Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
May-2021 Volume 47 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2021 Volume 47 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Therapeutic potential of curcumin in diabetic retinopathy (Review)

  • Authors:
    • Jian Yang
    • Xiao Miao
    • Feng-Juan Yang
    • Jin-Feng Cao
    • Xin Liu
    • Jin-Ling Fu
    • Guan-Fang Su
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
    Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 75
    |
    Published online on: March 4, 2021
       https://doi.org/10.3892/ijmm.2021.4908
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Diabetic retinopathy (DR) is a type of retinal microangiopathy caused by diabetes mellitus. It has become the leading cause of blindness among working individuals worldwide. DR is becoming increasingly common among younger diabetic patients and there is a need for lifelong treatment. The pathogenic mechanisms of DR are influenced by a number of factors, such as hyperglycemia, hyperlipidemia, inflammatory response and oxidative stress, among others. Currently, the treatment methods for DR mainly include retinal photocoagulation, vitrectomy, or anti‑vascular endothelial growth factor (VEGF) therapy. However, these methods have some disadvantages and limitations. Therefore, it is a matter of great interest and urgency to discover drugs that can target the pathogenesis of DR. Since ancient times, traditional Chinese medicine practitioners have accumulated extensive experiences in the use of Chinese herbal medicine for the prevention and treatment of diseases. In the theory of traditional Chinese medicine, curcumin has the effects of promoting blood circulation and relieving pain. A number of studies have also demonstrated that curcumin has multiple biological activities, including exerting anti‑apoptotic, anti‑inflammatory, antioxidant and antitumor properties. In recent years, studies have also confirmed that curcumin can prevent a variety of diabetic complications, including diabetic nephropathy (DN). However, the preventive and curative effects of curcumin on DR and its mechanisms of action have not yet been fully elucidated. The present review aimed to explore the therapeutic potential of curcumin in diabetes mellitus and DR.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

International Diabetes Federation (IDF): IDF Diabetes Atlas. 8th Edition. IDF; 2017, https://www.diabetesatlas.org/upload/resources/previous/files/8/IDF_DA_8e-EN-final.pdf.

2 

Logue J, Walker JJ, Colhoun HM, Leese GP, Lindsay RS, McKnight JA, Morris AD, Pearson DW, Petrie JR, Philip S, et al: Do men develop type 2 diabetes at lower body mass indices than women? Diabetologia. 54:3003–3006. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Hartwig S, Greiser KH, Medenwald D, Tiller D, Herzog B, Schipf S, Ittermann T, Völzke H, Müller G, Haerting J and Kluttig A: Association of change of anthropometric measurements with incident type 2 diabetes mellitus: A pooled analysis of the prospective population-based CARLA and SHIP cohort studies. Medicine(Baltimore). 94:e13942015.

4 

Wannamethee SG, Papacosta O, Lawlor DA, Whincup PH, Lowe GD, Ebrahim S and Sattar N: Do women exhibit greater differences in established and novel risk factors between diabetes and non-diabetes than men? the British regional heart study and British women's heart health study. Diabetologia. 55:80–87. 2012. View Article : Google Scholar

5 

Shigiyama F, Kumashiro N, Tsuneoka Y, Igarashi H, Yoshikawa F, Kakehi S, Funato H and Hirose T: Mechanisms of sleep deprivation-induced hepatic steatosis and insulin resistance in mice. Am J Physiol Endocrinol Metab. 315:E848–E858. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Pan KY, Xu W, Mangialasche F, Fratiglioni L and Wang HX: Work-related psychosocial stress and the risk of type 2 diabetes in later life. J Intern Med. 281:601–610. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Sohn EH, van Dijk HW, Jiao C, Kok PHB, Jeong W, Demirkaya N, Garmager A, Wit F, Kucukevcilioglu M, van Velthoven ME, et al: Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA. 113:E2655–E2664. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Sahin K, Orhan C, Tuzcu M, Sahin N, Tastan H, Özercan IH, Güler O, Kahraman N, Kucuk O and Ozpolat B: Chemopreventive and antitumor efficacy of curcumin in a spontaneously developing hen ovarian cancer model. Cancer Prev Res (Phila). 11:59–67. 2018. View Article : Google Scholar

9 

Fu H, Wang C, Yang D, Wei Z, Xu J, Hu Z, Zhang Y, Wang W, Yan R and Cai Q: Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. J Cell Physiol. 233:4634–4642. 2018. View Article : Google Scholar

10 

Kronski E, Fiori ME, Barbieri O, Astigiano S, Mirisola V, Killian PH, Bruno A, Pagani A, Rovera F, Pfeffer U, et al: miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down-regulation of the inflammatory cytokines CXCL1 and -2. Mol Oncol. 8:581–595. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Ide H, Lu Y, Noguchi T, Muto S, Okada H, Kawato S and Horie S: Modulation of AKR1C2 by curcumin decreases testosterone production in prostate cancer. Cancer Sci. 109:1230–1238. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Yuan J, Liu R, Ma Y, Zhang Z and Xie Z: Curcumin attenuates airway inflammation and airway remolding by inhibiting NF-κB signaling and COX-2 in cigarette smoke-induced COPD mice. Inflammation. 41:1804–1814. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Ding XQ, Wu WY, Jiao RQ, Gu TT, Xu Q, Pan Y and Kong LD: Curcumin and allopurinol ameliorate fructose-induced hepatic inflammation in rats via miR-200a-mediated TXNIP/NLRP3 inflammasome inhibition. Pharmacol Res. 137:64–75. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Xiao Y, Xia J, Wu S, Lv Z, Huang S, Huang H, Su X, Cheng J and Ke Y: Curcumin inhibits acute vascular inflammation through the activation of heme oxygenase-1. Oxid Med Cell Longev. 2018:32958072018. View Article : Google Scholar : PubMed/NCBI

15 

Sharma S, Kulkarni SK and Chopra K: Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol. 33:940–945. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Kadiyala CSR, Zheng L, Du Y, Yohannes E, Kao HY, Miyagi M and Kern TS: Acetylation of retinal histones in diabetes increases inflammatory proteins: Effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC). J Biol Chem. 287:25869–25880. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Wang LL, Chen H, Huang K and Zheng L: Elevated histone acetylations in Müller cells contribute to inflammation: A novel inhibitory effect of minocycline. Glia. 60:1896–1905. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Yun JM, Jialal I and Devaraj S: Epigenetic regulation of high glucose-induced proinflammatory cytokine production in monocytes by curcumin. J Nutr Biochem. 22:450–458. 2011. View Article : Google Scholar

19 

Gui L, Jiang S, Xie D, Yu L, Huang Y, Zhang Z and Liu Y: Analysis of complete chloroplast genomes of Curcuma and the contribution to phylogeny and adaptive evolution. Gene. 732:1443552020. View Article : Google Scholar : PubMed/NCBI

20 

Nishino H, Tokuda H, Satomi Y, Masuda M, Osaka Y, Yogosawa S, Wada S, Mou XY, Takayasu J, Murakoshi M, et al: Cancer prevention by antioxidants. Biofactors. 22:57–61. 2004. View Article : Google Scholar

21 

Boyanapalli SSS, Huang Y, Su Z, Cheng D, Zhang C, Guo Y, Rao R, Androulakis IP and Kong AN: Pharmacokinetics and pharmacodynamics of curcumin in regulating anti-inflammatory and epigenetic gene expression. Biopharm Drug Dispos. 39:289–297. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM, Boggs ME, Crowell J, Rock CL and Brenner DE: Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 6:102006. View Article : Google Scholar : PubMed/NCBI

23 

Falconieri MC, Adamo M, Monasterolo C, Bergonzi MC, Coronnello M and Bilia AR: New dendrimer-based nanoparticles enhance curcumin solubility. Planta Med. 83:420–425. 2017.

24 

Tiyaboonchai W, Tungpradit W and Plianbangchang P: Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. Int J Pharm. 337:299–306. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Wang W, Zhu R, Xie Q, Li A, Xiao Y, Li K, Liu H, Cui D, Chen Y and Wang S: Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int J Nanomedicine. 7:3667–3677. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Shoba G, Joy D, Joseph T, Majeed M, Rajendran R and Srinivas PS: Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 64:353–356. 1998. View Article : Google Scholar : PubMed/NCBI

27 

Skoupa N, Dolezel P, Ruzickova E and Mlejnek P: Apoptosis induced by the curcumin analogue EF-24 is neither mediated by oxidative stress-related mechanisms nor affected by expression of main drug transporters ABCB1 and ABCG2 in human leukemia cells. Int J Mol Sci. 18:22892017. View Article : Google Scholar :

28 

Ingelfinger JR and Jarcho JA: Increase in the incidence of diabetes and its implications. N Engl J Med. 376:1473–1474. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Javidi MA, Kaeidi A, Mortazavi Farsani SS, Babashah S and Sadeghizadeh M: Investigating curcumin potential for diabetes cell therapy, in vitro and in vivo study. Life Sci. 239:1169082019. View Article : Google Scholar : PubMed/NCBI

30 

Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C and Jirawatnotai S: Curcumin extract for prevention of type 2 diabetes. Diabetes Care. 35:2121–2127. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Al-Saud NBS: Impact of curcumin treatment on diabetic albino rats. Saudi J Biol Sci. 27:689–694. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Qihui L, Shuntian D, Xin Z, Xiaoxia Y and Zhongpei C: Protection of curcumin against streptozocin-induced pancreatic cell destruction in T2D rats. Planta Med. 86:113–120. 2020. View Article : Google Scholar

33 

Bulboacă AE, Boarescu PM, Bolboacă SD, Blidaru M, Feștilă D, Dogaru G and Nicula CA: Comparative effect of curcumin versus liposomal curcumin on systemic pro-inflammatory cytokines profile, MCP-1 and RANTES in experimental diabetes mellitus. Int J Nanomedicine. 14:8961–8972. 2019. View Article : Google Scholar

34 

Li J, Wu N, Chen X, Chen H, Yang X and Liu C: Curcumin protects islet cells from glucolipotoxicity by inhibiting oxidative stress and NADPH oxidase activity both in vitro and in vivo. Islets. 11:152–164. 2019. View Article : Google Scholar

35 

Xia ZH, Jiang X, Li K, Li LX, Chen WB, Wang YX and Liu YQ: Curcumin inhibits alloxan-induced pancreatic islet cell damage via antioxidation and antiapoptosis. J Biochem Mol Toxicol. 34:e224992020. View Article : Google Scholar : PubMed/NCBI

36 

Gupta A, Tripathi AK, Tripathi RL, Madhu SV and Banerjee BD: Advanced glycosylated end products-mediated activation of polymorphonuclear neutrophils in diabetes mellitus and associated oxidative stress. Indian J Biochem Biophys. 44:373–378. 2007.

37 

Aplin AC, Gelati M, Fogel E, Carnevale E and Nicosia RF: Angiopoietin-1 and vascular endothelial growth factor induce expression of inflammatory cytokines before angiogenesis. Physiol Genomics. 27:20–28. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Kowluru RA and Kanwar M: Effects of curcumin on retinal oxidative stress and inflammation in diabetes. Nutr Metab (Lond). 4:82007. View Article : Google Scholar

39 

Assis RP, Arcaro CA, Gutierres VO, Oliveira JO, Costa PI, Baviera AM and Brunetti IL: Combined effects of curcumin and lycopene or bixin in yoghurt on inhibition of LDL oxidation and increases in HDL and paraoxonase levels in streptozotocin-diabetic rats. Int J Mol Sci. 18:3322017. View Article : Google Scholar :

40 

Gutierres VO, Pinheiro CM, Assis RP, Vendramini RC, Pepato MT and Brunetti IL: Curcumin-supplemented yoghurt improves physiological and biochemical markers of experimental diabetes. Br J Nutr. 108:440–448. 2012. View Article : Google Scholar

41 

Jiménez-Osorio AS, González-Reyes S and Pedraza-Chaverri J: Natural Nrf2 activators in diabetes. Clin Chim Acta. 448:182–192. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Zuo ZF, Zhang Q and Liu XZ: Protective effects of curcumin on retinal Müller cell in early diabetic rats. Int J Ophthalmol. 6:422–424. 2013.

43 

Liu Z, Lin H, Ye S, Liu QY, Meng Z, Zhang CM, Xia Y, Margoliash E, Rao Z and Liu XJ: Remarkably high activities of testicular cytochrome c in destroying reactive oxygen species and in triggering apoptosis. Proc Natl Acad Sci USA. 103:8965–8970. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Maugeri A, Mazzone MG, Giuliano F, Vinciguerra M, Basile G, Barchitta M and Agodi A: Curcumin modulates DNA methyltransferase functions in a cellular model of diabetic retinopathy. Oxid Med Cell Longev. 2018:54074822018. View Article : Google Scholar : PubMed/NCBI

45 

Shishodia S, Sethi G and Aggarwal BB: Curcumin: Getting back to the roots. Ann N Y Acad Sci. 1056:206–217. 2005. View Article : Google Scholar

46 

Chen Y, Li C, Duan S, Yuan X, Liang J and Hou S: Curcumin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Biomed Pharmacother. 118:1091952019. View Article : Google Scholar : PubMed/NCBI

47 

Balasubramanyam M, Koteswari AA, Kumar RS, Monickaraj SF, Maheswari JU and Mohan V: Curcumin-induced inhibition of cellular reactive oxygen species generation: Novel therapeutic implications. J Biosci. 28:715–721. 2003. View Article : Google Scholar : PubMed/NCBI

48 

Yang F, Yu J, Ke F, Lan M and Li D, Tan K, Ling J, Wang Y, Wu K and Li D: Curcumin alleviates diabetic retinopathy in experimental diabetic rats. Ophthalmic Res. 60:43–54. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Bulboacă AE, Porfire AS, Tefas LR, Boarescu PM, Bolboacă SD, Stănescu IC, Bulboacă AC and Dogaru G: Liposomal curcumin is better than curcumin to alleviate complications in experimental diabetic mellitus. Molecules. 24:8462019. View Article : Google Scholar

50 

Zhou P, Xie W, Meng X, Zhai Y, Dong X, Zhang X, Sun G and Sun X: Notoginsenoside R1 ameliorates diabetic retinopathy through PINK1-dependent activation of mitophagy. Cells. 8:2132019. View Article : Google Scholar :

51 

Brucklacher RM, Patel KM, VanGuilder HD, Bixler GV, Barber AJ, Antonetti DA, Lin CM, LaNoue KF, Gardner TW, Bronson SK and Freeman WM: Whole genome assessment of the retinal response to diabetes reveals a progressive neurovascular inflammatory response. BMC Med Genomics. 1:262008. View Article : Google Scholar : PubMed/NCBI

52 

Yuuki T, Kanda T, Kimura Y, Kotajima N, Tamura J, Kobayashi I and Kishi S: Inflammatory cytokines in vitreous fluid and serum of patients with diabetic vitreoretinopathy. J Diabetes Complications. 15:257–259. 2001. View Article : Google Scholar : PubMed/NCBI

53 

Joussen AM, Murata T, Tsujikawa A, Kirchhof B, Bursell SE and Adamis AP: Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am J Pathol. 158:147–152. 2001. View Article : Google Scholar : PubMed/NCBI

54 

Khalfaoui T, Lizard G and Ouertani-Meddeb A: Adhesion molecules (ICAM-1 and VCAM-1) and diabetic retinopathy in type 2 diabetes. J Mol Histol. 39:243–249. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Boss JD, Singh PK, Pandya HK, Tosi J, Kim C, Tewari A, Juzych MS, Abrams GW and Kumar A: Assessment of neurotrophins and inflammatory mediators in vitreous of patients with diabetic retinopathy. Invest Ophthalmol Vis Sci. 58:5594–5603. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Luo DW, Zheng Z, Wang H, Fan Y, Chen F, Sun Y, Wang WJ, Sun T and Xu X: UPP mediated diabetic retinopathy via ROS/PARP and NF-κB inflammatory factor pathways. Curr Mol Med. 15:790–799. 2015. View Article : Google Scholar

57 

Hollanders K, Van Hove I, Sergeys J, Van Bergen T, Lefevere E, Kindt N, Castermans K, Vandewalle E, van Pelt J, Moons L and Stalmans I: AMA0428, a potent rock inhibitor, attenuates early and late experimental diabetic retinopathy. Curr Eye Res. 42:260–272. 2017. View Article : Google Scholar

58 

Ran Z, Zhang Y, Wen X and Ma J: Curcumin inhibits high glucose induced inflammatory injury in human retinal pigment epithelial cells through the ROS PI3K/AKT/mTOR signaling pathway. Mol Med Rep. 19:1024–1031. 2019.

59 

Costagliola C, Romano V, De Tollis M, Aceto F, dell'Omo R, Romano MR, Pedicino C and Semeraro F: TNF-alpha levels in tears: A novel biomarker to assess the degree of diabetic retinopathy. Mediators Inflamm. 2013:6295292013. View Article : Google Scholar : PubMed/NCBI

60 

Gupta SK, Kumar B, Nag TC, Agrawal SS, Agrawal R, Agrawal P, Saxena R and Srivastava S: Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, anti-oxidant, and anti-inflammatory mechanisms. J Ocul Pharmacol Ther. 27:123–130. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Jiang C, Ting AT and Seed B: PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 391:82–86. 1998. View Article : Google Scholar : PubMed/NCBI

62 

Charrier A, Wang L, Stephenson EJ, Ghanta SV, Ko CW, Croniger CM, Bridges D and Buchner DA: Zinc finger protein 407 overexpression upregulates PPAR target gene expression and improves glucose homeostasis in mice. Am J Physiol Endocrinol Metab. 311:E869–E880. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Aljada A, Garg R, Ghanim H, Mohanty P, Hamouda W, Assian E and Dandona P: Nuclear factor-kappaB suppressive and inhibitor-kappaB stimulatory effects of troglitazone in obese patients with type 2 diabetes: Evidence of an antiinflammatory action? J Clin Endocrinol Metab. 86:3250–3256. 2001.PubMed/NCBI

64 

Haffner SM, Greenberg AS, Weston WM, Chen H, Williams K and Freed MI: Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation. 106:679–684. 2002. View Article : Google Scholar : PubMed/NCBI

65 

Shafabakhsh R, Mobini M, Raygan F, Aghadavod E, Ostadmohammadi V, Amirani E, Mansournia MA and Asemi Z: Curcumin administration and the effects on psychological status and markers of inflammation and oxidative damage in patients with type 2 diabetes and coronary heart disease. Clin Nutr ESPEN. 40:77–82. 2020. View Article : Google Scholar : PubMed/NCBI

66 

Li HY, Yang M, Li Z and Meng Z: Curcumin inhibits angiotensin II-induced inflammation and proliferation of rat vascular smooth muscle cells by elevating PPAR-γ activity and reducing oxidative stress. Int J Mol Med. 39:1307–1316. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Yun JH, Park SW, Kim KJ, Bae JS, Lee EH, Paek SH, Kim SU, Ye S, Kim JH and Cho CH: Endothelial STAT3 activation increases vascular leakage through downregulating tight junction proteins: Implications for diabetic retinopathy. J Cell Physiol. 232:1123–1134. 2017. View Article : Google Scholar

68 

Shibuya M: Vascular endothelial growth factor and its receptor system: Physiological functions in angiogenesis and pathological roles in various diseases. J Biochem. 153:13–19. 2013. View Article : Google Scholar

69 

Miyamoto K, Khosrof S, Bursell SE, Rohan R, Murata T, Clermont AC, Aiello LP, Ogura Y and Adamis AP: Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci USA. 96:10836–10841. 1999. View Article : Google Scholar : PubMed/NCBI

70 

Mrudula T, Suryanarayana P, Srinivas PNBS and Reddy GB: Effect of curcumin on hyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina. Biochem Biophys Res Commun. 361:528–532. 2007. View Article : Google Scholar : PubMed/NCBI

71 

Li J, Wang P, Ying J, Chen Z and Yu S: Curcumin attenuates retinal vascular leakage by inhibiting calcium/calmodulin-dependent protein kinase II activity in streptozotocin-induced diabetes. Cell Physiol Biochem. 39:1196–1208. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Pradhan D, Dasmohapatra T and Tripathy G: Pharmacognostic evaluation of curcumin on diabetic retinopathy in alloxan-induced diabetes through NF-KB and Brn3a related mechanism. Pharmacogn J. 10:324–332. 2018. View Article : Google Scholar

73 

Khimmaktong W, Petpiboolthai H, Sriya P and Anupunpisit V: Effects of curcumin on restoration and improvement of microvasculature characteristic in diabetic rat's choroid of eye. J Med Assoc Thai. 97(Suppl 2): S39–S46. 2014.PubMed/NCBI

74 

Lee TK, Park JY, Yu JS, Jang TS, Oh ST, Pang C, Ko YJ, Kang KS and Kim KH: 7α,15-Dihydroxydehydroabietic acid from Pinus koraiensis inhibits the promotion of angiogenesis through down-regulation of VEGF, p-Akt and p-ERK in HUVECs. Bioorg Med Chem Lett. 28:1084–1089. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Farajipour H, Rahimian S and Taghizadeh M: Curcumin: A new candidate for retinal disease therapy? J Cell Biochem. 2018.Epub ahead of print. PubMed/NCBI

76 

Ran Z, Zhang Y, Wen X and Ma J: Curcumin inhibits high glucose induced inflammatory injury in human retinal pigment epithelial cells through the ROS PI3K/AKT/mTOR signaling pathway. Mol Med Rep. 19:1024–1031. 2019.

77 

Okamoto T, Yamagishi SI, Inagaki Y, Amano S, Koga K, Abe R, Takeuchi M, Ohno S, Yoshimura A and Makita Z: Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin. FASEB J. 16:1928–1930. 2002. View Article : Google Scholar : PubMed/NCBI

78 

Salvucci O, Basik M, Yao L, Bianchi R and Tosato G: Evidence for the involvement of SDF-1 and CXCR4 in the disruption of endothelial cell-branching morphogenesis and angiogenesis by TNF-alpha and IFN-gamma. J Leukoc Biol. 76:217–226. 2004. View Article : Google Scholar : PubMed/NCBI

79 

Butler JM, Guthrie SM, Koc M, Afzal A, Caballero S, Brooks HL, Mames RN, Segal MS, Grant MB and Scott EW: SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest. 115:86–93. 2005. View Article : Google Scholar : PubMed/NCBI

80 

Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C, Flynn E and Byers HR: Curcumin is an in vivo inhibitor of angiogenesis. Mol Med. 4:376–383. 1998. View Article : Google Scholar

81 

Sameermahmood Z, Balasubramanyam M, Saravanan T and Rema M: Curcumin modulates SDF-1alpha/CXCR4-induced migration of human retinal endothelial cells (HRECs). Invest Ophthalmol Vis Sci. 49:3305–3311. 2008. View Article : Google Scholar : PubMed/NCBI

82 

Salven P, Hattori K, Heissig B and Rafii S: Interleukin-1alpha promotes angiogenesis in vivo via VEGFR-2 pathway by inducing inflammatory cell VEGF synthesis and secretion. FASEB J. 16:1471–1473. 2002. View Article : Google Scholar : PubMed/NCBI

83 

Mohammad G and Kowluru RA: Novel role of mitochondrial matrix metalloproteinase-2 in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci. 52:3832–3841. 2011. View Article : Google Scholar : PubMed/NCBI

84 

Mohammad G and Kowluru RA: Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction. Lab Invest. 90:1365–1372. 2010. View Article : Google Scholar : PubMed/NCBI

85 

Fu Y, Wang Y, Gao X, Li H and Yuan Y: Dynamic expression of HDAC3 in db/db mouse RGCs and its relationship with apoptosis and autophagy. J Diabetes Res. 2020:60867802020. View Article : Google Scholar : PubMed/NCBI

86 

Zhang X, He N, Xing Y and Lu Y: Knockdown of GCN2 inhibits high glucose-induced oxidative stress and apoptosis in retinal pigment epithelial cells. Clin Exp Pharmacol Physiol. 47:591–598. 2020. View Article : Google Scholar

87 

Mathew R and White E: Why sick cells produce tumors: The protective role of autophagy. Autophagy. 3:502–505. 2007. View Article : Google Scholar : PubMed/NCBI

88 

Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H and Mizushima N: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 441:885–889. 2006. View Article : Google Scholar : PubMed/NCBI

89 

Pahari S, Negi S, Aqdas M, Arnett E, Schlesinger LS and Agrewala JN: Induction of autophagy through CLEC4E in combination with TLR4: An innovative strategy to restrict the survival of mycobacterium tuberculosis. Autophagy. 16:1021–1043. 2020. View Article : Google Scholar :

90 

Fernández ÁF, Sebti S, Wei Y, Zou Z, Shi M, McMillan KL, He C, Ting T, Liu Y, Chiang WC, et al: Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature. 558:136–140. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Luo Y, Dong X, Lu S, Gao Y, Sun G and Sun X: Gypenoside XVII alleviates early diabetic retinopathy by regulating Müller cell apoptosis and autophagy in db/db mice. Eur J Pharmacol. 895:1738932021. View Article : Google Scholar

92 

de Faria JML, Duarte DA, Montemurro C, Papadimitriou A, Consonni SR and de Faria JBL: Defective autophagy in diabetic retinopathy. Invest Ophthalmol Vis Sci. 57:4356–4366. 2016. View Article : Google Scholar

93 

Pereira C: Crosstalk between endoplasmic reticulum stress and protein misfolding in neurodegenerative diseases. ISRN Cell Biol. 2013:2013. View Article : Google Scholar

94 

Pittalà V, Fidilio A, Lazzara F, Platania CBM, Salerno L, Foresti R, Drago F and Bucolo C: Effects of novel nitric oxide-releasing molecules against oxidative stress on retinal pigmented epithelial cells. Oxid Med Cell Longev. 2017:14208922017. View Article : Google Scholar : PubMed/NCBI

95 

Bucolo C, Drago F, Maisto R, Romano GL, D'Agata V, Maugeri G and Giunta S: Curcumin prevents high glucose damage in retinal pigment epithelial cells through ERK1/2-mediated activation of the Nrf2/HO-1 pathway. J Cell Physiol. 234:17295–17304. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Chen W, Zou P, Zhao Z, Weng Q, Chen X, Ying S, Ye Q, Wang Z, Ji J and Liang G: Selective killing of gastric cancer cells by a small molecule via targeting TrxR1 and ROS-mediated ER stress activation. Oncotarget. 7:16593–16609. 2016. View Article : Google Scholar : PubMed/NCBI

97 

Ye M, Qiu H, Cao Y, Zhang M, Mi Y, Yu J and Wang C: Curcumin improves palmitate-induced insulin resistance in human umbilical vein endothelial cells by maintaining proteostasis in endoplasmic reticulum. Front Pharmacol. 8:1482017. View Article : Google Scholar : PubMed/NCBI

98 

Zhang P, Fang J, Zhang J, Ding S and Gan D: Curcumin inhibited podocyte cell apoptosis and accelerated cell autophagy in diabetic nephropathy via regulating beclin1/UVRAG/Bcl2. Diabetes Metab Syndr Obes. 13:641–652. 2020. View Article : Google Scholar : PubMed/NCBI

99 

Yao Q, Ke ZQ, Guo S, Yang XS, Zhang FX, Liu XF, Chen X, Chen HG, Ke HY and Liu C: Curcumin protects against diabetic cardiomyopathy by promoting autophagy and alleviating apoptosis. J Mol Cell Cardiol. 124:26–34. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Gürler B, Vural H, Yilmaz N, Oguz H, Satici A and Aksoy N: The role of oxidative stress in diabetic retinopathy. Eye (Lond). 5:730–735. 2000. View Article : Google Scholar

101 

Chew EY, Klein ML, Ferris FL III, Remaley NA, Murphy RP, Chantry K, Hoogwerf BJ and Miller D: Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early treatment diabetic retinopathy study (ETDRS) report 22. Arch Ophthalmol. 114:1079–1084. 1996. View Article : Google Scholar : PubMed/NCBI

102 

Kumar B, Kowluru A and Kowluru RA: Lipotoxicity augments glucotoxicity-induced mitochondrial damage in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci. 56:2985–2995. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Kowluru RA, Mishra M, Kowluru A and Kumar B: Hyperlipidemia and the development of diabetic retinopathy: Comparison between type 1 and type 2 animal models. Metabolism. 65:1570–1581. 2016. View Article : Google Scholar : PubMed/NCBI

104 

de Melo ISV, Dos Santos AF and Bueno NB: Curcumin or combined curcuminoids are effective in lowering the fasting blood glucose concentrations of individuals with dysglycemia: Systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 128:137–144. 2018. View Article : Google Scholar

105 

Seo KI, Choi MS, Jung UJ, Kim HJ, Yeo J, Jeon SM and Lee MK: Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol Nutr Food Res. 52:995–1004. 2008. View Article : Google Scholar : PubMed/NCBI

106 

Das KK, Razzaghi-Asl N, Tikare SN, Di Santo R, Costi R, Messore A, Pescatori L, Crucitti GC, Jargar JG, Dhundasi SA and Saso L: Hypoglycemic activity of curcumin synthetic analogues in alloxan-induced diabetic rats. J Enzyme Inhib Med Chem. 31:99–105. 2016. View Article : Google Scholar

107 

Kaur G, Invally M and Chintamaneni M: Influence of piperine and quercetin on antidiabetic potential of curcumin. J Complement Integr Med. 13:247–255. 2016.PubMed/NCBI

108 

Song Z, Wang H, Zhu L, Han M, Gao Y, Du Y and Wen Y: Curcumin improves high glucose-induced INS-1 cell insulin resistance via activation of insulin signaling. Food Funct. 6:461–469. 2015. View Article : Google Scholar

109 

Pivari F, Mingione A, Brasacchio C and Soldati L: Curcumin and type 2 diabetes mellitus: Prevention and treatment. Nutrients. 11:18372019. View Article : Google Scholar :

110 

Kato M, Nishikawa S, Ikehata A, Dochi K, Tani T, Takahashi T, Imaizumi A and Tsuda T: Curcumin improves glucose tolerance via stimulation of glucagon-like peptide-1 secretion. Mol Nutr Food Res. 61:2017. View Article : Google Scholar

111 

Yang YS, Su YF, Yang HW, Lee YH, Chou JI and Ueng KC: Lipid-lowering effects of curcumin in patients with metabolic syndrome: A randomized, double-blind, placebo-controlled trial. Phytother Res. 28:1770–1777. 2014. View Article : Google Scholar : PubMed/NCBI

112 

Peschel D, Koerting R and Nass N: Curcumin induces changes in expression of genes involved in cholesterol homeostasis. J Nutr Biochem. 18:113–119. 2007. View Article : Google Scholar

113 

Dou X, Fan C, Wo L, Yan J, Qian Y and Wo X: Curcumin up-regulates LDL receptor expression via the sterol regulatory element pathway in HepG2 cells. Planta Med. 74:1374–1379. 2008. View Article : Google Scholar : PubMed/NCBI

114 

Fan C, Qian Y, Wo X, Yan J and Gao L: Effect of curcumin on the gene expression of low density lipoprotein receptors. Chin J Integr Med. 11:201–204. 2005.In Chinese. View Article : Google Scholar : PubMed/NCBI

115 

Soni KB and Kuttan R: Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol. 36:273–275. 1992.PubMed/NCBI

116 

Um MY, Hwang KH, Choi WH, Ahn J, Jung CH and Ha TY: Curcumin attenuates adhesion molecules and matrix metalloproteinase expression in hypercholesterolemic rabbits. Nutr Res. 34:886–893. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang J, Miao X, Yang F, Cao J, Liu X, Fu J and Su G: Therapeutic potential of curcumin in diabetic retinopathy (Review). Int J Mol Med 47: 75, 2021.
APA
Yang, J., Miao, X., Yang, F., Cao, J., Liu, X., Fu, J., & Su, G. (2021). Therapeutic potential of curcumin in diabetic retinopathy (Review). International Journal of Molecular Medicine, 47, 75. https://doi.org/10.3892/ijmm.2021.4908
MLA
Yang, J., Miao, X., Yang, F., Cao, J., Liu, X., Fu, J., Su, G."Therapeutic potential of curcumin in diabetic retinopathy (Review)". International Journal of Molecular Medicine 47.5 (2021): 75.
Chicago
Yang, J., Miao, X., Yang, F., Cao, J., Liu, X., Fu, J., Su, G."Therapeutic potential of curcumin in diabetic retinopathy (Review)". International Journal of Molecular Medicine 47, no. 5 (2021): 75. https://doi.org/10.3892/ijmm.2021.4908
Copy and paste a formatted citation
x
Spandidos Publications style
Yang J, Miao X, Yang F, Cao J, Liu X, Fu J and Su G: Therapeutic potential of curcumin in diabetic retinopathy (Review). Int J Mol Med 47: 75, 2021.
APA
Yang, J., Miao, X., Yang, F., Cao, J., Liu, X., Fu, J., & Su, G. (2021). Therapeutic potential of curcumin in diabetic retinopathy (Review). International Journal of Molecular Medicine, 47, 75. https://doi.org/10.3892/ijmm.2021.4908
MLA
Yang, J., Miao, X., Yang, F., Cao, J., Liu, X., Fu, J., Su, G."Therapeutic potential of curcumin in diabetic retinopathy (Review)". International Journal of Molecular Medicine 47.5 (2021): 75.
Chicago
Yang, J., Miao, X., Yang, F., Cao, J., Liu, X., Fu, J., Su, G."Therapeutic potential of curcumin in diabetic retinopathy (Review)". International Journal of Molecular Medicine 47, no. 5 (2021): 75. https://doi.org/10.3892/ijmm.2021.4908
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team