|
1
|
de Vos-Geelen J, Hoebers FJP, Geurts SME,
Hoeben A, de Greef BTA, Voncken FEM, Bogers JHA, Braam PM, Muijs
CKT, de Jong MA, et al: A national study to assess outcomes of
definitive chemoradiation regimens in proximal esophageal cancer.
Acta Oncol. 59:895–903. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. Feb 4–2021.Epub ahead
of print. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lin Y, Totsuka Y, He Y, Kikuchi S, Qiao Y,
Ueda J, Wei W, Inoue M and Tanaka H: Epidemiology of esophageal
cancer in Japan and China. J Epidemiol. 23:233–242. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Napier KJ, Scheerer M and Misra S:
Esophageal cancer: A Review of epidemiology, pathogenesis, staging
workup and treatment modalities. World J Gastrointest Oncol.
6:112–120. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bartley AN, Washington MK, Ventura CB,
Ismaila N, Colasacco C, Benson AB III, Carrato A, Gulley ML, Jain
D, Kakar S, et al: HER2 testing and clinical decision making in
gastroesophageal adenocarcinoma: Guideline from the college of
American pathologists American society for clinical pathology, and
American society of clinical oncology. Arch Pathol Lab Med.
140:1345–1363. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bang YJ, Van Cutsem E, Feyereislova A,
Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T,
et al: Trastuzumab in combination with chemotherapy versus
chemotherapy alone for treatment of HER2-positive advanced gastric
or gastro-oesophageal junction cancer (ToGA): A phase 3,
open-label, randomised controlled trial. Lancet. 376:687–697. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lordick F, Mariette C, Haustermans K,
Obermannova R and Arnold D; ESMO Guidelines Committee: Oesophageal
cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment
and follow-up. Ann Oncol. 27(Suppl 5): v50–v57. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Brar G and Shah MA: The role of
pembrolizumab in the treatment of PD-L1 expressing gastric and
gastroesophageal junction adenocarcinoma. Therap Adv Gastroenterol.
12:17562848198697672019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Le Bras GF, Farooq MH, Falk GW and Andl
CD: Esophageal cancer: The latest on chemoprevention and state of
the art therapies. Pharmacol Res. 113(Pt A): 236–244. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Short MW, Burgers KG and Fry VT:
Esophageal cancer. Am Fam Physician. 95:22–28. 2017.PubMed/NCBI
|
|
11
|
Kitagawa Y, Uno T, Oyama T, Kato K, Kato
H, Kawakubo H, Kawamura O, Kusano M, Kuwano H, Takeuchi H, et al:
Esophageal cancer practice guidelines 2017 edited by the Japan
esophageal society: Part 2. Esophagus. 16:25–43. 2019. View Article : Google Scholar :
|
|
12
|
Wang T, Yu J, Liu M, Chen Y, Zhu C, Lu L,
Wang M, Min L, Liu X, Zhang X, et al: The benefit of taxane-based
therapies over fluoropyrimidine plus platinum (FP) in the treatment
of esophageal cancer: A meta-analysis of clinical studies. Drug Des
Devel Ther. 13:539–553. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang Y: Epidemiology of esophageal
cancer. World J Gastroenterol. 19:5598–5606. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Blot WJ: Invited commentary: More evidence
of increased risks of cancer among alcohol drinkers. Am J
Epidemiol. 150:1138–1140; discussion 1141. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Guanrei Y and Songliang Q: Endoscopic
surveys in high-risk and low-risk populations for esophageal cancer
in China with special reference to precursors of esophageal cancer.
Endoscopy. 19:91–95. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lagergren J and Lagergren P: Recent
developments in esophageal adenocarcinoma. CA Cancer J Clin.
63:232–248. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Duggan C, Onstad L, Hardikar S, Blount PL,
Reid BJ and Vaughan TL: Association between markers of obesity and
progression from Barrett's esophagus to esophageal adenocarcinoma.
Clin Gastroenterol Hepatol. 11:934–943. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Carr JS, Zafar SF, Saba N, Khuri FR and
El-Rayes BF: Risk factors for rising incidence of esophageal and
gastric cardia adenocarcinoma. J Gastrointest Cancer. 44:143–151.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lofdahl HE, Lu Y, Lagergren P and
Lagergren J: Risk factors for esophageal adenocarcinoma after
antireflux surgery. Ann Surg. 257:579–582. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mao WM, Zheng WH and Ling ZQ:
Epidemiologic risk factors for esophageal cancer development. Asian
Pac J Cancer Prev. 12:2461–2466. 2011.
|
|
21
|
D'Onofrio V, Bovero E and Iaquinto G:
Characterization of acid and alkaline reflux in patients with
Barrett's esophagus. G.O.S.P.E. Operative Group for the study of
Esophageal Precancer. Dis Esophagus. 10:16–22; discussion 22-3.
1997.PubMed/NCBI
|
|
22
|
Fassan M, Realdon S, Cascione L, Hahne JC,
Munari G, Guzzardo V, Arcidiacono D, Lampis A, Brignola S, Dal
Santo L, et al: Circulating microRNA expression profiling revealed
miR-92a-3p as a novel biomarker of Barrett's carcinogenesis. Pathol
Res Pract. 216:1529072020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lin J, Zeng R, Cao W, Luo R, Chen J and
Lin Y: Hot beverage and food intake and esophageal cancer in
southern China. Asian Pac J Cancer Prev. 12:2189–2192. 2011.
|
|
24
|
Nieman KM, Romero IL, Van Houten B and
Lengyel E: Adipose tissue and adipocytes support tumorigenesis and
metastasis. Biochim Biophys Acta. 1831:1533–1541. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lawrence MS, Stojanov P, Polak P, Kryukov
GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH,
Roberts SA, et al: Mutational heterogeneity in cancer and the
search for new cancer-associated genes. Nature. 499:214–218. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ratti M, Lampis A, Hahne JC, Passalacqua R
and Valeri N: Microsatellite instability in gastric cancer:
Molecular bases, clinical perspectives, and new treatment
approaches. Cell Mol Life Sci. 75:4151–4162. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lin EW, Karakasheva TA, Hicks PD, Bass AJ
and Rustgi AK: The tumor microenvironment in esophageal cancer.
Oncogene. 35:5337–5349. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ammannagari N and Atasoy A: Current status
of immunotherapy and immune biomarkers in gastro-esophageal
cancers. J Gastrointest Oncol. 9:196–207. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Le DT, Uram JN, Wang H, Bartlett BR,
Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et
al: PD-1 Blockade in tumors with Mismatch-Repair deficiency. N Engl
J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kim WK, Park M, Park M, Kim YJ, Shin N,
Kim HK, You KT and Kim H: Identification and selective degradation
of neopeptide-containing truncated mutant proteins in the tumors
with high microsatellite instability. Clin Cancer Res.
19:3369–3382. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Puzzoni M, Silvestris N, Leone F,
Giampieri R, Faloppi L, Demurtas L, Dell'Aquila E, Marino D,
Brunetti O, Garattini SK, et al: The immune revolution in
gastrointestinal tumours: Leading the way or just following? Target
Oncol. 11:593–603. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li P, Xu W, Liu F, Zhu H, Zhang L, Ding Z,
Liang H and Song J: The emerging roles of IDO2 in cancer and its
potential as a therapeutic target. Biomed Pharmacother.
137:1112952021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhou H, Jiang M, Yuan H, Ni W and Tai G:
Dual roles of myeloid-derived suppressor cells induced by Toll-like
receptor signaling in cancer. Oncol Lett. 21:1492021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Abou Khouzam R, Brodaczewska K, Filipiak
A, Zeinelabdin NA, Buart S, Szczylik C, Kieda C and Chouaib S:
Tumor hypoxia regulates immune Escape/Invasion: Influence on
angiogenesis and potential impact of hypoxic biomarkers on cancer
therapies. Front Immunol. 11:6131142021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gajewski TF, Schreiber H and Fu YX: Innate
and adaptive immune cells in the tumor microenvironment. Nat
Immunol. 14:1014–1022. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ando M, Ito M, Srirat T, Kondo T and
Yoshimura A: Memory T cell, exhaustion, and tumor immunity. Immunol
Med. 43:1–9. 2020. View Article : Google Scholar
|
|
37
|
Chen DS and Mellman I: Oncology meets
immunology: The cancer-immunity cycle. Immunity. 39:1–10. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hahne JC, Meyer SR, Gambaryan S, Walter U,
Dietl J, Engel JB and Honig A: Immune escape of AKT overexpressing
ovarian cancer cells. Int J Oncol. 42:1630–1635. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Boutet P, Aguera-Gonzalez S, Atkinson S,
Pennington CJ, Edwards DR, Murphy G, Reyburn HT and Valés-Gómez M:
Cutting edge: The metalloproteinase ADAM17/TNF-alpha-converting
enzyme regulates proteolytic shedding of the MHC class I-related
chain B protein. J Immunol. 182:49–53. 2009. View Article : Google Scholar
|
|
40
|
Waldhauer I, Goehlsdorf D, Gieseke F,
Weinschenk T, Wittenbrink M, Ludwig A, Stevanovic S, Rammensee HG
and Steinle A: Tumor-associated MICA is shed by ADAM proteases.
Cancer Res. 68:6368–6376. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ricklefs FL, Alayo Q, Krenzlin H, Mahmoud
AB, Speranza MC, Nakashima H, Hayes JL, Lee K, Balaj L, Passaro C,
et al: Immune evasion mediated by PD-L1 on glioblastoma-derived
extracellular vesicles. Sci Adv. 4:eaar27662018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Theodoraki MN, Yerneni SS, Hoffmann TK,
Gooding WE and Whiteside TL: Clinical significance of PD-L1(+)
exosomes in plasma of head and neck cancer patients. Clin Cancer
Res. 24:896–905. 2018. View Article : Google Scholar
|
|
44
|
Corthay A: How do regulatory T cells work?
Scand J Immunol. 70:326–336. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Romano M, Fanelli G, Albany CJ, Giganti G
and Lombardi G: Past, present, and future of regulatory T Cell
therapy in transplantation and autoimmunity. Front Immunol.
10:432019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Togashi Y, Shitara K and Nishikawa H:
Regulatory T cells in cancer immunosuppression-implications for
anticancer therapy. Nat Rev Clin Oncol. 16:356–371. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Engel JB, Honig A, Kapp M, Hahne JC, Meyer
SR, Dietl J and Segerer SE: Mechanisms of tumor immune escape in
triple-negative breast cancers (TNBC) with and without mutated BRCA
1. Arch Gynecol Obstet. 289:141–147. 2014. View Article : Google Scholar
|
|
48
|
Gabrilovich DI and Nagaraj S:
Myeloid-derived suppressor cells as regulators of the immune
system. Nat Rev Immunol. 9:162–174. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Gabrilovich DI: Myeloid-Derived suppressor
cells. Cancer Immunol Res. 5:3–8. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Karakasheva TA, Dominguez GA, Hashimoto A,
Lin EW, Chiu C, Sasser K, Lee JW, Beatty GL, Gabrilovich DI and
Rustgi AK: CD38+ M-MDSC expansion characterizes a subset of
advanced colorectal cancer patients. JCI Insight. 3:e970222018.
View Article : Google Scholar :
|
|
51
|
Shi T, Ma Y, Yu L, Jiang J, Shen S, Hou Y
and Wang T: Cancer immunotherapy: A focus on the regulation of
immune check- points. Int J Mol Sci. 19:13892018. View Article : Google Scholar
|
|
52
|
Kim ES, Kim JE, Patel MA, Mangraviti A,
Ruzevick J and Lim M: Immune checkpoint modulators: An emerging
anti-glioma armamentarium. J Immunol Res. 2016:46836072016.
View Article : Google Scholar
|
|
53
|
Vivaldi C, Catanese S, Massa V, Pecora I,
Salani F, Santi S, Lencioni M, Vasile E, Falcone A and Fornaro L:
Immune check-point inhibitors in esophageal cancers: Are we finally
finding the right path in the mist? Int J Mol Sci. 21:16582020.
View Article : Google Scholar
|
|
54
|
Sharma P and Allison JP: The future of
immune checkpoint therapy. Science. 348:56–61. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Topalian SL, Drake CG and Pardoll DM:
Immune checkpoint blockade: A common denominator approach to cancer
therapy. Cancer Cell. 27:450–461. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Disis ML: Mechanism of action of
immunotherapy. Semin Oncol. 41(Suppl 5): S3–S13. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Senju H, Kumagai A, Nakamura Y, Yamaguchi
H, Nakatomi K, Fukami S, Shiraishi K, Harada Y, Nakamura M, Okamura
H, et al: Effect of IL-18 on the expansion and phenotype of human
natural killer cells: Application to cancer immunotherapy. Int J
Biol Sci. 14:331–340. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Patel SP and Kurzrock R: PD-L1 expression
as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther.
14:847–856. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Mimura K, Yamada L, Ujiie D, Hayase S,
Tada T, Hanayama H, Thar Min AK, Shibata M, Momma T, Saze Z, et al:
Immunotherapy for esophageal squamous cell carcinoma: A review.
Fukushima J Med Sci. 64:46–53. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Redman JM, Gibney GT and Atkins MB:
Advances in immunotherapy for melanoma. BMC Med. 14:202016.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Figueroa-Protti L, Soto-Molinari R,
Calderon-Osorno M, Mora J and Alpizar-Alpizar W: Gastric cancer in
the Era of immune checkpoint blockade. J Oncol. 2019:10797102019.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ,
Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al:
Safety and activity of anti-PD-L1 antibody in patients with
advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Marchetti A, Di Lorito A and Buttitta F:
Why anti-PD1/PDL1 therapy is so effective? Another piece in the
puzzle. J Thorac Dis. 9:4863–4866. 2017. View Article : Google Scholar
|
|
64
|
Akinleye A and Rasool Z: Immune checkpoint
inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol.
12:922019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hamid O, Robert C, Daud A, Hodi FS, Hwu
WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, et al:
Safety and tumor responses with lambrolizumab (anti-PD-1) in
melanoma. N Engl J Med. 369:134–144. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Robert C, Ribas A, Wolchok JD, Hodi FS,
Hamid O, Kefford R, Weber JS, Joshua AM, Hwu WJ, Gangadhar TC, et
al: Anti-progra mmed-death-receptor-1 treatment with pembrolizumab
in ipilimumab-refractory advanced melanoma: A randomised
dose-comparison cohort of a phase 1 trial. Lancet. 384:1109–1117.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Maleki Vareki S, Garrigos C and Duran I:
Biomarkers of response to PD-1/PD-L1 inhibition. Crit Rev Oncol
Hematol. 116:116–124. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kato R, Yamasaki M, Urakawa S, Nishida K,
Makino T, Morimoto-Okazawa A, Kawashima A, Iwahori K, Suzuki S,
Ueda R, et al: Increased Tim-3(+) T cells in PBMCs during nivolumab
therapy correlate with responses and prognosis of advanced
esophageal squamous cell carcinoma patients. Cancer Immunol
Immunother. 5467:1673–1683. 2018. View Article : Google Scholar
|
|
69
|
Brahmer JR, Rodriguez-Abreu D, Robinson
AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A,
Cuffe S, et al: Health-related quality-of-life results for
pembrolizumab versus chemotherapy in advanced, PD-L1-positive NSCLC
(KEYNOTE-024): A multicentre, international, randomised, open-label
phase 3 trial. Lancet Oncol. 18:1600–1609. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Seiwert TY, Burtness B, Mehra R, Weiss J,
Berger R, Eder JP, Heath K, McClanahan T, Lunceford J, Gause C, et
al: Safety and clinical activity of pembrolizumab for treatment of
recurrent or metastatic squamous cell carcinoma of the head and
neck (KEYNOTE-012): An open-label, multicentre, phase 1b trial.
Lancet Oncol. 17:956–965. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Fuchs CS, Doi T, Jang RW, Muro K, Satoh T,
Machado M, Sun W, Jalal SI, Shah MA, Metges JP, et al: Safety and
efficacy of pembrolizumab monotherapy in patients with previously
treated advanced gastric and gastroesophageal junction cancer:
Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 4:e1800132018.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Doi T, Piha-Paul SA, Jalal SI, Saraf S,
Lunceford J, Koshiji M and Bennouna J: Safety and antitumor
activity of the Anti-Programmed Death-1 antibody pembrolizumab in
patients with advanced esophageal carcinoma. J Clin Oncol.
36:61–67. 2018. View Article : Google Scholar
|
|
73
|
Hamanishi J, Mandai M, Ikeda T, Minami M,
Kawaguchi A, Murayama T, Kanai M, Mori Y, Matsumoto S, Chikuma S,
et al: Safety and antitumor activity of Anti-PD-1 Antibody,
Nivolumab, in patients with platinum-resistant ovarian cancer. J
Clin Oncol. 33:4015–4022. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kato K, Cho BC, Takahashi M, Okada M, Lin
CY, Chin K, Kadowaki S, Ahn MJ, Hamamoto Y, Doki Y, et al:
Nivolumab versus chemotherapy in patients with advanced oesophageal
squamous cell carcinoma refractory or intolerant to previous
chemotherapy (ATTRACTION-3): A multicentre, randomised, open-label,
phase 3 trial. Lancet Oncol. 20:1506–1517. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Das R, Verma R, Sznol M, Boddupalli CS,
Gettinger SN, Kluger H, Callahan M, Wolchok JD, Halaban R,
Dhodapkar MV and Dhodapkar KM: Combination therapy with anti-CTLA-4
and anti-PD-1 leads to distinct immunologic changes in vivo. J
Immunol. 194:950–959. 2015. View Article : Google Scholar
|
|
76
|
Tanaka T, Nakamura J and Noshiro H:
Promising immunotherapies for esophageal cancer. Expert Opin Biol
Ther. 17:723–733. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Janjigian YY, Bendell J, Calvo E, Kim JW,
Ascierto PA, Sharma P, Ott PA, Peltola K, Jaeger D, Evans J, et al:
CheckMate-032 study: Efficacy and safety of nivolumab and nivolumab
plus ipilimumab in patients with metastatic esophagogastric cancer.
J Clin Oncol. 36:2836–2844. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhao Y, Yang W, Huang Y, Cui R, Li X and
Li B: Evolving roles for Targeting CTLA-4 in cancer immunotherapy.
Cell Physiol Biochem. 47:721–734. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Darvin P, Toor SM, Sasidharan Nair V and
Elkord E: Immune checkpoint inhibitors: Recent progress and
potential biomarkers. Exp Mol Med. 50:1–11. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Rosenberg SA and Restifo NP: Adoptive cell
transfer as personalized immunotherapy for human cancer. Science.
348:62–68. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Alsina M, Moehler M and Lorenzen S:
Immunotherapy of esophageal cancer: Current status, many trials and
innovative strategies. Oncol Res Treat. 41:266–271. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Miliotou AN and Papadopoulou LC: CAR
T-cell Therapy: A New Era in cancer immunotherapy. Curr Pharm
Biotechnol. 19:5–18. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Walseng E, Koksal H, Sektioglu IM, Fåne A,
Skorstad G, Kvalheim G, Gaudernack G, Inderberg EM and Wälchli S: A
TCR-based Chimeric antigen receptor. Sci Rep. 7:107132017.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Robbins PF, Dudley ME, Wunderlich J,
El-Gamil M, Li YF, Zhou J, Huang J, Powell DJ Jr and Rosenberg SA:
Cutting edge: Persistence of transferred lymphocyte clonotypes
correlates with cancer regression in patients receiving cell
transfer therapy. J Immunol. 173:7125–7130. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Dudley ME, Yang JC, Sherry R, Hughes MS,
Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, et
al: Adoptive cell therapy for patients with metastatic melanoma:
Evaluation of intensive myeloablative chemoradiation preparative
regimens. J Clin Oncol. 26:5233–5239. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Toh U, Yamana H, Sueyoshi S, Tanaka T,
Niiya F, Katagiri K, Fujita H, Shirozou K and Itoh K: Locoregional
cellular immunotherapy for patients with advanced esophageal
cancer. Clin Cancer Res. 6:4663–4673. 2000.
|
|
87
|
Kageyama S, Ikeda H, Miyahara Y, Imai N,
Ishihara M, Saito K, Sugino S, Ueda S, Ishikawa T, Kokura S, et al:
Adoptive Transfer of MAGE-A4 T-cell Receptor Gene-Transduced
lymphocytes in patients with recurrent esophageal cancer. Clin
Cancer Res. 21:2268–2277. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Li W, Joshi MD, Singhania S, Ramsey KH and
Murthy AK: Peptide vaccine: Progress and challenges. Vaccines
(Basel). 2:515–536. 2014. View Article : Google Scholar
|
|
89
|
Masopust D and Schenkel JM: The
integration of T cell migration, differentiation and function. Nat
Rev Immunol. 13:309–320. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Aranda F, Vacchelli E, Eggermont A, Galon
J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G and Galluzzi
L: Trial Watch: Peptide vaccines in cancer therapy. Oncoimmunology.
2:e266212013. View Article : Google Scholar
|
|
91
|
Tacken PJ, de Vries IJ, Torensma R and
Figdor CG: Dendritic-cell immunotherapy: From ex vivo loading to in
vivo targeting. Nat Rev Immunol. 7:790–802. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Hos BJ, Tondini E, van Kasteren SI and
Ossendorp F: Approaches to improve chemically defined synthetic
peptide vaccines. Front Immunol. 9:8842018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chen DS and Mellman I: Elements of cancer
immunity and the cancer-immune set point. Nature. 541:321–330.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Blander JM: Regulation of the cell biology
of antigen cross-presentation. Annu Rev Immunol. 36:717–753. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Quakkelaar ED and Melief CJ: Experience
with synthetic vaccines for cancer and persistent virus infections
in nonhuman primates and patients. Adv Immunol. 114:77–106. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kono K: Current status of cancer
immunotherapy. J Stem Cells Regen Med. 10:8–13. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Fujiwara S, Wada H, Miyata H, Kawada J,
Kawabata R, Nishikawa H, Gnjatic S, Sedrak C, Sato E, Nakamura Y,
et al: Clinical trial of the intratumoral administration of labeled
DC combined with systemic chemotherapy for esophageal cancer. J
Immunother. 35:513–521. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Robbins PF, Kassim SH, Tran TL, Crystal
JS, Morgan RA, Feldman SA, Yang JC, Dudley ME, Wunderlich JR,
Sherry RM, et al: A pilot trial using lymphocytes genetically
engineered with an NY-ESO-1-reactive T-cell receptor: Long-term
follow-up and correlates with response. Clin Cancer Res.
21:1019–1027. 2015. View Article : Google Scholar
|
|
99
|
Daudi S, Eng KH, Mhawech-Fauceglia P,
Morrison C, Miliotto A, Beck A, Matsuzaki J, Tsuji T, Groman A,
Gnjatic S, et al: Expression and immune responses to MAGE antigens
predict survival in epithelial ovarian cancer. PLoS One.
9:e1040992014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kawabata R, Wada H, Isobe M, Saika T, Sato
S, Uenaka A, Miyata H, Yasuda T, Doki Y, Noguchi Y, et al: Antibody
response against NY-ESO-1 in CHP-NY-ESO-1 vaccinated patients. Int
J Cancer. 120:2178–2184. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Veit JA, Heine D, Thierauf J, Lennerz J,
Shetty S, Schuler PJ, Whiteside T, Beutner D, Meyer M, Grünewald I,
et al: Expression and clinical significance of MAGE and NY-ESO-1
cancer-testis antigens in adenoid cystic carcinoma of the head and
neck. Head Neck. 38:1008–1016. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Thomas R, Al-Khadairi G, Roelands J,
Hendrickx W, Dermime S, Bedognetti D and Decock J: NY-ESO-1 based
immunotherapy of cancer: Current perspectives. Front Immunol.
9:9472018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Bujas T, Marusic Z, Peric Balja M, Mijic
A, Kruslin B and Tomas D: MAGE-A3/4 and NY-ESO-1 antigens
expression in metastatic esophageal squamous cell carcinoma. Eur J
Histochem. 55:e72011. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhang H, Zhou X, Liu D, Zhu Y, Ma Q and
Zhang Y: Progress and challenges of poersonalized neoantigens in
the clinical treatment of tumors. Med Drug Disc. 6:1000302020.
View Article : Google Scholar
|
|
105
|
Huang TX and Fu L: The immune landscape of
esophageal cancer. Cancer Commun (Lond). 39:792019. View Article : Google Scholar
|
|
106
|
Tran E, Robbins PF and Rosenberg SA:
'Final common pathway' of human cancer immunotherapy: Targeting
random somatic mutations. Nat Immunol. 18:255–262. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Butterfield LH: Cancer vaccines. BMJ.
350:h9882015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Han XJ, Ma XL, Yang L, Wei YQ, Peng Y and
Wei XW: Progress in neoantigen targeted cancer immunotherapies.
Front Cell Dev Biol. 8:7282020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Jiang T, Shi T, Zhang H, Hu J, Song Y, Wei
J, Ren S and Zhou C: Tumor neoantigens: From basic research to
clinical applications. J Hematol Oncol. 12:932019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Sahin U, Derhovanessian E, Miller M, Kloke
BP, Simon P, Löwer M, Bukur V, Tadmor AD, Luxemburger U, Schrörs B,
et al: Personalized RNA mutanome vaccines mobilize poly-specific
therapeutic immunity against cancer. Nature. 547:222–226. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J,
Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al: An
immunogenic personal neoantigen vaccine for patients with melanoma.
Nature. 547:217–221. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Iinuma H, Fukushima R, Inaba T, Tamura J,
Inoue T, Ogawa E, Horikawa M, Ikeda Y, Matsutani N, Takeda K, et
al: Phase I clinical study of multiple epitope peptide vaccine
combined with chemoradiation therapy in esophageal cancer patients.
J Transl Med. 12:842014. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Kono K, Iinuma H, Akutsu Y, Tanaka H,
Hayashi N, Uchikado Y, Noguchi T, Fujii H, Okinaka K, Fukushima R,
et al: Multicenter, phase II clinical trial of cancer vaccination
for advanced esophageal cancer with three peptides derived from
novel cancer-testis antigens. J Transl Med. 10:1412012. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Yasuda T, Nishiki K, Yoshida K, Shiraishi
O, Iwama M, Kato H, Yasuda A, Shinkai M, Chiba Y, Okuno K and
Nakamura Y: Cancer peptide vaccine to suppress postoperative
recurrence in esophageal SCC patients with induction of
antigen-specific CD8+T cell. J Clin Oncol. 35(Suppl 15):
e146352017. View Article : Google Scholar
|
|
115
|
Murahashi M, Hijikata Y, Yamada K, Tanaka
Y, Kishimoto J, Inoue H, Marumoto T, Takahashi A, Okazaki T, Takeda
K, et al: Phase I clinical trial of a five-peptide cancer vaccine
combined with cyclophosphamide in advanced solid tumors. Clin
Immunol. 166-167:48–58. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Harao M, Hirata S, Irie A, Senju S,
Nakatsura T, Komori H, Ikuta Y, Yokomine K, Imai K, Inoue M, et al:
HLA-A2-restricted CTL epitopes of a novel lung cancer-associated
cancer testis antigen, cell division cycle associated 1, can induce
tumor-reactive CTL. Int J Cancer. 123:2616–2625. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Obara W, Eto M, Mimata H, Kohri K,
Mitsuhata N, Miura I, Shuin T, Miki T, Koie T, Fujimoto H, et al: A
phase I/II study of cancer peptide vaccine S-288310 in patients
with advanced urothelial carcinoma of the bladder. Ann Oncol.
28:798–803. 2017. View Article : Google Scholar
|
|
118
|
Yoshitake Y, Fukuma D, Yuno A, Hirayama M,
Nakayama H, Tanaka T, Nagata M, Takamune Y, Kawahara K, Nakagawa Y,
et al: Phase II clinical trial of multiple peptide vaccination for
advanced head and neck cancer patients revealed induction of immune
responses and improved OS. Clin Cancer Res. 21:312–321. 2015.
View Article : Google Scholar
|
|
119
|
Ungerechts G, Engeland CE, Buchholz CJ,
Eberle J, Fechner H, Geletneky K, Holm PS, Kreppel F, Kühnel F,
Lang KS, et al: Virotherapy research in Germany: From engineering
to translation. Hum Gene Ther. 28:800–819. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Moehler M, Goepfert K, Heinrich B,
Breitbach CJ, Delic M, Galle PR and Rommelaere J: Oncolytic
virotherapy as emerging immunotherapeutic modality: Potential of
parvovirus h-1. Front Oncol. 4:922014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Conry RM, Westbrook B, McKee S and Norwood
TG: Talimogene laherparepvec: First in class oncolytic virotherapy.
Hum Vaccin Immunother. 14:839–846. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Tanabe S, Tazawa H, Kagawa S, Noma K,
Takehara K, Koujima T, Kashima H, Kato T, Kuroda S, Kikuchi S, et
al: Phase I/II trial of endoscopic intratumoral administration of
OBP-301, a novel telomerase-specific oncolytic virus, with
radiation in elderly esophageal cancer patients. Cancer Res.
75:Abstract CT1232015.
|
|
123
|
Nemunaitis J, Tong AW, Nemunaitis M,
Senzer N, Phadke AP, Bedell C, Adams N, Zhang YA, Maples PB, Chen
S, et al: A phase I study of telomerase-specific replication
competent oncolytic adenovirus (telomelysin) for various solid
tumors. Mol Ther. 18:429–434. 2010. View Article : Google Scholar :
|
|
124
|
Sharabi AB, Lim M, DeWeese TL and Drake
CG: Radiation and checkpoint blockade immunotherapy:
Radiosensitisation and potential mechanisms of synergy. Lancet
Oncol. 16:e498–e509. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Humphries MP, Craig SG, Kacprzyk R, Fisher
NC, Bingham V, McQuaid S, Murray GI, McManus D, Turkington RC,
James J and Salto-Tellez M: The adaptive immune and immune
checkpoint landscape of neoadjuvant treated esophageal
adenocarcinoma using digital pathology quantitation. BMC Cancer.
20:5002020. View Article : Google Scholar : PubMed/NCBI
|