithelial to mesenchymal transition in HER2-overexpressing breast cancer cells. Breast Cancer Res Treat. 163:449–460. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Katagiri T and Watabe T: Bone morphogenetic proteins. Cold Spring Harb Perspect Biol. 8:a0218992016. View Article : Google Scholar : PubMed/NCBI | |
|
Katz LH, Li Y, Chen JS, Muñoz NM, Majumdar A, Chen J and Mishra L: Targeting TGF-β signaling in cancer. Expert Opin Ther Targets. 17:743–760. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Krenning G, Barauna VG, Krieger JE, Harmsen MC and Moonen JR: Endothelial plasticity: Shifting phenotypes through force feedback. Stem Cells Int. 2016:97629592016. View Article : Google Scholar : PubMed/NCBI | |
|
Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T and Springer TA: Latent TGF-β structure and activation. Nature. 474:343–349. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Li H, Yi D, Lai C, Wang H, Zou W and Cao B: Knockdown of vascular cell adhesion molecule 1 impedes transforming growth factor beta 1-mediated proliferation, migration, and invasion of endometriotic cyst stromal cells. Reprod Biol Endocrinol. 17:692019. View Article : Google Scholar : PubMed/NCBI | |
|
Robertson IB, Horiguchi M, Zilberberg L, Dabovic B, Hadjiolova K and Rifkin DB: Latent TGF-β-binding proteins. Matrix Biol. 47:44–53. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ehrlich M, Horbelt D, Marom B, Knaus P and Henis YI: Homomeric and heteromeric complexes among TGF-beta and BMP receptors and their roles in signaling. Cell Signal. 23:1424–1432. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
ten Dijke P, Miyazono K and Heldin CH: Signaling via hetero-oligomeric complexes of type I and type II serine/threonine kinase receptors. Curr Opin Cell Biol. 8:139–145. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Sun D, Han S, Liu C, Zhou R, Sun W, Zhang Z and Qu J: Microrna-199a-5p functions as a tumor suppressor via suppressing connective tissue growth factor (CTGF) in follicular thyroid carcinoma. Med Sci Monit. 22:1210–1217. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Das R, Xu S, Nguyen TT, Quan X, Choi SK, Kim SJ, Lee EY, Cha SK and Park KS: Transforming growth factor β1-induced apoptosis in podocytes via the extracellular signal-regulated kinase-mammalian target of rapamycin complex 1-NADPH Oxidase 4 axis. J Biol Chem. 290:30830–30842. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mihaly SR, Ninomiya-Tsuji J and Morioka S: TAK1 control of cell death. Cell Death Differ. 21:1667–1676. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Tvrdík D, Dundr P, Povýsil C, Pytlík R and Planková M: Up-regulation of p21WAF1 expression is mediated by Sp1/Sp3 transcription factors in TGFbeta1-arrested malignant B cells. Med Sci Monit. 12:BR227–BR234. 2006.PubMed/NCBI | |
|
Stanilova S, Stanilov N, Julianov A, Manolova I and Miteva L: Transforming growth factor-β1 gene promoter -509C/T polymorphism in association with expression affects colorectal cancer development and depends on gender. PLoS One. 13:e02017752018. View Article : Google Scholar | |
|
Al Shareef Z, Kardooni H, Murillo-Garzó V, Domenici G, Stylianakis E, Steel JH, Rabano M, Gorroño-Etxebarria I, Zabalza I, Vivanco MD, et al: Protective effect of stromal Dickkopf-3 in prostate cancer: Opposing roles for TGFBI and ECM-1. Oncogene. 37:5305–5324. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang ST, Liu JJ, Wang CZ, Lin B, Hao YY, Wang YF, Gao S, Qi Y, Zhang SL and Iwamori M: Expression and correlation of Lewis y antigen and TGF-beta1 in ovarian epithelial carcinoma. Oncol Rep. 27:1065–1071. 2012. View Article : Google Scholar | |
|
Zhang N, Bi X, Zeng Y, Zhu Y, Zhang Z, Liu Y, Wang J, Li X, Bi J and Kong C: TGF-β1 promotes the migration and invasion of bladder carcinoma cells by increasing fascin1 expression. Oncol Rep. 36:977–983. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wakefield LM, Letterio JJ, Chen T, Danielpour D, Allison RS, Pai LH, Denicoff AM, Noone MH, Cowan KH, O'Shaughnessy JA, et al: Transforming growth factor-beta1 circulates in normal human plasma and is unchanged in advanced metastatic breast cancer. Clin Cancer Res. 1:129–136. 1995.PubMed/NCBI | |
|
Shuang ZY, Wu WC, Xu J, Lin G, Liu YC, Lao XM, Zheng L and Li S: Transforming growth factor-β1-induced epithelial-mesenchymal transition generates ALDH-positive cells with stem cell properties in cholangiocarcinoma. Cancer Lett. 354:320–328. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Safina A, Vandette E and Bakin AV: ALK5 promotes tumor angiogenesis by upregulating matrix metalloproteinase-9 in tumor cells. Oncogene. 26:2407–2422. 2007. View Article : Google Scholar | |
|
Moore-Smith L and Pasche B: TGFBR1 signaling and breast cancer. J Mammary Gland Biol Neoplasia. 16:89–95. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Rosman DS, Phukan S, Huang CC and Pasche B: TGFBR1*6A enhances the migration and invasion of MCF-7 breast cancer cells through RhoA activation. Cancer Res. 68:1319–1328. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Slattery ML, Lundgreen A, Herrick JS, Wolff RK and Caan BJ: Genetic variation in the transforming growth factor-β signaling pathway and survival after diagnosis with colon and rectal cancer. Cancer. 117:4175–4183. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Javle M, Li Y, Tan D, Dong X, Chang P, Kar S and Li D: Biomarkers of TGF-β signaling pathway and prognosis of pancreatic cancer. PLoS One. 9:e859422014. View Article : Google Scholar | |
|
Bian Y, Knobloch TJ, Sadim M, Kaklamani V, Raji A, Yang GY, Weghorst CM and Pasche B: Somatic acquisition of TGFBR1*6A by epithelial and stromal cells during head and neck and colon cancer development. Hum Mol Genet. 16:3128–3135. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Pasche B, Pennison MJ, Jimenez H and Wang M: TGFBR1 and cancer susceptibility. Trans Am Clin Climatol Assoc. 125:300–312. 2014.PubMed/NCBI | |
|
Myers ER, Moorman P, Gierisch JM, Havrilesky LJ, Grimm LJ, Ghate S, Davidson B, Mongtomery RC, Crowley MJ, McCrory DC, et al: Benefits and harms of breast cancer screening: A systematic review. JAMA. 314:1615–1634. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Oeffinger KC, Fontham ET, Etzioni R, Herzig A, Michaelson JS, Shih YC, Walter LC, Church TR, Flowers CR, LaMonte SJ, et al: Breast cancer screening for women at average risk: 2015 guide-line update from the American cancer society. JAMA. 314:1599–1614. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
DeSantis CE, Ma J, Goding Sauer A, Newman LA and Jemal A: Breast cancer statistics, 2017 racial disparity in mortality by state. CA Cancer J Clin. 67:439–448. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Park SJ, Kim JG, Kim ND, Yang K, Shim JW and Heo K: Estradiol, TGF-β1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett. 11:1895–1902. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Menezes ME, Shen XN, Das SK, Emdad L, Sarkar D and Fisher PB: MDA-9/Syntenin (SDCBP) modulates small GTPases RhoA and Cdc42 via transforming growth factor β1 to enhance epithelial-mesenchymal transition in breast cancer. Oncotarget. 7:80175–80189. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Huang M, Wang Z, Wang W, Zhang Z, Qu S and Liu C: MicroRNA-133b targets TGFβ receptor I to inhibit TGF-β-induced epithelial-to-mesenchymal transition and metastasis by suppressing the TGF-β/SMAD pathway in breast cancer. Int J Oncol. 55:1097–1109. 2019.PubMed/NCBI | |
|
Lee YS and Dutta A: MicroRNAs in cancer. Annu Rev Pathol. 4:199–227. 2009. View Article : Google Scholar : | |
|
Ye Z, Zhao L, Li J, Chen W and Li X: MiR-30d blocked transforming growth Factor beta1-induced epithelial-mesenchymal transition by targeting snail in ovarian cancer cells. Int J Gynecol Cancer. 25:1574–1581. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dai X, Fang M, Li S, Yan Y, Zhong Y and Du B: MiR-21 is involved in transforming growth factor β1-induced chemoresistance and invasion by targeting PTEN in breast cancer. Oncol Lett. 14:6929–6936. 2017.PubMed/NCBI | |
|
Li C, Zhou D, Hong H, Yang S, Zhang L, Li S, Hu P, Ren H, Mei Z and Tang H: TGFβ1-miR-140-5p axis mediated up-regulation of Flap Endonuclease 1 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Aging (Albany NY). 11:5593–5612. 2019. View Article : Google Scholar | |
|
Chen Y, Huang S, Wu B, Fang J, Zhu M, Sun L, Zhang L, Zhang Y, Sun M, Guo L and Wang S: Transforming growth factor-β1 promotes breast cancer metastasis by downregulating miR-196a-3p expression. Oncotarget. 8:49110–49122. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao XP, Huang YY, Huang Y, Lei P, Peng JL, Wu S, Wang M, Li WH, Zhu HF and Shen GX: Transforming growth factor-beta1 upregulates the expression of CXC chemokine receptor 4 (CXCR4) in human breast cancer MCF-7 cells. Acta Pharmacol Sin. 31:347–354. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chen HS, Bai MH, Zhang T, Li GD and Liu M: Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int J Oncol. 46:1730–1738. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mishra AK, Parish CR, Wong ML, Licinio J and Blackburn AC: Leptin signals via TGFB1 to promote metastatic potential and stemness in breast cancer. PLoS One. 12:e01784542017. View Article : Google Scholar : PubMed/NCBI | |
|
Fallone F, Deudon R, Muller C and Vaysse C: Breast cancer, obesity and adipose tissue: A high-risk combination. Med Sci (Paris). 34:1079–1086. 2018.In French. View Article : Google Scholar | |
|
Lee K, Kruper L, Dieli-Conwright CM and Mortimer JE: The impact of obesity on breast cancer diagnosis and treatment. Curr Oncol Rep. 21:412019. View Article : Google Scholar : PubMed/NCBI | |
|
Catteau X, Simon P and Noël JC: Myofibroblastic stromal reaction and lymph node status in invasive breast carcinoma: Possible role of the TGF-β1/TGF-βR1 pathway. BMC Cancer. 14:4992014. View Article : Google Scholar | |
|
Cox DG, Penney K, Guo Q, Hankinson SE and Hunter DJ: TGFB1 and TGFBR1 polymorphisms and breast cancer risk in the Nurses' Health Study. BMC Cancer. 7:1752007. View Article : Google Scholar : PubMed/NCBI | |
|
Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Engstrom PF, et al: NCCN guidelines insights: Colon cancer, version 2. 2018.J Natl Compr Canc Netw. 16:359–369. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA and Jemal A: Colorectal cancer statistics, 2020. CA Cancer J Clin. 70:145–164. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y and Pasche B: TGF-beta signaling alterations and susceptibility to colorectal cancer. Hum Mol Genet. 16(Spec 1 SPEC): R14–R20. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kong J, Du J, Wang Y, Yang M, Gao J, Wei X, Fang W, Zhan J and Zhang H: Focal adhesion molecule Kindlin-1 mediates activation of TGF-β signaling by interacting with TGF-βRI, SARA and Smad3 in colorectal cancer cells. Oncotarget. 7:76224–76237. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen K, Wei H, Ling S and Yi C: Expression and significance of transforming growth factor-beta1 in epithelial ovarian cancer and its extracellular matrix. Oncol Lett. 8:2171–2174. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Engle SJ, Hoying JB, Boivin GP, Ormsby I, Gartside PS and Doetschman T: Transforming growth factor beta1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res. 59:3379–3386. 1999.PubMed/NCBI | |
|
Schmidt-Weber CB and Blaser K: Regulation and role of transforming growth factor-beta in immune tolerance induction and inflammation. Curr Opin Immunol. 16:709–716. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Bierie B and Moses HL: Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev. 21:49–59. 2010. View Article : Google Scholar | |
|
Vrba L and Futscher BW: Epigenetic silencing of lncRNA MORT in 16 TCGA cancer types. F1000Res. 7:2112018. View Article : Google Scholar : | |
|
Zhou T, Wu L, Zong Z, Ma N, Li Y, Jiang Z, Wang Q and Chen S: Long non-coding RNA mortal obligate RNA transcript inhibits the migration and invasion of colon cancer cells by inactivating transforming growth factor β1. Oncol Lett. 19:1131–1136. 2020.PubMed/NCBI | |
|
Townsend PA, Cutress RI, Sharp A, Brimmell M and Packham G: BAG-1: A multifunctional regulator of cell growth and survival. Biochim Biophys Acta. 1603:83–98. 2003.PubMed/NCBI | |
|
Skeen VR, Collard TJ, Southern SL, Greenhough A, Hague A, Townsend PA, Paraskeva C and Williams AC: BAG-1 suppresses expression of the key regulatory cytokine transforming growth factor β (TGF-β1) in colorectal tumour cells. Oncogene. 32:4490–4499. 2013. View Article : Google Scholar | |
|
Dumond A, Demange L and Pagès G: Neuropilins: Relevant therapeutic targets to improve the treatment of cancers. Med Sci (Paris). 36:487–496. 2020.In French. View Article : Google Scholar | |
|
Huang Y, Fang W, Wang Y, Yang W and Xiong B: Transforming growth factor-β1 induces glutathione peroxidase-1 and protects from H2O2-induced cell death in colon cancer cells via the Smad2/ERK1/2/HIF-1α pathway. Int J Mol Med. 29:906–912. 2012.PubMed/NCBI | |
|
Lei XG, Cheng WH and McClung JP: Metabolic regulation and function of glutathione peroxidase-1. Annu Rev Nutr. 27:41–61. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Zhu G, Zhai H, Jia J, Yang W, Li X and Liu L: Simultaneous stimulation with tumor necrosis factor-α and transforming growth factor-β1 induces epithelial-mesenchymal transition in colon cancer cells via the NF-κB pathway. Oncol Lett. 15:6873–6880. 2018.PubMed/NCBI | |
|
Tomsic J, Guda K, Liyanarachchi S, Hampel H, Natale L, Markowitz SD, Tanner SM and de la Chapelle A: Allele-specific expression of TGFBR1 in colon cancer patients. Carcinogenesis. 31:1800–1804. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou R, Huang Y, Cheng B, Wang Y and Xiong B: TGFBR1*6A is a potential modifier of migration and invasion in colorectal cancer cells. Oncol Lett. 15:3971–3976. 2018.PubMed/NCBI | |
|
Luyimbazi D, Nelson RA, Choi AH, Li L, Chao J, Sun V, Hamner JB and Kim J: Estimates of conditional survival in gastric cancer reveal a reduction of racial disparities with long-term follow-up. J Gastrointest Surg. 19:251–257. 2015. View Article : Google Scholar | |
|
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Pennison M and Pasche B: Targeting transforming growth factor-beta signaling. Curr Opin Oncol. 19:579–585. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Derynck R and Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 425:577–584. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Ijichi H, Ikenoue T, Kato N, Mitsuno Y, Togo G, Kato J, Kanai F, Shiratori Y and Omata M: Systematic analysis of the TGF-beta-Smad signaling pathway in gastrointestinal cancer cells. Biochem Biophys Res Commun. 289:350–357. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Ma GF, Miao Q, Zeng XQ, Luo TC, Ma LL, Liu YM, Lian JJ, Gao H and Chen SY: Transforming growth factor-β1 and -β2 in gastric precancer and cancer and roles in tumor-cell interactions with peripheral blood mononuclear cells in vitro. PLoS One. 8:e542492013. View Article : Google Scholar | |
|
Zhou Y, Jin GF, Jiang GJ, Wang HM, Tan YF, Ding WL, Wang LN, Chen WS, Ke Q, Shen J, et al: Correlations of polymorphisms of TGFB1 and TGFBR2 genes to genetic susceptibility to gastric cancer. Ai Zheng. 26:581–585. 2007.In Chinese. PubMed/NCBI | |
|
Yanagihara K and Tsumuraya M: Transforming growth factor beta 1 induces apoptotic cell death in cultured human gastric carcinoma cells. Cancer Res. 52:4042–4045. 1992.PubMed/NCBI | |
|
Wang KS, Hu ZL, Li JH, Xiao DS and Wen JF: Enhancement of metastatic and invasive capacity of gastric cancer cells by transforming growth factor-beta1. Acta Biochim Biophys Sin (Shanghai). 38:179–186. 2006. View Article : Google Scholar | |
|
Takeuchi Y and Nishikawa H: Roles of regulatory T cells in cancer immunity. Int Immunol. 28:401–409. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Deng B, Zhu JM, Wang Y, Liu TT, Ding YB, Xiao WM, Lu GT, Bo P and Shen XZ: Intratumor hypoxia promotes immune tolerance by inducing regulatory T cells via TGF-β1 in gastric cancer. PLoS One. 8:e637772013. View Article : Google Scholar | |
|
Lee MS, Kim TY, Kim YB, Lee SY, Ko SG, Jong HS, Kim TY, Bang YJ and Lee JW: The signaling network of transforming growth factor beta1, protein kinase Cdelta, and integrin underlies the spreading and invasiveness of gastric carcinoma cells. Mol Cell Biol. 25:6921–6936. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou H, Wang K, Hu Z and Wen J: TGF-β1 alters microRNA profile in human gastric cancer cells. Chin J Cancer Res. 25:102–111. 2013.PubMed/NCBI | |
|
Zhu Y, Kong F, Zhang C, Ma C, Xia H, Quan B and Cui H: CD133 mediates the TGF-β1-induced activation of the PI3K/ERK/P70S6K signaling pathway in gastric cancer cells. Oncol Lett. 14:7211–7216. 2017. | |
|
Zhao Y, Xia S, Cao C and Du X: Effect of TGF-β1 on apoptosis of colon cancer cells via the ERK signaling pathway. J BUON. 24:449–455. 2019.PubMed/NCBI | |
|
Jin S, Gao J, Qi Y, Hao Y, Li X, Liu Q, Liu J, Liu D, Zhu L and Lin B: TGF-β1 fucosylation enhances the autophagy and mitophagy via PI3K/Akt and Ras-Raf-MEK-ERK in ovarian carcinoma. Biochem Biophys Res Commun. 524:970–976. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cascione M, Leporatti S, Dituri F and Giannelli G: Transforming growth factor-β promotes morphomechanical effects involved in epithelial to mesenchymal transition in living hepatocellular carcinoma. Int J Mol Sci. 20:1082018. View Article : Google Scholar | |
|
Sun SL and Wang XY: TGF-β1 promotes proliferation and invasion of hepatocellular carcinoma cell line HepG2 by activating GLI-1 signaling. Eur Rev Med Pharmacol Sci. 22:7688–7695. 2018.PubMed/NCBI | |
|
Qu Z, Feng J, Pan H, Jiang Y, Duan Y and Fa Z: Exosomes derived from HCC cells with different invasion characteristics mediated EMT through TGF-β/Smad signaling pathway. Onco Targets Ther. 12:6897–6905. 2019. View Article : Google Scholar : | |
|
Zhang C, Chen B, Jiao A, Li F, Sun N, Zhang G and Zhang J: MiR-663a inhibits tumor growth and invasion by regulating TGF-β1 in hepatocellular carcinoma. BMC Cancer. 18:11792018. View Article : Google Scholar | |
|
Tang YH, He GL, Huang SZ, Zhong KB, Liao H, Cai L, Gao Y, Peng ZW and Fu SJ: The long noncoding RNA AK002107 negatively modulates miR-140-5p and targets TGFBR1 to induce epithelial-mesenchymal transition in hepatocellular carcinoma. Mol Oncol. 13:1296–1310. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Li B, Li X, Tan H, Cheng D and Shi H: An imaging target TGF-β1 for hepatocellular carcinoma in mice. Hell J Nucl Med. 20:76–78. 2017.PubMed/NCBI | |
|
Balzarini P, Benetti A, Invernici G, Cristini S, Zicari S, Caruso A, Gatta LB, Berenzi A, Imberti L, Zanotti C, et al: Transforming growth factor-beta1 induces microvascular abnormalities through a down-modulation of neural cell adhesion molecule in human hepatocellular carcinoma. Lab Invest. 92:1297–1309. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yao S, Tian C, Ding Y, Ye Q, Gao Y, Yang N and Li Q: Down-regulation of Krüppel-like factor-4 by microRNA-135a-5p promotes proliferation and metastasis in hepatocellular carcinoma by transforming growth factor-β1. Oncotarget. 7:42566–42578. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Liu M, Su Y, Zhou X, Liu Y and Zhang X: The Janus-faced roles of Krüppel-like factor 4 in oral squamous cell carcinoma cells. Oncotarget. 6:44480–44494. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tian C, Yao S, Liu L, Ding Y, Ye Q, Dong X, Gao Y, Yang N and Li Q: Klf4 inhibits tumor growth and metastasis by targeting microRNA-31 in human hepatocellular carcinoma. Int J Mol Med. 39:47–56. 2017. View Article : Google Scholar | |
|
Zhang X, Fan Q, Li Y, Yang Z, Yang L, Zong Z, Wang B, Meng X, Li Q, Liu J and Li H: Transforming growth factor-beta1 suppresses hepatocellular carcinoma proliferation via activation of Hippo signaling. Oncotarget. 8:29785–29794. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Shi K, Liu H, Chen W, Luo Y, Wei X and Wu Z: MiR-4458 inhibits the epithelial-mesenchymal transition of hepatocellular carcinoma cells by suppressing the TGF-β signaling pathway via targeting TGFBR1. Acta Biochim Biophys Sin (Shanghai). 52:554–562. 2020. View Article : Google Scholar | |
|
Perrier ND, Brierley JD and Tuttle RM: Differentiated and anaplastic thyroid carcinoma: Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 68:55–63. 2018. View Article : Google Scholar | |
|
Saini S, Tulla K, Maker AV, Burman KD and Prabhakar BS: Therapeutic advances in anaplastic thyroid cancer: A current perspective. Mol Cancer. 17:1542018. View Article : Google Scholar : PubMed/NCBI | |
|
Kebebew E: Anaplastic thyroid cancer: Rare, fatal, and neglected. Surgery. 152:1088–1089. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Chen D, Hao FY and Zhang KJ: Targeting TGF-β1 and AKT signal on growth and metastasis of anaplastic thyroid cancer cell in vivo. Eur Rev Med Pharmacol Sci. 20:2581–2587. 2016.PubMed/NCBI | |
|
Zhang X, Liu L, Deng X, Li D, Cai H, Ma Y, Jia C, Wu B, Fan Y and Lv Z: MicroRNA 483-3p targets Pard3 to potentiate TGF-β1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Oncogene. 38:699–715. 2019. View Article : Google Scholar | |
|
Yin Q, Liu S, Dong A, Mi X, Hao F and Zhang K: Targeting transforming growth factor-Beta1 (TGF-β1) inhibits tumorigenesis of anaplastic thyroid carcinoma cells through ERK1/2-NFκB-PUMA signaling. Med Sci Monit. 22:2267–2277. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong J, Liu C, Zhang QH, Chen L, Shen YY, Chen YJ, Zeng X, Zu XY and Cao RX: TGF-β1 induces HMGA1 expression: The role of HMGA1 in thyroid cancer proliferation and invasion. Int J Oncol. 50:1567–1578. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cui M, Chang Y, Du W, Liu S, Qi J, Luo R and Luo S: Upregulation of lncRNA-ATB by transforming growth factor-β1 (TGF-β1) promotes migration and invasion of papillary thyroid carcinoma cells. Med Sci Monit. 24:5152–5158. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li T, Zhao N, Lu J, Zhu Q, Liu X, Hao F and Jiao X: Epigallocatechin gallate (EGCG) suppresses epithelial-mesenchymal transition (EMT) and invasion in anaplastic thyroid carcinoma cells through blocking of TGF-β1/Smad signaling pathways. Bioengineered. 10:282–291. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
He J, Jin Y, Zhou M, Li X, Chen W, Wang Y, Gu S, Cao Y, Chu C, Liu X and Zou Q: Solute carrier family 35 member F2 is indispensable for papillary thyroid carcinoma progression through activation of transforming growth factor-β type I receptor/apoptosis signal-regulating kinase 1/mitogen-activated protein kinase signaling axis. Cancer Sci. 109:642–655. 2018. View Article : Google Scholar : | |
|
Bonnet D: Cancer stem cells: Lessons from leukaemia. Cell Prolif. 38:357–361. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Xie W, Wang X, Du W, Liu W, Qin X and Huang S: Detection of molecular targets on the surface of CD34+CD38-bone marrow cells in myelodysplastic syndromes. Cytometry A. 77:840–848. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lyengar V and Shimanovsky A: Leukemia. StatPearls Publishing, StatPearls Publishing LLC; Treasure Island, FL: 2020 | |
|
Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, Reaman GH and Carroll WL: Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: A report from the children's oncology group. J Clin Oncol. 30:1663–1669. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Huang F, Wan J, Hu W and Hao S: Enhancement of anti-leukemia immunity by leukemia-derived exosomes via downregulation of TGF-β1 expression. Cell Physiol Biochem. 44:240–254. 2017. View Article : Google Scholar | |
|
Geyh S, Rodríguez-Paredes M, Jäger P, Koch A, Bormann F, Gutekunst J, Zilkens C, Germing U, Kobbe G, Lyko F, et al: Transforming growth factor β1-mediated functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia. Haematologica. 103:1462–1471. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Taetle R, Payne C, Dos Santos B, Russell M and Segarini P: Effects of transforming growth factor beta 1 on growth and apoptosis of human acute myelogenous leukemia cells. Cancer Res. 53:3386–3393. 1993.PubMed/NCBI | |
|
Verheyden S and Demanet C: NK cell receptors and their ligands in leukemia. Leukemia. 22:249–257. 2008. View Article : Google Scholar | |
|
Nursal AF, Pehlivan M, Sahin HH and Pehlivan S: The Associations of IL-6, IFN-γ, TNF-α, IL-10, and TGF-β1 functional variants with acute myeloid leukemia in turkish patients. Genet Test Mol Biomarkers. 20:544–551. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Rouce RH, Shaim H, Sekine T, Weber G, Ballard B, Ku S, Barese C, Murali V, Wu MF, Liu H, et al: The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia. 30:800–811. 2016. View Article : Google Scholar | |
|
Gong Y, Zhao M, Yang W, Gao A, Yin X, Hu L, Wang X, Xu J, Hao S, Cheng T and Cheng H: Megakaryocyte-derived excessive transforming growth factor β1 inhibits proliferation of normal hematopoietic stem cells in acute myeloid leukemia. Exp Hematol. 60:40–46.e2. 2018. View Article : Google Scholar | |
|
Wang H, Wu Q, Zhang Y, Zhang HN, Wang YB and Wang W: TGF-β1-induced epithelial-mesenchymal transition in lung cancer cells involves upregulation of miR-9 and downregulation of its target, E-cadherin. Cell Mol Biol Lett. 22:222017. View Article : Google Scholar | |
|
Xue C, Hu Z, Jiang W, Zhao Y, Xu F, Huang Y, Zhao H, Wu J, Zhang Y, Zhao L, et al: National survey of the medical treatment status for non-small cell lung cancer (NSCLC) in China. Lung Cancer. 77:371–375. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yano T, Okamoto T, Fukuyama S and Maehara Y: Therapeutic strategy for postoperative recurrence in patients with non-small cell lung cancer. World J Clin Oncol. 5:1048–1054. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Yan S, Zhang H, Zhang M, Huang G and Chen M: Interaction of hnRNP K with MAP 1B-LC1 promotes TGF-β1-mediated epithelial to mesenchymal transition in lung cancer cells. BMC Cancer. 19:8942019. View Article : Google Scholar | |
|
Shi S, Zhao J, Wang J, Mi D and Ma Z: HPIP silencing inhibits TGF-β1-induced EMT in lung cancer cells. Int J Mol Med. 39:479–483. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang HW, Wang EW, Li LX, Yi SH, Li LC, Xu FL, Wang DL, Wu YZ and Nian WQ: A regulatory loop involving miR-29c and Sp1 elevates the TGF-β1 mediated epithelial-to-mesenchymal transition in lung cancer. Oncotarget. 7:85905–85916. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang W, Xu Z, Yu L, Che J, Zhang J and Yang J: MicroRNA-144-3p suppressed TGF-β1-induced lung cancer cell invasion and adhesion by regulating the Src-Akt-Erk pathway. Cell Biol Int. 2019.Epub ahead of print. | |
|
Zhao X, Liu Y and Yu S: Long noncoding RNA AWPPH promotes hepatocellular carcinoma progression through YBX1 and serves as a prognostic biomarker. Biochim Biophys Acta Mol Basis Dis. 1863:1805–1816. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu F, Zhang X, Yu Q, Han G, Diao F, Wu C and Zhang Y: LncRNA AWPPH inhibits SMAD4 via EZH2 to regulate bladder cancer progression. J Cell Biochem. 119:4496–4505. 2018. View Article : Google Scholar | |
|
Tang L, Wang T, Zhang Y, Zhang J, Zhao H, Wang H, Wu Y and Liu K: Long non-coding RNA AWPPH promotes postoperative distant recurrence in resected non-small cell lung cancer by upregulating transforming growth factor beta 1 (TGF-β1). Med Sci Monit. 25:2535–2541. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chae DK, Park J, Cho M, Ban E, Jang M, Yoo YS, Kim EE, Baik JH and Song EJ: MiR-195 and miR-497 suppress tumorigenesis in lung cancer by inhibiting SMURF2-induced TGF-β receptor I ubiquitination. Mol Oncol. 13:2663–2678. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hypes MK, Pirisi L and Creek KE: Mechanisms of decreased expression of transforming growth factor-beta receptor type I at late stages of HPV16-mediated transformation. Cancer Lett. 282:177–186. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Xu F, Zhang J, Hu G, Liu L and Liang W: Hypoxia and TGF-β1 induced PLOD2 expression improve the migration and invasion of cervical cancer cells by promoting epithelial-to-mesenchymal transition (EMT) and focal adhesion formation. Cancer Cell Int. 17:542017. View Article : Google Scholar | |
|
Li MY, Liu JQ, Chen DP, Li ZY, Qi B, Yin WJ and He L: p68 prompts the epithelial-mesenchymal transition in cervical cancer cells by transcriptionally activating the TGF-β1 signaling pathway. Oncol Lett. 15:2111–2116. 2018.PubMed/NCBI | |
|
Yang L, Yu Y, Xiong Z, Chen H, Tan B and Hu H: Downregulation of SEMA4C inhibit epithelial-mesenchymal transition (EMT) and the invasion and metastasis of cervical cancer cells via inhibiting transforming growth factor-beta 1 (TGF-β1)-induced Hela cells p38 mitogen-activated protein kinase (MAPK) activation. Med Sci Monit. 26:e9181232020. View Article : Google Scholar | |
|
Cheng Y, Guo Y, Zhang Y, You K, Li Z and Geng L: MicroRNA-106b is involved in transforming growth factor β1-induced cell migration by targeting disabled homolog 2 in cervical carcinoma. J Exp Clin Cancer Res. 35:112016. View Article : Google Scholar | |
|
Finkielstein CV and Capelluto DG: Disabled-2: A modular scaffold protein with multifaceted functions in signaling. Bioessays. 38(Suppl 1): S45–S55. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tao MZ, Gao X, Zhou TJ, Guo QX, Zhang Q and Yang CW: Effects of TGF-beta1 on the proliferation and apoptosis of human cervical cancer Hela cells in vitro. Cell Biochem Biophys. 73:737–741. 2015. View Article : Google Scholar | |
|
Wang H, Wang J, Liu H and Wang X: TGF-β1 activates NOX4/ROS pathway to promote the invasion and migration of cervical cancer cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 35:121–127. 2019.In Chinese. PubMed/NCBI | |
|
Deng M, Cai X, Long L, Xie L, Ma H, Zhou Y, Liu S and Zeng C: CD36 promotes the epithelial-mesenchymal transition and metastasis in cervical cancer by interacting with TGF-β. J Transl Med. 17:3522019. View Article : Google Scholar | |
|
Wongnoppavich A, Dukaew N, Choonate S and Chairatvit K: Upregulation of maspin expression in human cervical carcinoma cells by transforming growth factor β1 through the convergence of Smad and non-Smad signaling pathways. Oncol Lett. 13:3646–3652. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ju W, Luo X and Zhang N: LncRNA NEF inhibits migration and invasion of HPV-negative cervical squamous cell carcinoma by inhibiting TGF-β pathway. Biosci Rep. Apr 26–2019.Epub ahead of print. View Article : Google Scholar | |
|
Levovitz C, Chen D, Ivansson E, Gyllensten U, Finnigan JP, Alshawish S, Zhang W, Schadt EE, Posner MR, Genden EM, et al: TGFβ receptor 1: An immune susceptibility gene in HPV-associated cancer. Cancer Res. 74:6833–6844. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu L, Zhang Q, Li S, Jiang S, Cui J and Dang G: Interference of the long noncoding RNA CDKN2B-AS1 upregulates miR-181a-5p/TGFβI axis to restrain the metastasis and promote apoptosis and senescence of cervical cancer cells. Cancer Med. 8:1721–1730. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu T, Chen X, Peng R, Liu H, Yin P, Peng H, Zhou Y, Sun Y, Wen L, Yi H, et al: Let-7a suppresses cell proliferation via the TGF-β/SMAD signaling pathway in cervical cancer. Oncol Rep. 36:3275–3282. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Fang F, Huang B, Sun S, Xiao M, Guo J, Yi X, Cai J and Wang Z: MiR-27a inhibits cervical adenocarcinoma progression by downregulating the TGF-βRI signaling pathway. Cell Death Dis. 9:3952018. View Article : Google Scholar | |
|
Wu M, Chen X, Lou J, Zhang S, Zhang X, Huang L, Sun R, Huang P, Wang F and Pan S: TGF-β1 contributes to CD8+ Treg induction through p38 MAPK signaling in ovarian cancer microenvironment. Oncotarget. 7:44534–44544. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang YQ, Li YM, Li X, Liu T, Liu XK, Zhang JQ, Guo JW, Guo LY and Qiao L: Hypermethylation of TGF-β1 gene promoter in gastric cancer. World J Gastroenterol. 19:5557–5564. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ji M, Shi H, Xie Y, Zhao Z, Li S, Chang C, Cheng X and Li Y: Ubiquitin specific protease 22 promotes cell proliferation and tumor growth of epithelial ovarian cancer through synergy with transforming growth factor β1. Oncol Rep. 33:133–140. 2015. View Article : Google Scholar | |
|
Teng Y, Zhao L, Zhang Y, Chen W and Li X: Id-1, a protein repressed by miR-29b, facilitates the TGFβ1-induced epithelial-mesenchymal transition in human ovarian cancer cells. Cell Physiol Biochem. 33:717–730. 2014. View Article : Google Scholar | |
|
Facciabene A, Motz GT and Coukos G: T-regulatory cells: Key players in tumor immune escape and angiogenesis. Cancer Res. 72:2162–2171. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Liu W, Shen F, Ma X, Liu X, Tian F, Zeng W, Xi X and Lin Y: The activation of microRNA-520h-associated TGF-β1/c-Myb/Smad7 axis promotes epithelial ovarian cancer progression. Cell Death Dis. 9:8842018. View Article : Google Scholar | |
|
Wang YQ, Qi XW, Wang F, Jiang J and Guo QN: Association between TGFBR1 polymorphisms and cancer risk: A meta-analysis of 35 case-control studies. PLoS One. 7:e428992012. View Article : Google Scholar : PubMed/NCBI | |
|
Eli Lilly: Company: A study in participants with diabetic kidney disease. ClinicalTrials.gov. 2010, https://clinicaltrials.gov/ct2/show/NCT01113801. Accessed Sep 17, 2019. | |
|
Zhang Q, Hou X, Evans BJ, VanBlaricom JL, Weroha SJ and Cliby WA: LY2157299 monohydrate, a TGF-βR1 inhibitor, suppresses tumor growth and ascites development in ovarian cancer. Cancers (Basel). 10. pp. 2602018, View Article : Google Scholar | |
|
Herbertz S, Sawyer JS, Stauber AJ, Gueorguieva I, Driscoll KE, Estrem ST, Cleverly AL, Desaiah D, Guba SC, Benhadji KA, et al: Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther. 9:4479–4499. 2015.PubMed/NCBI | |
|
Fujiwara Y, Nokihara H, Yamada Y, Yamamoto N, Sunami K, Utsumi H, Asou H, TakahashI O, Ogasawara K, Gueorguieva I and Tamura T: Phase 1 study of galunisertib, a TGF-beta receptor I kinase inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 76:1143–1152. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Brandes AA, Carpentier AF, Kesari S, Sepulveda-Sanchez JM, Wheeler HR, Chinot O, Cher L, Steinbach JP, Capper D, Specenier P, et al: A Phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol. 18:1146–1156. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ikeda M, Takahashi H, Kondo S, Lahn MMF, Ogasawara K, Benhadji KA, Fujii H and Ueno H: Phase 1b study of galunisertib in combination with gemcitabine in Japanese patients with metastatic or locally advanced pancreatic cancer. Cancer Chemother Pharmacol. 79:1169–1177. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Rodón J, Carducci M, Sepulveda-Sánchez JM, Azaro A, Calvo E, Seoane J, Braña I, Sicart E, Gueorguieva I, Cleverly A, et al: Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-β receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer. Invest New Drugs. 33:357–370. 2015. View Article : Google Scholar | |
|
MedPacto: Dose escalation and proof-of-concept studies of vactosertib (TEW-7197) monotherapy in patients with MDS. ClinicalTrials.gov. 2017, https://clinicaltrials.gov/ct2/show/NCT03074006. Accessed Mar 24, 2020. | |
|
MedPacto: First in human dose escalation study of vactosertib (TEW-7197) in subjects with advanced stage solid tumors. ClinicalTrials.gov. 2014, https://clinicaltrials.gov/ct2/show/NCT02160106 Accessed Sep 5, 2019. | |
|
Eli Lilly: Company: A study of LY3200882 in participants with solid tumors. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/results/NCT02937272. Accessed Aug 19, 2020. | |
|
Callahan JF, Burgess JL, Fornwald JA, Gaster LM, Harling JD, Harrington FP, Heer J, Kwon C, Lehr R, Mathur A, et al: Identification of novel inhibitors of the transforming growth factor beta1 (TGF-beta1) type 1 receptor (ALK5). J Med Chem. 45:999–1001. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ and Hill CS: SB-431542 is a potent and specific inhibitor of transforming growth factor-beta super-family type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 62:65–74. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Tanaka H, Shinto O, Yashiro M, Yamazoe S, Iwauchi T, Muguruma K, Kubo N, Ohira M and Hirakawa K: Transforming growth factor β signaling inhibitor, SB-431542, induces maturation of dendritic cells and enhances anti-tumor activity. Oncol Rep. 24:1637–1643. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Melisi D, Ishiyama S, Sclabas GM, Fleming JB, Xia Q, Tortora G, Abbruzzese JL and Chiao PJ: LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol Cancer Ther. 7:829–840. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang ZH, Miao YY, Ke BL, Liu K and Xu X: LY2109761, transforming growth factor β receptor type I and type II dual inhibitor, is a novel approach to suppress endothelial mesenchymal transformation in human corneal endothelial cells. Cell Physiol Biochem. 50:963–972. 2018. View Article : Google Scholar | |
|
Tandon M, Salamoun JM, Carder EJ, Farber E, Xu S, Deng F, Tang H, Wipf P and Wang QJ: SD-208, a novel protein kinase D inhibitor, blocks prostate cancer cell proliferation and tumor growth in vivo by inducing G2/M cell cycle arrest. PLoS One. 10:e01193462015. View Article : Google Scholar : PubMed/NCBI | |
|
Araujo SC, Maltarollo VG, Almeida MO, Ferreira LL, Andricopulo AD and Honorio KM: Structure-based virtual screening, molecular dynamics and binding free energy calculations of Hit candidates as ALK-5 inhibitors. Molecules. 25:2642020. View Article : Google Scholar : | |
|
de Gouville AC, Boullay V, Krysa G, Pilot J, Brusq JM, Loriolle F, Gauthier JM, Papworth SA, Laroze A, Gellibert F and Huet S: Inhibition of TGF-beta signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br J Pharmacol. 145:166–177. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Park CY, Kim DK and Sheen YY: EW-7203, a novel small molecule inhibitor of transforming growth factor-β (TGF-β) type I receptor/activin receptor-like kinase-5, blocks TGF-β1-mediated epithelial-to-mesenchymal transition in mammary epithelial cells. Cancer Sci. 102:1889–1896. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ehata S, Hanyu A, Fujime M, Katsuno Y, Fukunaga E, Goto K, Ishikawa Y, Nomura K, Yokoo H, Shimizu T, et al: Ki26894, a novel transforming growth factor-beta type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci. 98:127–133. 2007. View Article : Google Scholar | |
|
Suzuki E, Kim S, Cheung HK, Corbley MJ, Zhang X, Sun L, Shan F, Singh J, Lee WC, Albelda SM and Ling LE: A novel small-molecule inhibitor of transforming growth factor beta type I receptor kinase (SM16) inhibits murine mesothelioma tumor growth in vivo and prevents tumor recurrence after surgical resection. Cancer Res. 67:2351–2359. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Moore-Smith LD, Isayeva T, Lee JH, Frost A and Ponnazhagan S: Silencing of TGF-β1 in tumor cells impacts MMP-9 in tumor microenvironment. Sci Rep. 7:86782017. View Article : Google Scholar | |
|
Li XF, Yan PJ and Shao ZM: Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene. 28:3937–3948. 2009. View Article : Google Scholar : PubMed/NCBI |